
iRODS

Advanced Features

Michael Wan

mwan@diceresarch.org

http://irods.org/

iRods advanced features

Data Transfer modes

Structured file implementation

 iRods FUSE implementation

Data Transfer
 Three modes

Sequential

 file size <= 32 MB (MAX_SZ_FOR_SINGLE_BUF in
rodsdef.h)

Single request packet – request + data

Data transfer could require 2 hops

Parallel

Use multi-threads for data transfer

Client initiates multiple connections to server

Single hop for data transfer

Supported by all types of data transfer
• Client/server – put, get

• Server/server – copy, replicate, phymove, etc

Sequential or parallel is automatic

 Tuning - msiSetNumThreads(sizePerThrInMb,
maxNumThr, windowSize)

• numThr = fileSize/sizePerThrInMb + 1

 Iput –N numThr

RBUDP Data Transfer

RBUDP - Reliable Blast UDP

Developed by Eric He, Jason Leigh, Oliver Yu and
Thomas Defanti of U of Ill at Chicago

Use UDP protocol

 iput –Q

Sender sends (blasts) out data at a predetermined rate
(600,000 kbits/s).

Env variable rbudpSendRate – change default rate

Each packet has a sequence number

At end of each transfer, receiver sends a bit map of
packets it has not receivied

Sender sends the missing packets.

Env variable budpPackSize – change default packet size
(8192 bytes)

Use memory mapped file for I/O

For robust network, 10-20% improvement

iRods

server1

iRods
agent

iRods

server2

Data transfer – sequential mode

iCAT

iput

iRods
agent

1

2

4

3

rcDataObjPut
+data

1.Logical-to-Physical mapping

2. Identification of Replicas

3.Access & Audit Control

Peer-to-peer

Request

Server(s)

Spawning
Driver Level

Request + data

R

iRods

server1

iRods
agent

iRods

server2

Data Transfer – Parallel or RBUDP modes

iCAT

iput

iRods
agent

1

2

3

4

7

8 rcDataObjPut

1.Logical-to-Physical mapping

2. Identification of Replicas

3.Access & Audit Control

Return

socket addr.,

port and

cookie

Connect

to server
Data

transfer

R

5

6

Structured Files

Structured files
Files that have their own internal structures

Tar, winZip, other archival packages

iRods uses these structured files to package and
archive data

Supports tar files only. More may be coming

• HAAW files – UK’s Hasan and Weiss

Two usages
Data Bundle –ibun command

Mounted collections – imcoll command

Data Bundle

Aggregate a large number of small files

into a single self contained structured file

More efficient to transfer

More efficient to archive – tape

 ibun command

Data Bundle

 Upload and unbundle a tar file

 tar -chf testdir.tar -C testdir .

 iput -vDtar testdir.tar tardir
 Put the tar in the tardir collection

 Forget to use –Dtar, isysmeta to change dataType

 ibun -x tardir/testdir.tar testdir

 ils -lr testdir

 Bundle an iRods collection into a tar file

 ibun -cDtar tardir/testdir1.tar testdir

 iget –v tardir/testdir1.tar

 The tar file and the sub-files resources must be on the
same host.

Mounted Collection

 A framework for associating a structured dataset on the server to
a collection

 The entire dataset can then be access through this collection
using iRods APIs and iCommands

 Individual files and sub-collections are not registered
 Low overhead

 No user defined metadata

 No support for replication

 Current implementation
 UNIX directory

 Mount a UNIX directory on a server to a collection

 All files and subdirectories in this UNIX directory now appears as if they are
iRods files and sub-collections

 Tar structured files
 Mount a tar file to a collection

 All files and subdirectories in this tar file now appears as if they are iRods
files and sub-collections

 Easy to add other types of structured files by adding ~20 functions to the
structured file driver

Mounted Collection

 Mount a UNIX file directory:

 imkdir mymount

 imcoll -m f –R disk1 /tmp/myDir /workshop/home/mwan/mymount

 ils –Lr mymount

 icd mymount

 iput/iget

 imcoll –U /workshop/home/mwan/mymount

 Mount a tar file

 imkdir mymount1

 imcoll –m tar /workshop/home/mwan/tardir/testdir.tar

/workshop/home/mwan/mymount1

 ils –lr mymount1

 imcoll –U /workshop/home/mwan/mymount1

iRods FUSE

 FUSE

Free UNIX kernel implementation

Allows users to implement their own file system in User
Space

 iRods FUSE

Allow normal users to mount their iRods collection to a
location directory

Access iRods data using normal UNIX commands and
system calls
 Unix command - cp, cat, vi, etc

 Unix system calls – creat, open, read, write, etc

 Other I/O library calls should also work.

Access control determined by the permission of the Unix
mount point

iRods FUSE

 Performance issues
UNIX commands and applications make many “stat”

calls, same files many times

Small read/write calls, less that 10 KB

A simple command such as ls, cp can make 30-60 irods
calls.

 iRods 2.0
File “stat” cached in memory hash queue. Stale after 10

min

Small files (< 1 MB) cached in /tmp/fuseCache

env variable "FuseCacheDir“ - change the default cache
directory.

Much improved, usable

iRods Fuse Example
 Build iRods with Fuse

 See configure instruction in README in clients/fuse

 build
 cd clients/fuse

 make

 To mount a iRods collection
 cd clients/fuse/bin

 iinit

 icd /tempZone/home/myUser/myCollection

 mkdir ~/fuseMnt

 ./irodsFs ~/fuseMnt

 To access iRods files
 cd ~/fuseMnt

 ls should see all files in the
/tempZone/home/myUser/myCollection

 cat, vi of any files should work.

More Information

Michael Wan

mwan@dicerearch.org

http://irods.sdsc.edu

