Using Data Grids for Long Term Preservation
(The SHAMAN Project)

Adil Hasan
University of Liverpool
What is SHAMAN?

• Sustaining HeritAge through Multivalent ArchiviNg.
• FP7 EU Integrated Project started Dec/07 finish Dec/11.
• 17 partners: DICE group (US), DNB (D), FUH (D), GLOBIT (D), HATII (GB), INCONTEC (D), INESC-ID (P), INMARK (ESP), IM (GB), Philips (NL), SSLIS (S), UGottingen (D), UIUC (US), UMagdeburg (D), ULiverpool (GB), UStrathclyde (GB), Xerox (F).
What is SHAMAN?

• Aim to investigate long-term preservation of large data-sets.
• Framework must guarantee future accessibility of data even when h/w and s/w change.
• To ensure data understandable in future must also preserve enough context information.
The SHAMAN Approach

• Decouple preservation processes from data.
 – Use abstract language to define preservation processes.
 – Possible to replace underlying services as they become obsolete.
 – Preservation processes themselves must be preserved.

• Must also preserve enough contextual information to make sense of the data in the future.
The SHAMAN Approach

- Decouple storage from data
 - Use data-grid to insulate from changes to hardware.
 - Allows system to scale by easily accommodating new hardware.
 - Allows system to interoperate with other systems through federation.
The SHAMAN Approach

• If possible, keep data in original format and use migrateable tool to render data to end-user.
 – Avoids need to migrate all data regardless of access.
 – CPU only used to render data that needs to be accessed.
 – Tool has adapters to read obsolete formats.
 – Only need to migrate the tool forwards.
Open Archival Information System
iRODS

- Provide storage virtualization
 - Use logical names for storage can replace storage.

- Provides policy virtualization
 - Can use rules to implement some preservation policies which are executed by micro-services.

- Provides a trusted archive
 - Can implement rules to check validity of data.
Multivalent presentation tool

- Multivalent allows data in the original encoding format to be manipulated.
- For a given data type, an adaptor (media engine) is built for the Multivalent browser
 - For example, PDF or Word
- Multivalent services can automate required processes:
 - Format identification, validation, transformation (e.g. correct invalid files)
Combined Emulation/Migration approach

- The Multivalent technology (Java) and the media engine are archived as an iRODS collection
 - Emulation consists of supporting the original operations for manipulating the digital entity
 - We can view documents from the original bitstream
 - We can introduce new functionalities to legacy documents (e.g. magnifying lens to MacWrite 1983 documents)
 - Migration consists of porting Java virtual machine to a new system as needed
 - The *digital entity remains unchanged*, while making it possible to apply new operations
Welcome to the BETA Fab4

Release 0.15 beta - build 2006.11.6

Notice: this software is still under development, there are known limitations.

Fab4 is developed by Fabio Corubolo, at the University of Liverpool. Copyright (c) 2006, University of Liverpool. All Rights Reserved.

Visit the Fab4 HOME WEBSITE for news, and more.

Some example documents to test the features.

Welcome to Fab4! Please do not leave annotations here.

:)

Fabio

A new and unpublished note

A published and trusted note

The annotation list for the current page

Show all

Iconify all

Hide all

Publish new notes

Create a new note

Delete selected note

Shows / hides the annotation panel

Fabio Corubolo
Fab4
Data Discovery

• Important to ensure all contextual information preserved and discoverable.
• Semantic information needs to be maintained (domain expert).
• Important to ensure external references are 'managed' (either captured or an agreement exists for their long term access).
Data Discovery (Cheshire)

• Discovery and retention are related!
• Cheshire digital library system can be used to integrate discovery and analysis in the iRODS or SRB environments
 – Cheshire processing workflows can be used to combine processes of IR, association rule mining, Semantic Web, text mining
• Understanding and generating digital ontologies can be used to aid discovery
 – Digital ontologies along with user-defined ontologies can be used in the semantic grid context
Current State

• Production version of Multivalent now released and widely used.
• Common media formats supported already.
• Production version of Cheshire digital library now released and in service.
• Work integrating Cheshire/Multivalent into iRODS now taking place.
• Further research needs to be done for application to scientific/engineering domains.
• Use for science/engineering domains is a realistic near-term goal!
References

• Multivalent:

• Cheshire:

• IRODS:
 – https://www.irods.org