
 i

integrated Rule-Oriented Data System Reference

Arcot Rajasekar1
Michael Wan2
Reagan Moore1

Wayne Schroeder2

Sheau-Yen Chen2

Lucas Gilbert2

Chien-Yi Hou

Richard Marciano1

Paul Tooby2

Antoine de Torcy1

Bing Zhu 2

1 National Center for Data Intensive Cyber Environments, School of Information and Library
Science, University or North Carolina at Chapel Hill
2 Center for Advanced Data Intensive Cyber Environments, Institute for Neural Computation,
University of California, San Diego

Acknowledgement:
This research was supported by:
• NSF ITR 0427196, Constraint-based Knowledge Systems for Grids, Digital Libraries, and

Persistent Archives. (2004-2007)
• NARA supplement to NSF SCI 0438741, Cyberinfrastructure; From Vision to Reality -

Developing Scalable Data Management Infrastructure in a Data Grid-Enabled Digital Library
System (2005-2006)

• NARA supplement to NSF SCI 0438741, Cyberinfrastructure; From Vision to Reality –
Research Prototype Persistent Archive Extension (2006-2007)

• NSF SDCI 0721400, SDCI Data Improvement: Data Grids for Community Driven
Applications, (2007-2010)

• NSF/NARA OCI-0848296, NARA Transcontinental Persistent Archive Prototype, (2009-
2012)

 ii

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the National
Archives and Records Administration, the National Science Foundation, or the U.S. Government.

 iii

Table of Contents

1 Introduction... 1
2 iRODS ... 1

2.1 A Quick Data Grid Overview... 2
3 iRODS Architecture ... 7

3.1 Virtualizations in iRODS.. 11
3.2 iRODS Components.. 12

4 ROP – Rule-Oriented Programming ... 13
4.1 Session State Variables ... 17
4.2 iRODS Persistent State Information Attributes (# variables)... 19
4.3 User Environment Variables .. 22

5 The iRODS Rule System ... 23
5.1 The iRODS Rule Architecture.. 24
5.2 Rules... 25
5.3 Rule Grammar ... 25
5.4 RuleGen Language.. 28

5.4.1 Using the RuleGen Parser ... 28
5.4.2 Grammar of the rulegen language... 28
5.4.3 Expressions used by Rulegen Parser: ... 30
5.4.4 Example Rule Build... 31

5.5 iRODS Rule Engine .. 32
5.6 Default iRODS Rules.. 33

6 iRODS Attributes ... 34
6.1 First-Class Objects in iRODS... 34

7 iRODS Micro-services ... 40
7.1 Micro-service Input/Output Arguments... 47
7.2 Naming Conventions... 49

7.2.1 Variable Naming Conventions.. 49
7.2.2 Constant Naming Conventions ... 49
7.2.3 Function Naming Conventions ... 49
7.2.4 File Naming Conventions.. 49

8 Extending iRODS... 50
8.1 Changing the IP Address .. 50
8.2 How to interface a Micro-service... 50

8.2.1 How to interface a Micro-services as a module ... 51
8.3 Web Services as Micro-services... 55

8.3.1 First Step (Done Only Once)... 55
8.3.2 Second Step (Done for Each Web Service).. 56

8.4 iRODS FUSE User Level File System .. 58
8.5 Mounted iRODS Collection ... 58

8.5.1 Building libtar and linking the iRODS servers with libtar .. 60
8.6 Developer's Corner.. 60

9 Example Rules .. 60
9.1 File Manipulation Rules.. 62

9.1.1 Rule 1: listColl.ir - Lists All Files in a Collection. .. 62
9.1.2 Rule 2: showicatchksumColl.ir - Lists the Checksum of All Files in a Collection ... 63
9.1.3 Rule 3: verifychksumColl.ir- Verifies the Checksum of All Files in a Collection.... 64
9.1.4 Rule 4: forcchksumColl.ir - Recompute the Checksum of All Files in a Collection 65

 iv

9.1.5 Rule 5: copyColl.ir – Copies Files from Source to Destination Collections.............. 66
9.1.6 Rule 6: replColl.ir - Make a Replica of Each File in a Collection.............................. 67
9.1.7 Rule 7: trim Coll.ir - Trims the Number of Replicas of a File.................................... 68

9.2 User Interaction Rules... 69
9.2.1 Rule 8: sendMailColl.ir - Send e-mail to a Specified e-mail Address. 69
9.2.2 Rule 9: periodicChksumCollColl.ir - Periodically Verify Checksum of Files 70
9.2.3 Rule 10: purgeCollAndEmail.ir – Remove Expired Files... 71

9.3 Rule Manipulation... 72
9.3.1 Rule 11: showCore.ir - Print the Rules Being Used by the Rule Engine. 72
9.3.2 Rule 12: chgCoreToCore1.ir - Change the Rules in the core.irb File 73
9.3.3 Rule 13: chgCoreToOrig.ir – Change to the Rules in the core.irb.orig File 74
9.3.4 Rule 25: ruleTest17.ir – Prepend Rules and Logical Name Mappings 75
9.3.5 Rule 26: ruleTest18.ir – Pre-pend Rules and Logical Name Mappings..................... 76
9.3.6 Rule 27: ruleTest19.ir – Appends Rules and logical name mappings........................ 77
9.3.7 Rule 14: replCollDelayed.ir - Make a Replica of Each File in a Collection.............. 78

9.4 System Testing .. 79
9.4.1 Rule 16: ruleTest1.ir, ruleTest2.ir, ruleTest3.ir – Tests Parametric Variable 79
9.4.2 Rule 17: ruleTest4.ir, ruleTest5.ir, ruleTest6.ir, ruleTest7.ir -- Tests $-variable 80
9.4.3 Rule 18: ruleTest8.ir -- Tests “while” Loop Execution... 81
9.4.4 Rule 19: ruleTest9.ir -- Tests “for” Loop Execution. ... 82
9.4.5 Rule 20: ruleTest10.ir -- Tests “if-then-else” Execution.. 83
9.4.6 Rule 21: ruleTest11.ir, ruleTest12.ir -- Tests Writing to stdout and stderr Buffers. . 84
9.4.7 Rule 22: ruleTest13.ir -- Test Sending e-mail.. 85
9.4.8 Rule 23: ruleTest14.ir -- Tests “for each” Loop for Comma-separated List.............. 86
9.4.9 Rule 24: ruleTest15-16.ir -- Tests “for each” Loop Execution on a Query Result.... 87
9.4.10 Rule 28: ruleTest20.ir -- Tests Remote Execution of Micro-service Writes. 88
9.4.11 Rule 29: ruleTest21.ir -- Tests Remote Execution of Delayed Writes..................... 89

9.5 Resource Selection Example .. 90
9.6 French National Library Rule Base.. 91

9.6.1 PUT Use Case .. 91
9.6.2 GET use case .. 92
9.6.3 AUDIT use case ... 93
9.6.4 Utilities ... 94
9.6.5 External Scripts .. 97

Appendix A. iRODS shell commands ... 98
Appendix B. iRODS Session Variable Mapping ... 101
Appendix C: iRODS Micro-services .. 104

 1

1 Introduction

The integrated Rule Oriented Data System is software middleware that organizes distributed data
into a shared collection. When data sets are distributed across multiple types of storage systems,
across multiple administrative domains, across multiple institutions, and across multiple
countries, data grid technology is needed to enforce uniform management properties on the
assembled collection. The specific challenges include:

• Management of interations with storage resources that use different access protocols.
The data grid provides mechanisms to map from the actions requested by a client to the
protocol required by a specific vendor supplied disk, tape, object ring buffer, or object-
relational database.

• Support for authentication and authorization across systems that use different identity
management systems. The data grid authenticates all access, and authorizes all
operations upon the files registered into the shared collection.

