
iRODS

Advanced Features

Michael Wan

mwan@diceresarch.org

http://irods.org/

iRods advanced features

Data Transfer modes

Structured file implementation

 iRods FUSE implementation

Data Transfer
 Three modes

Sequential

 file size <= 32 MB (MAX_SZ_FOR_SINGLE_BUF in
rodsdef.h)

Single request packet – request + data

Data transfer could require 2 hops

Parallel

Use multi-threads for data transfer

Client initiates multiple connections to server

Single hop for data transfer

Supported by all types of data transfer
• Client/server – put, get

• Server/server – copy, replicate, phymove, etc

Sequential or parallel is automatic

 Tuning - msiSetNumThreads(sizePerThrInMb,
maxNumThr, windowSize)

• numThr = fileSize/sizePerThrInMb + 1

 Iput –N numThr

RBUDP Data Transfer

RBUDP - Reliable Blast UDP

Developed by Eric He, Jason Leigh, Oliver Yu and
Thomas Defanti of U of Ill at Chicago

Use UDP protocol

 iput –Q

Sender sends (blasts) out data at a predetermined rate
(600,000 kbits/s).

Env variable rbudpSendRate – change default rate

Each packet has a sequence number

At end of each transfer, receiver sends a bit map of
packets it has not receivied

Sender sends the missing packets.

Env variable budpPackSize – change default packet size
(8192 bytes)

Use memory mapped file for I/O

For robust network, 10-20% improvement

iRods

server1

iRods
agent

iRods

server2

Data transfer – sequential mode

iCAT

iput

iRods
agent

1

2

4

3

rcDataObjPut
+data

1.Logical-to-Physical mapping

2. Identification of Replicas

3.Access & Audit Control

Peer-to-peer

Request

Server(s)

Spawning
Driver Level

Request + data

R

iRods

server1

iRods
agent

iRods

server2

Data Transfer – Parallel or RBUDP modes

iCAT

iput

iRods
agent

1

2

3

4

7

8 rcDataObjPut

1.Logical-to-Physical mapping

2. Identification of Replicas

3.Access & Audit Control

Return

socket addr.,

port and

cookie

Connect

to server
Data

transfer

R

5

6

Structured Files

Structured files
Files that have their own internal structures

Tar, winZip, other archival packages

iRods uses these structured files to package and
archive data

Supports tar files only. More may be coming

• HAAW files – UK’s Hasan and Weiss

Two usages
Data Bundle –ibun command

Mounted collections – imcoll command

Data Bundle

Aggregate a large number of small files

into a single self contained structured file

More efficient to transfer

More efficient to archive – tape

 ibun command

Data Bundle

 Upload and unbundle a tar file

 tar -chf testdir.tar -C testdir .

 iput -vDtar testdir.tar tardir
 Put the tar in the tardir collection

 Forget to use –Dtar, isysmeta to change dataType

 ibun -x tardir/testdir.tar testdir

 ils -lr testdir

 Bundle an iRods collection into a tar file

 ibun -cDtar tardir/testdir1.tar testdir

 iget –v tardir/testdir1.tar

 The tar file and the sub-files resources must be on the
same host.

Mounted Collection

 A framework for associating a structured dataset on the server to
a collection

 The entire dataset can then be access through this collection
using iRods APIs and iCommands

 Individual files and sub-collections are not registered
 Low overhead

 No user defined metadata

 No support for replication

 Current implementation
 UNIX directory

 Mount a UNIX directory on a server to a collection

 All files and subdirectories in this UNIX directory now appears as if they are
iRods files and sub-collections

 Tar structured files
 Mount a tar file to a collection

 All files and subdirectories in this tar file now appears as if they are iRods
files and sub-collections

 Easy to add other types of structured files by adding ~20 functions to the
structured file driver

Mounted Collection

 Mount a UNIX file directory:

 imkdir mymount

 imcoll -m f –R disk1 /tmp/myDir /workshop/home/mwan/mymount

 ils –Lr mymount

 icd mymount

 iput/iget

 imcoll –U /workshop/home/mwan/mymount

 Mount a tar file

 imkdir mymount1

 imcoll –m tar /workshop/home/mwan/tardir/testdir.tar

/workshop/home/mwan/mymount1

 ils –lr mymount1

 imcoll –U /workshop/home/mwan/mymount1

iRods FUSE

 FUSE

Free UNIX kernel implementation

Allows users to implement their own file system in User
Space

 iRods FUSE

Allow normal users to mount their iRods collection to a
location directory

Access iRods data using normal UNIX commands and
system calls
 Unix command - cp, cat, vi, etc

 Unix system calls – creat, open, read, write, etc

 Other I/O library calls should also work.

Access control determined by the permission of the Unix
mount point

iRods FUSE

 Performance issues
UNIX commands and applications make many “stat”

calls, same files many times

Small read/write calls, less that 10 KB

A simple command such as ls, cp can make 30-60 irods
calls.

 iRods 2.0
File “stat” cached in memory hash queue. Stale after 10

min

Small files (< 1 MB) cached in /tmp/fuseCache

env variable "FuseCacheDir“ - change the default cache
directory.

Much improved, usable

iRods Fuse Example
 Build iRods with Fuse

 See configure instruction in README in clients/fuse

 build
 cd clients/fuse

 make

 To mount a iRods collection
 cd clients/fuse/bin

 iinit

 icd /tempZone/home/myUser/myCollection

 mkdir ~/fuseMnt

 ./irodsFs ~/fuseMnt

 To access iRods files
 cd ~/fuseMnt

 ls should see all files in the
/tempZone/home/myUser/myCollection

 cat, vi of any files should work.

More Information

Michael Wan

mwan@dicerearch.org

http://irods.sdsc.edu