• Support for uniform management policies across institutions that may have differing
access requirements such as different Institutional Research Board approval processes.
The policies controlling use, distribution, retention, disposition, authenticity, integrity,
trustworthiness are enforced by the data grid.

• Support for wide-area-network access. To maintain an interactive response, network
optimization is required for moving massive files (through parallel I/O streams), for
moving small files (through encapsulation of the file in the initial data transfer request),
for moving large numbers of small files (aggregation into containers), and for
minimizing the amount of data sent over the network (execution of remote procedures on
each storage resource).

In response to these challenges, iRODS is an ongoing research and software development effort
to provide middleware solutions that enable collaborative research. The goal of the iRODS team
is to develop generic software that can be used to implement all distributed data management
applications, through changing the management policies and procedures. This has been realized
by creating a highly extensible software infrastructure that can be modified without requiring the
development of new software code. This report describes the data grid technology in Section 2,
the iRODS architecture in Section 3, the Rule-Oriented Programming model in Section 4, the
iRODS Rule system in Section 5, the iRODS attributes in Section 6, the iRODS Micro-services in
Section 7, extensions to iRODS in Section 8, example rules in Section 9, and a specific set or
rules in Section 10.

2 iRODS

The integrated Rule Oriented Data System (iRODS) is software that organizes distributed data
into a Shared Collection, while enforcing Management Policies across the multiple storage
locations. The iRODS system is generic software infrastructure that can be tuned to implement
any desired data management application, ranging from a Data Grid for sharing data in
collaborations, to a digital library for publishing data, to a preservation environment, to a data
processing pipeline, to a system for federating real-time sensor data streams.

The iRODS technology is developed by the Data Intensive Cyber Environments (DICE) group
which is distributed between the University of North Carolina at Chapel Hill (UNC) and the
University of California, San Diego (UCSD). The team at UNC is known as NC-DICE, the
National Center for Data Intensive Cyber Environments. The team at UCSD is known as CA-
DICE, the Center for Advanced Data Intensive Cyber Environments. NC-DICE is associated
with the School of Information and Library Science at UNC. CA-DICE is associated with the
Institute for Neural Computation at UCSD.

 2

The ideas for the iRODS project have existed for a number of years, and became more concrete
through the NSF-funded project “Constraint-based Knowledge Systems for Grids, Digital
Libraries, and Persistent Archives” which started in the fall of 2004. The development of iRODS
was driven by the lessons learned in nearly ten years of deployment and use in production of the
DICE Storage Resource Broker Data Grid technology (SRB) and through applications of theories
and concepts from a wide range of well-known paradigms from computer science fields such as
active databases, program verification, transactional systems, logic programming, business Rule
systems, constraint-management systems, workflows and service-oriented architecture. The
iRODS Data Grid is adaptable middleware, in which management policies and management
procedures can be dynamically changed without having to re-write software code.

The iRODS Data Grid expresses management policies as computer actionable Rules and
management procedures as sets of remotely executable Micro-services. The iRODS Data Grid
manages the information required as input and output from the Micro-services (95 Session
Variable Attributes and 116 Persistent State Information Attributes), manages composition of 161
Micro-services into Actions that implement the desired management procedures, and enforces 31
active Rules while managing a Distributed Collection. An additional set of 23 alternate Rules is
provided as examples of the tuning of Management Policies to specific institutional requirements.
The Rules and Micro-services are targeted towards data management functions needed for a wide
variety of data management applications. The open source iRODS Data Grid is extensible,
supporting dynamic updates to the Rule Base, the incorporation of new Micro-services, and the
addition of new Persistent State Information. With the knowledge provided by this paper, a
reader will be able to add new Rules, create new Micro-services, and build a data management
environment that enforces their institutional Management Policies and procedures.

2.1 A Quick Data Grid Overview
The DICE SRB Data Grid is software infrastructure for sharing data and metadata distributed
across heterogeneous resources using uniform APIs (Application Programming Interfaces) and
GUIs (Graphical User Interfaces). To provide this functionality, the SRB abstracts key concepts
in data management: data object names, sets of data objects, resources, users and groups, and
provides uniform methods for interacting with them. SRB hides the underlying physical
infrastructure from users by providing global, logical mappings for the digital entities registered
into the shared collection. Hence, the peculiarities of storage systems and their access methods,
the locations of data, user authentication and authorization across systems, are hidden from the
users. A user can access files from an online file system, near-line tapes, relational databases,
sensor data streams and the Web without worrying about where they are located, what protocol to
use to connect and access the system, and without establishing a separate account or
password/certificate to each of the underlying computer systems to gain access, etc. These
Virtualization mechanisms are implemented in the SRB system by maintaining mappings and
profile metadata in a permanent database system called the MCAT metadata catalog and by
providing integrated data and metadata management which links the various sub-systems in a
seamless manner.

A key concept is the use of Logical Name Spaces to provide uniform names to entities located in
different administrative domains and possibly stored on different types of storage resources.
When we use the term, Logical Name Space, we mean a set of names that are used by the Data
Grid to describe entities. An implication is that the Data Grid must maintain a mapping from the
logical names to the names understood by the remote storage locations. All operations within the
iRODS Data Grid are based on the iRODS Logical Name Spaces. The iRODS system internally

 3

performs the mapping to the physical names, and issues operations on behalf of the user at the
remote storage location. Figure 1 shows this mapping from the names used by a storage
repository to the logical names managed by iRODS.

 Figure 1. Mapping from local names to Logical Name Spaces

Note that the original SRB Data Grid defined three Logical Name Spaces:

1. Logical names for users. Each person is known to the Data Grid by a unique name.
Each access to the system is authenticated based upon either a public key certificate or a
shared secret.

2. Logical names for files and collections. The Data Grid supports the logical
organization of the distributed files into a hierarchy that can be browsed. A logical
collection can be assembled in which files are logically grouped together even though
they reside at different locations.

3. Logical names for storage resources. The Data Grid can organize resources into
groups, and apply operations on the group of resources. An example is load leveling, in
which files are distributed uniformly across multiple storage systems. An even more
interesting example is the dynamic addition of a new storage resource to a storage group,
and the removal of a legacy storage system from the storage group transparently to the
users of the system.

Both the SRB and iRODS Data Grids implement Logical Name Spaces for users, files, and
storage resources. The best example to start with is the logical names for files and directories in
iRODS: the Data Object and Collection names. Each individual file stored in iRODS has both a
logical and physical path and name. The logical names are the collection and dataObject names as
they appear in iRODS. These are the names that users see when accessing the iRODS data grid.

The iRODS system keeps track of the mapping of these logical names to the physical files (via
storage of the mapping in the ICAT Metadata Catalog). Within a single collection, the individual
data objects might exist physically on separate file systems and perhaps even on separate host
computers. The iRODS system is software middleware that manages information about these files

Storage Repository
• Storage location

• User name

• File name

• File context (creation date,…)

• Access controls

Data Grid
• Logical resource name space

• Logical user name space

• Logical file name space

• Logical context (metadata)

• Access constraints

Data Collection

Data Access Methods
(C library, Unix, Web Browser)

 4

and enables users to access them (if they have the appropriate authorization) regardless of where
the files are located.

This is a form of "infrastructure independence" which is essential for managing distributed data.
The user or administrator can move the files from one storage file system (Resource) to another,
and the logical name the users see remains the same. An old storage system can be replaced by a
new one with the physical files migrated to the new storage system. The iRODS system
automatically tracks the changes for the users, who continue to reference the files by the
persistent Logical Name Space.

The following example illustrates this with the iRODS i-commands (Unix style shell commands
that are executed from a command line prompt). The full list of i-commands is given in Appendix
A. Comments are added after each shell command as a string in parentheses. The command line
prompt is “zuri%” in this example. The commands are shown in “italics”. The output is shown
in “bold”

zuri% imkdir t1 (Make a a new sub-collection t1)
zuri% icd t1 (Make t1 the current default working directory)
zuri% iput file1 (Store a file into iRODS into the working directory)
zuri% ils (Show the files in iRODS, that is the logical names)
/zz/home/rods/t1:
 file1
zuri% ils -l (Show more detail, including the logical resource)
/zz/home/rods/t1:
 rods 0 demoResc 18351 2008-11-17.12:22 & file1
zuri% ils -L (Show more detail, including the physical path)
/zz/home/rods/t1:
 rods 0 demoResc 18351 2008-11-17.12:22 & file1
/scratch/slocal/rods/iRODS/Vault/home/rods/t1/file1

The first item on the ils output line is the name of the owner of the file (in this case “rods”). The
second item is the replication number which we further explain below. The third item is the
Logical Resource Name. The fourth item is the size of the file in bytes. The fifth item is the date.
The sixth item (“&”) indicates the file is up to date. If a replica is modified, the “&” flag is
removed from the out-of-date copies.

In the above example, the iRODS logical name for the file was “file1” and the file was stored in
the logical collection “/zz/home/rods/t1”. The original physical file name was also “file1”. The
logical resource name was “demoResc”. When iRODS stored a copy of the file onto the storage
resource “demoResc”, the copy was made at the location:

“/scratch/slocal/rods/iRODS/Vault/home/rods/t1/file1”

Any storage location at which an iRODS Server has been installed can be used for the repository
through the “-R” command line option. Even though the example below stores “file2” on storage
resource “demoRescQe2”, both “file1” and “file2” are logically organized into the same logical
collection “/zz/home/rods/t1”.

zuri% iput -R demoRescQe2 file2 (Store a file on the “demoRescQe2” vault/host)
zuri% ils
/zz/home/rods/t1:
 file1

 5

 file2
zuri% ils -l
/zz/home/rods/t1:
 rods 0 demoResc 18351 2008-11-17.12:22 & file1
 rods 0 demoRescQe2 64316 2008-11-17.12:29 & file2
zuri% ils -L
/zz/home/rods/t1:
 rods 0 demoResc 18351 2008-11-17.12:22 & file1
 /scratch/slocal/rods/iRODS/Vault/home/rods/t1/file1
 rods 0 demoRescQe2 64316 2008-11-17.12:29 & file2
 /scratch/s1/schroede/qe2/iRODS/Vault/home/rods/t1/file2

Other operations can be performed upon files:
• Registration is the creation of iRODS metadata that point to the file without making a copy.

The ireg command is used instead of iput to register a file. In the example below, “file3a” is
added to the logical collection. Note that its physical location remains the original file system
(“/users/u4/schroede/test/file3”), and a copy was not made into the iRODS Data Grid.

zuri% ireg /users/u4/schroede/test/file3 /zz/home/rods/t1/file3a
zuri% ils
/zz/home/rods/t1:
 file1
 file2
 file3a
zuri% ils -l
/zz/home/rods/t1:
 rods 0 demoResc 18351 2008-11-17.12:22 & file1
 rods 0 demoRescQe2 64316 2008-11-17.12:29 & file2
 rods 0 demoResc 10627 2008-11-17.12:31 & file3a
zuri% ils -L
/zz/home/rods/t1:
 rods 0 demoResc 18351 2008-11-17.12:22 & file1
 /scratch/slocal/rods/iRODS/Vault/home/rods/t1/file1
 rods 0 demoRescQe2 64316 2008-11-17.12:29 & file2
 /scratch/s1/schroede/qe2/iRODS/Vault/home/rods/t1/file2
 rods 0 demoResc 10627 2008-11-17.12:31 & file3a
 /users/u4/schroede/test/file3

• Replication is the creation of multiple copies of a file on different physical resources. The

“irepl” command is used in place of “ireg”. Note that the replication is done on a file that is
already registered or put into an iRODS logical collection.

zuri% irepl -R demoRescQe2 file1
zuri% ils
/zz/home/rods/t1:
 file1
 file1
 file2
 file3a
zuri% ils -l
/zz/home/rods/t1:

 6

 rods 0 demoResc 18351 2008-11-17.12:22 & file1
 rods 1 demoRescQe2 18351 2008-11-17.12:33 & file1
 rods 0 demoRescQe2 64316 2008-11-17.12:29 & file2
 rods 0 demoResc 10627 2008-11-17.12:31 & file3a
zuri% ils -L
/zz/home/rods/t1:
 rods 0 demoResc 18351 2008-11-17.12:22 & file1
 /scratch/slocal/rods/iRODS/Vault/home/rods/t1/file1
 rods 1 demoRescQe2 18351 2008-11-17.12:33 & file1
 /scratch/s1/schroede/qe2/iRODS/Vault/home/rods/t1/file1
 rods 0 demoRescQe2 64316 2008-11-17.12:29 & file2
 /scratch/s1/schroede/qe2/iRODS/Vault/home/rods/t1/file2
 rods 0 demoResc 10627 2008-11-17.12:31 & file3a
 /users/u4/schroede/test/file3

The replica is indicated by listing the file twice, once for the original vault where the file was
stored in the iRODS “demoResc” storage vault, and once for the location where the replica was
stored in the “demoRescQe2” storage vault. The replication number is listed after the name of
the owner (the second item on the output line). Note that the creation dates of the replicas may be
different.

A second critical point is that the operations that were performed to put, register, and replicate
files within the iRODS Data Grid, were executed under the control of a Rule Engine. Computer
actionable Rules are read from a Rule Base “core.irb” and used to select the procedures that will
be executed on each interaction with the system. In the above examples, a default Policy was
used to specify how the pathname for each file was defined when the file was written to an
iRODS storage resource (vault). The specific default Rule that was used, set the path name under
which the file was stored to be the same as the logical path name. This makes it easy to correlate
files in storage resources with files in the iRODS logical collection. We explain the syntax of this
Rule in section 4.2 on iRODS Rules:

 acSetVaultPathPolicy||msiSetGraftPathScheme(no,1)|nop

When managing large numbers of files, the remote physical storage location may have a
maximum number of files that can be effectively stored in a single directory. When too many
files are put into a single physical directory, the file system becomes unresponsive. The iRODS
Data Grid provides a procedure (Micro-service) that can be used to impose two levels of
directories and create a random name for the physical path name to the file. We can replace the
default Rule in the “core.irb” Rule Base for controlling definition of path names with the
following Rule:

 acSetVaultPathPolicy||msiSetRandomScheme|nop

Once the core.irb file is changed, all subsequent operations will be controlled by the new set of
Rules. In the example below, a file is put into the iRODS Data Grid using the new Rule set. We
observe that the physical file path is now “.../rods/10/9/file4.1226966101” instead of
“.../rods/t1/file4”. That is, the new Rule assigns a random number at the end of the physical name
and creates and uses two levels of directories (“/10/9/”) to keep the number of items in each
directory low. In some cases, this will provide improved performance and greater capacity.

zuri% iput file4

 7

zuri% ils
/zz/home/rods/t1:
 file1
 file1
 file2
 file3a
 file3b
 file4
zuri% ils -l file4
 rods 0 demoResc 27 2008-11-17.15:55 & file4
zuri% ils -L file4
 rods 0 demoResc 27 2008-11-17.15:55 & file4
 /scratch/slocal/rods/iRODS/Vault/rods/10/9/file4.1226966101

This simple example illustrates why the iRODS Data Grid is viewed as a significant advance over
the SRB Data Grid technology. The policy for defining how physical files will be named is under
the control of the Data Grid administrator. Changes to the policies can be made without having to
write new software. The SRB Data Grid was a one-size fits all system. The policies used in
managing the data at the server level were hard-coded. Also, if a user wanted to perform complex
sets of operations of the files, they had to create a script or program that was run at the client
level. If a community wanted to perform a different type of operation (say change the way the
access control for files was implemented), they had to change the SRB code with the hope that it
did not introduce unintended side-effects on other operations.

Examples for such customizable requirements come from the SRB user community itself. For
example, one user wanted a feature in which all files in a particular collection should be disabled
from being deleted even by the owner or Data Grid administrator, but other collections should
behave as before! This kind of collection-level data management Policy is not easily implemented
in the SRB Data Grid without a lot of work. Also the required software changes are hardwired,
making it difficult to reapply the particular SRB Data Grid instance in another project that has a
different data deletion policy. Another example is based on a request to use additional or alternate
checks for access controls on sensitive files. This again required specialized coding to implement
the capability in the SRB. A third example occurred when a user wanted to asynchronously
replicate (or extract metadata from, or create a lower resolution file from) newly ingested files in
a particular collection (or file type). Implementation of this feature required additional coding and
asynchronous scheduling mechanisms not easily done in the SRB.

3 iRODS Architecture

The iRODS system belongs to a class of middleware which we term adaptive middleware. The
Adaptive Middleware Architecture (AMA for short) provides a means for adapting the
middleware to meet the needs of the end user community without requiring that they make
programming changes. One can view the AMA middleware as a glass box in which users can see
how the system works and can tweak the controls to meet their demands. Usually middleware is
the equivalent of a black box for which no changes are programmatically possible to adjust the
flow of the operations, except pre-determined configuration options that may allow one to set the
starting conditions of the middleware.

There are multiple ways to achieve an Adaptive Middleware Architecture. In our approach, we
use a particular methodology that we name Rule Oriented Programming or ROP for short. The
Rule Oriented Programming concept is discussed in some detail in section 3.

 8

The iRODS architecture provides a means for encoding customization of data management
functionalities in an easy and declarative fashion using the ROP paradigm. This is accomplished
by coding the processes that are being performed in the iRODS Data Grid system as Rules (see
section 4.2 on Rules) that explicitly control the operations that are being performed when a Rule
is invoked by a particular task. These operations are called Micro-services (see section 6 on
Micro-services) in iRODS and are C-functions that are called when executing the Rule body. One
can modify the flow of tasks when executing the Rules, by interposing new Micro-services (or
Rule invocations) in a given Rule or by changing and recompiling the Micro-service code.
Moreover, one can add another Rule in the Rule Base for the same task, but with a higher priority
so that it is chosen before an existing Rule. This pre-emptive Rule will be executed before the
original Rule. If there is a failure in the execution of any part of this new Rule then the original
Rule is executed.

The major features of the iRODS architecture include the following:

1) Data Grid Architecture based on a client/server model that controls interactions with
distributed storage and compute resources.

2) A Metadata Catalog managed in a database system for maintaining the attributes of data
and state information generated by remote operations.

3) A Rule System for enforcing and executing adaptive Rules

The iRODS Server software is installed at each physical location where data will be stored. The
iRODS Server translates operations into the protocol required by the remote storage system. In
addition, a Rule Engine is also installed at each storage location. The Rule Engine controls
operations performed at that site. Figure 2 illustrates the components of the iRODS system,
including a Client for accessing the Data Grid, Data Grid Servers installed at each storage system,
a Rule Engine installed at each storage location, the iCAT Metadata Catalog that stores the
persistent state information, and a Rule Base that holds the Rules.

Figure 2. Peer-to-peer server architecture

iRODS Server
Rule Engine

iRODS Server
Rule Engine

Metadata Catalog
Rule Base

DB

 9

The Rule Base is replicated to each iRODS server. When the iRODS server is installed at a
particular storage location, an iRODS Rule Base is also installed. Future enhancements to the
iRODS system will investigate automated updates to the Rule Base depending upon the version
that is installed at the coordinating Metadata Catalog site. In the current approach, each site can
choose to run a different set of Rules, including Rules that are specific to the type of storage
system at the site’s location.

In order to create a highly extensible architecture, the iRODS Data Grid implements multiple
levels of virtualization. As shown in Figure 3, the Actions that are requested by a client are
mapped to sets of standard operations, called Micro-services. A single client request may invoke
the execution of multiple Micro-services and Rules.

In turn, the Micro-services execute standard operations
that are performed at the remote storage location. The
standard operations are based upon the Posix I/O
functions:
• Create a file
• Open a file
• Close a file
• Read a file
• Write a file
• Unlink a file
• Seek to a location in a file
• Force completion of pending disk write
• Display file status
• List information about files
• Make a directory
• Remove a directory
• Change access permission
• Open a directory
• Close a directory
• Read a directory

A given Micro-service can invoke multiple Posix I/O
calls. Thus the Micro-service is intended to simplify expression of procedures by providing an
intermediate level of functionality that is easier to chain into the desired Action.

The Posix I/O calls are then mapped into the protocol required by the storage system through a
driver that is written explicitly for that storage system. The Data Grid Middleware corresponds to
the software that maps from the Actions requested by the client access interface to the storage
protocol required by the storage system.

This approach means that new access mechanisms can be added without having to modify the
standard operations performed at the storage systems. Also, new types of storage systems can be
integrated into the system by writing new drivers without having to modify any of the access
clients.

The list of Posix I/O calls includes the ability to do partial I/O upon a file at a storage device.
Since not all of the storage systems that may be integrated into the Data Grid have this ability,

Storage SystemStorage System

Storage PStorage Protocolrotocol

Access InterfaceAccess Interface

Standard MicroStandard Micro-- servicesservices

Data GridData Grid

Standard Operat ionsStandard Operat ions

Figure 3. iRODS layered architecture

 10

caching of files on a second storage system may be necessary. This approach was used to support
manipulation of files within the NCAR mass storage system, which only allowed complete file
input and retrieval. A copy was made on a disk file system, where partial I/O commands were
then executed.

The iRODS Data Grid effectively implements a distributed operating system. The remote
operations generate Structured Information that must then be passed between Micro-services and
to the Client.

Figure 4. iRODS Distributed Operating System

The iRODS framework implements multiple mechanisms needed to control the exchange of
Structured Information, the execution of the remote Micro-services, and the interactions between
the Rule Base, Rule Engine, Metadata Catalog, and network. The iRODS framework is
illustrated in Figure 4. The components include:
• Data Transport: Manages parallel I/O streams for moving very large files (greater than 30

Megabytes in size) over the network. An optimized transport protocol is used that sends the
data with the initial transfer request for small files less than 30 Megabytes in size.

• Metadata Catalog: Manages interactions with a vendor-specific or open source database to
store descriptive metadata and Persistent State Information.

• Rule Engine: Manages the computer actionable Rules to control selection of Micro-services.
• Execution Control: Manages scheduling of the Micro-services that are selected by the Rule

engine. Micro-services may be executed at multiple storage locations, or deferred for
execution, or executed periodically.

• Execution Engine: Manages execution of a Micro-service. The Micro-services are written in
the “C” language, and are compiled for a specific operating system. The execution engine

RuleRule

EngineEngine

MetadatMetadataa
CatalogCatalog

ExecutionExecution
ControlControl

MessagingMessaging
SystemSystem

Execution Execution
Engine Engine

VirtualizationVirtualization

Server
Side
Workflow

Persistent
State

Information

Scheduling

Policy
Management

DataData

TransportTransport

 11

manages the input of data to the Micro-service, and manages the output of data from the
Micro-service.

• Messaging System: Manages high-performance message exchange between iRODS Servers.
This is required when Structured Information is moved between Micro-services that are
executed at different storage locations.

• Virtualization Framework: Coordinates interaction between the framework components.

The mechanisms implemented within the iRODS system are sufficiently powerful to control the
execution of workflows at each remote storage location. This linking of multiple remote
procedures is called a server-side workflow to differentiate it from workflows executed at a
compute server under the control of a client (client-side workflows). This implies that a Rule
represents a workflow that will be executed to implement a desired Client Action. The types of
workflows that should be executed directly on a storage system have low complexity - a small
number of operations compared to the number of bytes in the file. If the complexity is
sufficiently small, then the amount of time needed to perform the workflow will be less than the
time that would have been required to move the file to a computer server. For workflows that
have high complexity, it is faster to move the file to a compute server than it is to perform the
operations at the remote storage system. Thus iRODS is expected to control low-complexity
workflows that can be most efficiently executed at each storage system. Examples of low-
complexity workflows include the extraction of a data subset from a large file, or the parsing of
metadata from a file header.

An implication of the restriction to low-complexity workflows is that the iRODS system should
also restrict the Rule Set to control a well-defined set of Micro-services. The Rule Base should
encompass a small number of Rules that are highly tuned to the specific data management
policies for which the shared collection was created.

3.1 Virtualizations in iRODS

iRODS can be thought of as providing a new abstraction for data management processes and
policies (using the logical Rule paradigm) in much the same way that the SRB provided
abstractions for data objects, collections, resources, users and metadata. The goal is to be able to
characterize the Management Policies that are needed to enforce authenticity, integrity, access
restrictions, data placement, and data presentation, and to automate the application of the
Policies for services such as administration, authentication, authorization, auditing and
accounting, as well as data management policies for replication, distribution, pre- and post-
processing and metadata extraction and assignment. The Management Policies are mapped onto
Rules that control the execution of all data management operations. iRODS can be seen as
supporting four types of virtualization beyond those supported by a Data Grid such as the SRB.

• Workflow virtualization. This is the ability to manage the execution of a distributed

workflow independently of the compute resources where the workflow components are
executed. This requires the ability to manage the properties of the executing jobs. iRODS
implements the concept of workflows through chaining of Micro-services within nested Rule
sets and using shared logical variables that control the workflow.

• Management Policy virtualization. This is the expression of Management Policies as Rules
that can be implemented independently of the remote storage system. We characterize
Management Policies in terms of policy attributes that control desired outcomes. For each
desired outcome, Rules are defined that control the execution of the standard remote
operations. For each Rule application, Persistent State Information is maintained to describe

 12

the result of the remote operation. Consistency Rules can be implemented that verify that the
remote operation outcomes comply with the Policy Attributes. Rule-based data management
infrastructure makes it possible to express Management Policies as Rules and define the
outcome of the application of each Management Policy in terms of updates to the Persistent
State Information. iRODS applies the concept of transactional Rules using datalog-type
Event-Condition-Action Rules working with persistent shared metadata. iRODS implements
traditional ACID database properties (Atomicity, Consistency, Isolation, Durability).

• Service virtualization. The operations that are performed by Rule-based data management
systems can be encapsulated in Micro-services. A Logical Name Space can be constructed for
the Micro-services that makes it possible to name, organize, and upgrade Micro-services
without having to change the Management Policies. This is one of the key capabilities needed
to manage versions of Micro-services, and enable a system to execute correctly while the
Micro-services are being upgraded. iRODS Micro-services are constructed on the concepts of
well-defined input-output properties, consistency verification, and roll-back properties for
error recovery. The iRODS Micro-services provide a compositional framework realized at
run-time.

• Rule virtualization. This is a Logical Name Space that allows the Rules to be named,
organized in sets, and versioned. A Logical Name Space for Rules enables the evolution of
the Rules themselves.

3.2 iRODS Components

The iRODS system consists of Servers that are installed at each storage location, a central
Metadata Catalog, and Clients. The iRODS Server contains both the driver that issues the local
storage resource protocol and a Rule Engine that controls operations performed at the storage
location. The components of the iRODS system are shown in Figure 5.

The client interface is typically built on either a C library interface to the iRODS Data Grid or a
Java I/O class library, or uses Unix-style shell commands. These interfaces send messages over
the network to an iRODS Server. The server interacts with the iRODS iCAT Metadata Catalog to
validate the user identity, and authorize the requested operation. The location where the
operation will be performed is identified, and the operation request is forwarded to the remote
storage location. A Rule Engine at the storage location selects the Rules to invoke (Rule Invoker)
from the Rule Base, retrieves current state information as needed from the Configuration files and
the Metadata Persistent Repository, stores the current state information in a Session memory, and
then invokes the Micro-services specified by the Rules.

An important component that is being developed is the administrator interface. As Rules, Micro-
services, Resources, and Metadata are changed, the consistency of the new system must be
verified. The design allows for the execution of consistency modules to verify that the new
system is compliant with selected properties of the old system. A Rule composer that checks
input and output attributes of Micro-services is needed to simplify creation of new Rules. The
Data Grid Administrator manages and designs the Rules used by iRODS, and executes
administrative functions through the icommand “iadmin”.

Interaction with the storage location is done through a software driver module that translates
requests to the protocol of the specific storage device. This makes it possible to store data in a
wide variety of types of storage systems.

 13

Figure 5. iRODS Architecture Components

4 ROP – Rule-Oriented Programming

Rule-oriented programming (ROP) is a different (though not new) paradigm from normal
programming practice. In Rule-Oriented Programming, the power of controlling the functionality
rests more with the users than with system and application developers. Hence, any change to a
particular process or policy can be easily constructed by the user and tested and deployed without
the aid of system and application developers.

ROP can be viewed as lego-block type programming. The building blocks for the ROP are
“Micro-services.” Micro-services are small, well-defined procedures/functions that perform a
certain task. Micro-services are developed and made available by system programmers and
application programmers. Users and administrators can “chain” these Micro-services to
implement a larger macro-level functionality that they want to use or provide for others. For
example, one of the Micro-services might be to “createCollection”, another one might be to
“computeChecksum” and a third to “replicateObject”.

Client Interface Admin Interface

Current
State

Rule Invoker

Micro
Service

Modules

Metadata-based
Services

Resources

Micro
Service

Modules

Resource-based
Services

Service
Manager

Consistency
Check

Module

Rule
Modifier
Module

Consistency
Check

Module

Engine

Rule

Confs

Config
Modifier
Module

Metadata
Modifier
Module

Metadata
Persistent

Repository

Consistency
Check

Module Rule
Base

 14

Larger macro-level functionalities are called “Actions.” Since one can perform an Action in more
than one way, each Action might have one or more chains of Micro-services associated with it.
Hence one can view an Action as a name of a task and the chains of Micro-services as the
procedural counterpart for performing the task. Since there may be more than one chain of Micro-
services possible for an Action, iRODS provides two mechanisms for finding the best choice of
Micro-service to apply in a given situation. The first mechanism is a “condition” that can be
attached to any Micro-service chain which will be tested for compliance before executing the
chain. These conditions in effect act as guards that check permission for execution of the chain.
The triplet <action, condition, chain> is called a “Rule” in the ROP system. (There is another
concept called “recovery micro–services chain” that will be introduced later which will make the
Rule into a quartet).

The second mechanism that is used for identifying an applicable Rule is a “priority” associated
with a chain. Priority is an integer associated with a Rule that identifies the order in which it will
be tested for applicability: the lower the number, the higher the priority. In our current
implementation, the priority is associated with the way the Rules are read from Rule files upon
initialization. The earlier the Rule is read and included in the Rule Base, the higher its priority
compared to all the Rules for the same Action.

The implementation of iRODS includes another helpful feature. The chain of Micro-services is
not limited to just Micro-service procedures and functions but can also include Actions. Hence
when executing a chain of Micro-services, if an Action needs to be performed, the system will
invoke the Rule application program for the new Action. Hence, an Action can be built using
other Actions. Care should be taken so that there are no infinite cycles in any loop formed by
recursive calls to the same Action.

In summary, the first three components of a Rule consist of an action name, a testable condition,
and a chain of action and a set of Micro-services. Each Rule also has a priority associated with it.

The fourth component of a Rule is a set of recovery Micro-services. An important question that
arises is what should be done when a Micro-service fails (returns a failure). A Micro-service
failure means that the chain has failed and hence that instance of the Action has failed. But, as
mentioned above, there can be more than one way to perform an Action. Therefore, when a
failure is encountered, one can try to execute another Rule of a lower priority for that Action.
When doing this, a decision must be made about the changes that were made to variables
generated by the failing chain of Micro-services. In particular, any side-effects (such as a physical
file creation on a disk) that might have happened as a result of successful Micro-service execution
before the failure must be handled. The same question applies to any changes made to the
metadata stored in the iCAT.

The iRODS architecture is designed so that if one Rule for an Action faila, another applicable
Rule of lower priority is attempted. If one of these Rules succeeds then the Action is considered
to be successful. To make sure that the failing chain of Micro-services does not leave any changes
and side-effects, we provide the following mechanism. For every Micro-service in the chain in a
Rule, the Rule designer specifies a “recovery Micro-service or Action” that is listed in the same
order as in the chain.

A recovery Micro-service is just like any Micro-service, but with the functionality that it recovers
from the task rather than performs a task. A recovery Micro-service should be able to recover
from the multiple types of errors that can result from an execution of the corresponding Micro-

 15

service. More importantly, a recovery Micro-service should also be able to recover from a
successful Micro-service execution! This feature is needed because in the chain of Micro-
services, when a downstream Micro-service fails in a chain of Micro-services, one should recover
from all changes and side-effects performed, not only those of the failing Micro-service but also
those of all the successful Micro-services in the chain performed prior to the failed Micro-service.
The recovery mechanism for an Action is of the same type as that of a recovery Micro-service,
though one only needs to recover from successful completion of a Rule, when a later Micro-
service/Rule fails in the chain. If an Action fails, by definition, any Rule for that Action would
have recovered from the effects of the failed Action!

During the recovery process, the recovery Micro-services for all the successful Micro-services
will be performed, so that when completed, the effect of the Rule for that Action is completely
neutralized. Hence, when an alternate, lower priority Rule is tried for the same Action, it starts
with the same initial setting used by the failed Rule. This property of complete recovery from
failure is called the “atomicity” property of a Rule. Either a Rule is fully successful with attendant
changes and side-effects completed, or the state is unchanged from the time of invocation. If all
Rules for a particular Action fail, one can see that the system is left in the same state as if the
Rule was not executed. One can view this as a “transactional” feature for Actions. The concepts
of atomicity and transactions are adapted from relational databases.

In summary, every Rule has an Action name, a testable condition, a chain of Actions and Micro-
services, and a corresponding chain of recovery Actions and Micro-services. Each Rule also has
an associated priority.

For example, consider a very simple Rule for data ingestion into iRODS with two Micro-services,
“createPhysicalFile” and “registerObject” and no conditions. The Rule creates a copy of the file
in an iRODS storage vault and registers the existence of the file into the iCAT Metadata Catalog.
The Data Grid administrator can define an alternate Rule of a higher priority, which can also
check whether the data type of the file is “DICOM image file” and invoke an additional Micro-
service called “extractDICOMMetadata” to populate the iCAT with metadata extracted from the
file, after the file has been created on the iRODS Server and registered in the iCAT Metadata
Catalog.

We did not implement the idea that an Action or Micro-service should be implicitly tied to a
single recovery Action or Micro-service. While this might make it easier to find a recovery
service by this implicit link, we recognized that recovery from an Action or Micro-service can be
dependent upon where and how it is being invoked. Sometimes, a simpler recovery would do the
trick instead of a more complex recovery. For instance, a database rollback might suffice if one
knew that the Action started a new iCAT Metadata Catalog database transaction. Otherwise a
longer sequence of recovery delete/insert and update SQL statements is needed to recover from
multiple SQL statement activities. So we give the Rule designer the ability to tie in the
appropriate recovery for each Micro-service or Action as part of the Rule instead of having the
system or application designer who develops the Micro-service do this.

The Rules for version 2.0 of iRODS are stored in “iRODS Rule Base” files (files with extension
“.irb”). These files are located in the server/config/reConfig directory. One can specify use of
more than one irb file which will be read one after the other during initialization. By default the
single core.irb file will be read.

Now that we have seen what comprises a Rule, an Action and a Micro-service, we will next look
at how a Rule is invoked and what type of mechanisms are available to communicate to the

 16

Micro-services and Actions. As one can see, Micro-services (by this we also mean Actions) do
not operate in a vacuum. They need input and produce output and communicate with other Micro-
services, make changes to the iCAT database, and have side-effects such as file creation. Hence,
the question arises, what do the Rules operate on?

To answer this question, we need the concept of a session. A session is a single iRODS Server
invocation. The session starts when a client connects to the iRODS Server and ends when the
Client disconnects. During the session, there are two distinct “state” mechanisms that are
operated upon by Actions and Micro-services.

1. Persistent State Information (denoted by #) as defined by the attributes and schema that
are stored in the iCAT catalog, and

2. Session State Information (denoted by $) is temporary information that is maintained in
the memory as a C-structure only during the time period when the Actions are being
performed.

The Persistent State Information (denoted by #) is the content that is available across sessions and
persists in the iCAT Metadata Catalog after the Action has been performed, provided proper
commit operations were performed before the end of the session. The Session State Information
(denoted by $) does not persist across sessions but is a mechanism for Micro-services to
communicate with each other during the session without going to the database # to retrieve every
attribute value. One can view the # as a “persistent blackboard” through which sessions
communicate with each other (sessions possibly started by different users). Similarly one can
view $ as a “temporary blackboard” that communicates within a session some of the state
information needed by Actions and Micro-services. Note that $ persists beyond a single Action,
and hence when one is performing multiple Actions during a single session, the memory of the
earlier Actions (unless destroyed or over-written) can be utilized by a current Action.

The $ structure is a complex C structure, called the Rule Execution Infrastructure (REI). The REI
structure will evolve during the implementation of new iRODS versions as additional
functionality is added. In order to hide the physical nature of the $ structure, we adopt a Logical
Name Space that can support extensions to the physical table structure. The $ Logical Name
Space defines a set of “$variables” which map to a value node (possibly a leaf-node, but need not
be one) in the REI structure. This mapping is defined by “data variable mapping” files (files with
extensions “.dvm”) which are located in the server/config/reConfig directory. The $variable
mapping defines how the system can translate a $variable name to a path name in the REI
structure. iRODS provides utility routines to get the run-time address of the denoted value. One
can have more than one definition for a $variable name. This is needed because different Micro-
services might use the same $variables to denote different paths in the REI structure. The utility
routine for getting values from the REI structure will cycle through these definitions to get to the
first non-NULL value. We strongly recommend the use of unique definitions for each $variable,
and we advocate that designers use multiple definitions only under very controlled circumstances.

The #variables have a Logical Name Space as defined by the attribute set of the iCAT Metadata
Catalog. The mappings from #variables to columns in tables in the iCAT schema are defined in
the lib/core/include/rodsGenQuery.h. These variables can be queried using the generic query call
“iquest” available for accessing data from the iCAT database.

 17

4.1 Session State Variables
The mapping of the $variables that are defined in version 2.0 of the iRODS Data Grid to
structures in the Rule Execution Infrastructure (REI) is listed in Appendix B. The meaning of
each $variable is listed in Table 1. The $variables can be defined as input to a Rule, can be used
to define input to a Micro-service, and can be used to define output from a Micro-service that will
be used by subsequent Micro-services. The addition of new variables to the Data Grid requires
the re-compilation of the software. Thus, an attempt has been made to provide a complete set of
variables needed for the management and access of files within a Data Grid. In practice, a small
fraction of these variables is needed for most administrator-modified Rules.

Table 1. Meaning of Session State Variables

otherUser Pointer to other user structure, useful when giving access
otherUserName Other user name in the form ‘name@domain’
otherUserZone Name of the iCAT metadata catalog, or Data Grid, or zone. Unique globally

otherUserType
Role of a other user (rodsgroup, rodsadmin, rodsuser, domainadmin,
groupadmin, storageadmin, rodscurators)

otherSysUidClient Internal identifer for the other user
rescName Logical resource name
objPath Physical path name of a file on the logical resource
destRescName Logical resource name of the destination for the operation
backupRescName Logical resource name
dataType Data type of the object
dataSize Size of files in bytes
chksum Checksum (MD5) of the file
version Version number of the file
filePath Logical path name
replNum Replica number
replStatus Replica status (0 if up-to-date, 1 if not up-to-date)
dataOwner Owner of the file
dataOwnerZone Home Data Grid (zone) of the owner of the file
dataExpiry Expiration date for the file
dataComments Comments associated with a file
dataCreate Creation date of a file
dataModify Modification date of a file
dataAccess Access date of a file
dataAccessInx Data access identifer (internal)
dataId Internal Identifier for a file
collId Internal Identifier for a collection
rescGroupName Resource group name
statusString String for outputting status informtion
dataMapId (not used)
userClient Pointer to the user client structure
userNameClient User name in the form ‘name@domain’
rodsZoneClient Name of Data Grid

userTypeClient
Role of a user (rodsgroup, rodsadmin, rodsuser, domainadmin, groupadmin,
storageadmin, rodscurators)

sysUidClient Internal identifer of the user

 18

hostClient IP address of host
authStrClient Authorization string of proxy client (such as DN string)
userAuthSchemeClient Authorization scheme such as GSI, password, etc.

userInfoClient
Tagged information:
<EMAIL>user@unc.edu</EMAIL><PHONE>5555555555</PHONE>

userCommentClient Comment on user
userCreateClient Pointer to create client structure
userModifyClient Pointer to modify client structure

userProxy
Pointer to the structure of the system user who acts as proxy for the client
user

userNameProxy Proxy user name in the form ‘name@domain’
rodsZoneProxy Data Grid zone name of the proxy user

userTypeProxy
Role of a user (rodsgroup, rodsadmin, rodsuser, domainadmin, groupadmin,
storageadmin, rodscurators)

sysUidProxy Internal identifer of the proxy user
hostProxy IP address of host of the proxy user
authStrProxy Authorization string of proxy user (such as DN string)
userAuthSchemeProxy Type of authentication scheme such as GSI, password

userInfoProxy
Tagged information:
<EMAIL>user@unc.edu</EMAIL><PHONE>5555555555</PHONE>

userCommentProxy Comment about user
userCreateProxy Pointer to create client structure (not used)
userModifyProxy Pointer to modify client structure (not used)
collName Name of collection
collParentName Name of parent collection
collOwnername Name of owner of a collection
collExpiry Expiration date for a collection
collComments Comment on a collection
collCreate Creation date for a collection
collModify Modification date for a collection
collAccess Access date for a collection
collAccessInx Internal identifer for access control
collMapId Not used

collInheritance
Attributes inherited by objects and subcollections: ACL, metadata, pins,
locks

zoneName The name of the iCAT instance. This is globally unique.
rescLoc IP address of storage resource
rescType Type of storage resource: hpss, samfs, database, orb
rescTypeInx Internal identifier for resource type
rescClass Class of resource: primary, secondary, archival
rescClassInx Internal identifer for resource class
rescVaultPath Physical path name used at storage resource
numOpenPorts Number of ports open on storage resource
paraOpr Flag for whether parallel operation is supported
rescId Resource ID
gateWayAddr IP address of gateway
rescMaxObjSize Maximum file size allowed on storage resource
freeSpace Amount of free space on storage resource
freeSpaceTime Unix time when last free space was computed and registered

 19

freeSpaceTimeStamp Time stamp information
rescInfo Information about resource
rescComments Comments about resource
rescCreate Creation date for resource
rescModify Modification date for resource
connectCnt Poiter to Connection structure
connectSock Socket number for connection
connectOption Type of connection
connectStatus Status of connection
connectApiTnx API that is being used
connectWindowSize Data transmission window size for connection
connectReconnFlag Data transmission reconnection flag
connectReconnSock Socket number for reconnection
connectReconnPort Port number for reconnection
connectReconnAddr IP address for reconnection
ConnectCookie Shared secret for connection

4.2 iRODS Persistent State Information Attributes (# variables)

The #variables are based on a Logical Name Space as defined by the attribute set of the iCAT
Metadata Catalog. The columns in the tables in the iCAT schema are defined in the source file
lib/core/include/rodsGenQuery.h. These variables can be queried using the generic query call
“iquest” which is available for accessing data from the iCAT database. The #variables defined
within release 2 of iRODS are listed in Table 2.

Table 2. Persistent State Variables in iCAT
Persistent state #variable ID Explanation
COL_ZONE_ID 101 Data Grid or zone identifier
COL_ZONE_NAME 102 Data Grid or zone name, name of the iCAT
COL_ZONE_TYPE 103 Type of zone: local/remote/other

COL_ZONE_CONNECTION

104 Connection information in tagged list;
<PASSWORD>RPS1</PASSWORD>
<GSI>DISTNAME</GSI>

COL_ZONE_COMMENT 105 Comment about the zone
COL_USER_ID 201 User internal identifier
COL_USER_NAME 202 User name

COL_USER_TYPE

203 User role (rodsgroup, rodsadmin, rodsuser,
domainadmin, groupadmin, storageadmin,
rodscurators)

COL_USER_ZONE 204 Home Data Grid or user

COL_USER_DN
205 Distinguished name in tagged list:

<authType>distinguishedName</authType>

COL_USER_INFO

206 Tagged information:
<EMAIL>user@unc.edu</EMAIL>
<PHONE>5555555555</PHONE>

COL_USER_COMMENT 207 Comment about the user
COL_USER_CREATE_TIME 208 Creation timestamp

 20

COL_USER_MODIFY_TIME 209 Last modification timestamp
COL_R_RESC_ID 301 Internal resource identifier
COL_R_RESC_NAME 302 Logical name of the resource
COL_R_ZONE_NAME 303 Name of the iCAT, unique globally
COL_R_TYPE_NAME 304 Resource type: hpss, samfs, database, orb
COL_R_CLASS_NAME 305 Resource class: primary, secondary, archival
COL_R_LOC 306 Resource IP address
COL_R_VAULT_PATH 307 Resource path for storing files
COL_R_FREE_SPACE 308 Free space available on resource

COL_R_RESC_INFO

309 Tagged information list:
<MAX_OBJ_SIZE>2GBB</MAX_OBJ_SIZE>
<MIN_LATENCY>1msec</MIIN_LATENCY>

COL_R_RESC_COMMENT 310 Comment about resource
COL_R_CREATE_TIME 311 Creation timestamp of resource
COL_R_MODIFY_TIME 312 Last modification timestamp for resource

COL_D_DATA_ID

401 Data internal identifier. A digital object is
identified by (zone, collection, data name,
replica, version)

COL_D_COLL_ID 402 Collection internal identifer
COL_DATA_NAME 403 Logical name of the digital object
COL_DATA_REPL_NUM 404 Replica number starting with “1”

COL_DATA_VERSION

405 Version string assigned to the digital object.
Older versions of replicas have a negative
replica number

COL_DATA_TYPE_NAME 406 Type of data: jpeg image, PDF document
COL_DATA_SIZE 407 Size of the digital object in bytes
COL_D_RESC_GROUP_NAME 408 Name of resource group in which data is stored
COL_D_RESC_NAME 409 Logical name of storage resource
COL_D_DATA_PATH 410 Physical path name for digital object in resource
COL_D_OWNER_NAME 411 User who created the object
COL_D_OWNER_ZONE 412 Home zone of the user who created the object
COL_D_REPL_STATUS 413 Replica status: locked, is-deleted, pinned, hide

COL_D_DATA_STATUS
414 Digital object status: locked, is-deleted, pinned,

hide

COL_D_DATA_CHECKSUM

415 Checksum stored as tagged list:
<BINHEX>12344</BINHEX>
<MD5>22234422</MD5>

COL_D_EXPIRY 416 Expiration date for the digital object
COL_D_MAP_ID 417
COL_D_COMMENTS 418 Comments about the digital object
COL_D_CREATE_TIME 419 Creation timestamp for the digital object

COL_D_MODIFY_TIME
420 Last modification timestamp for the digital

object
COL_DATA_MODE 421
COL_COLL_ID 500 Collection internal identifier
COL_COLL_NAME 501 Logical collection name
COL_COLL_PARENT_NAME 502 Parent collection name
COL_COLL_OWNER_NAME 503 Collection owner
COL_COLL_OWNER_ZONE 504 Home zone of the collection owner
COL_COLL_MAP_ID 505

 21

COL_COLL_INHERITANCE
506 Attributes inherited by subcollections: ACL,

metadata, pins, locks
COL_COLL_COMMENTS 507 Comments about the collection
COL_COLL_CREATE_TIME 508 Collection creation timestamp
COL_COLL_MODIFY_TIME 509 Last modification timestamp for collection
COL_COLL_TYPE 510
COL_COLL_INFO1 511 Information about collection
COL_COLL_INFO2 512 Information about collection
COL_META_DATA_ATTR_NAME 600 Metadata attribute name for digital object
COL_META_DATA_ATTR_VALUE 601 Metadata attribute value for digital object
COL_META_DATA_ATTR_UNITS 602 Metadata attribute units for digital object

COL_META_DATA_ATTR_ID
603 Internal identifier for metadata attribute for

digital object
COL_META_COLL_ATTR_NAME 610 Metadata attribute name for collection
COL_META_COLL_ATTR_VALUE 611 Metadata attribute value for collection
COL_META_COLL_ATTR_UNITS 612 Metadata attribute units for collection

COL_META_COLL_ATTR_ID
613 Internal identifer for metadata attribute for

collection
COL_META_NAMESPACE_COLL 620 Namespace of collection AVU-triplet attribute

COL_META_NAMESPACE_DATA
621 Namespace of digital object AVU-triplet

attribute
COL_META_NAMESPACE_RESC 622 Namespace of resource AVU-triplet attribute
COL_META_NAMESPACE_USER 623 Namespace of user AVU-triplet attribute
COL_META_RESC_ATTR_NAME 630 Metadata attribute name for resource
COL_META_RESC_ATTR_VALUE 631 Metadata attribute value for resource
COL_META_RESC_ATTR_UNITS 632 Metadata attribute units for resource

COL_META_RESC_ATTR_ID
633 Internal identifer for metadata attribute for

resource
COL_META_USER_ATTR_NAME 640 Metadata attribute name for user
COL_META_USER_ATTR_VALUE 641 Metadata attribute value for user
COL_META_USER_ATTR_UNITS 642 Metadata attribute units for user
COL_META_USER_ATTR_ID 643 Internal identifier for metadata attribute for user
COL_DATA_ACCESS_TYPE 700 Access allowed for the digital object; r, w, x
COL_DATA_ACCESS_NAME 701
COL_DATA_TOKEN_NAMESPACE 702 Namespace of the data token: e.g. data type

COL_DATA_ACCESS_USER_ID
703 User or group for which the access is defined on

digital object

COL_DATA_ACCESS_DATA_ID
704 Internal identifer of the digital object for which

access is defined
COL_COLL_ACCESS_TYPE 710 Access allowed for the collection; r, w, x
COL_COLL_ACCESS_NAME 711

COL_COLL_TOKEN_NAMESPACE
712 Namespace of the collection token: e.g.

collection type

COL_COLL_ACCESS_USER_ID
713 User or group for which the access is defined on

the collection

COL_COLL_ACCESS_COLL_ID
714 Internal identifer of the collection for which

access is defined
COL_RESC_GROUP_RESC_ID 800 Internal identifier for the resource group
COL_RESC_GROUP_NAME 801 Logical name of the resource group
COL_USER_GROUP_ID 900 Internal identifer for the user group

 22

COL_USER_GROUP_NAME 901 Logical name for the user group

COL_RULE_EXEC_ID
1000 Internal identifer for a delayed Rule execution

request

COL_RULE_EXEC_NAME
1001 Logical name for a delayed Rule execution

request

COL_RULE_EXEC_REI_FILE_PATH
1002 Path of the file where the context (REI) of the

delayed rule is stored
COL_RULE_EXEC_USER_NAME 1003 User requesting a delayed Rule execution

COL_RULE_EXEC_ADDRESS
1004 Host name where the delayed Rule will be

executed
COL_RULE_EXEC_TIME 1005 Time when the delayed rule will be executed
COL_RULE_EXEC_FREQUENCY 1006 Delayed Rule execution frequency
COL_RULE_EXEC_PRIORITY 1007 Delayed Rule execution priority
COL_RULE_EXEC_ESTIMATED_EXE_TIME 1008 Estimated execution time for the delayed Rule

COL_RULE_EXEC_NOTIFICATION_ADDR
1009 Notification address for delayed Rule

completion
COL_RULE_EXEC_LAST_EXE_TIME 1010 Previous execution time for the delayed Rule
COL_RULE_EXEC_STATUS 1011 Current status of the delayed Rule
COL_TOKEN_NAMESPACE 1100 Namespce for tokens; e.g. data type
COL_TOKEN_ID 1101 Internal identifier for token name

COL_TOKEN_NAME
1102 A value in the token namespace; e.g. “gif

image”
COL_TOKEN_VALUE 1103 Additional token information string
COL_TOKEN_VALUE2 1104 Additional token information string
COL_TOKEN_VALUE3 1105 Additional token information string
COL_TOKEN_COMMENT 1106 Comment on token
COL_AUDIT_OBJ_ID 1200 Identifer that starts the range of audit types
COL_AUDIT_USER_ID 1201 User identifier of person requesting operation

COL_AUDIT_ACTION_ID
1202 Internal identifer for type of action that is

audited
COL_AUDIT_COMMENT 1203 Comment on audit trail
COL_AUDIT_CREATE_TIME 1204 Creation timestamp for audit trail
COL_AUDIT_MODIFY_TIME 1205 Modification timestamp for audit trail
COL_AUDIT_RANGE_START 1200 Identifer that starts the range of audit tpes
COL_AUDIT_RANGE_END 1299 Identifer that ends the range of audit types
COL_COLL_USER_NAME 1300 Internal identifier for user creating collection
COL_COLL_USER_ZONE 1301 Zone in which collection is created

4.3 User Environment Variables
Information that defines the preferred user environment is maintained in enviroment variables
that are stored on the user’s computer. The environment variables specify the default data grid
that will be accessed, and properties about the user’s default collection.

Four environment variables are needed by the icommands to function:

1. irodsUserName - User name in the iRODS data grid
2. irodsHost - Network address of a data grid server
3. irodsPort - Port number for the data grid metadata catalog (iCAT)
4. irodsZone - Unique identifier for the data grid zone

 23

Each iRODS Data Grid requires a metadata catalog (iCAT) that is managed as an instance within
a database. Since databases can manage multiple instances, we assign a unique port number to
each instance. The iRODS Data Grid is therefore specified completely by:

 irodsZone : irodsHost : irodsPort

The complete set of icommands environment variables are:

 irodsUserName - Your irods user name
 irodsHost - An iRODS Server host to connect to
 irodsPort - The network port (TCP) the server is listening on
 irodsHome - Your iRODS Home collection
 irodsCwd - Your iRODS current working directory
 irodsAuthScheme - Set to GSI for GSI authentication, default is password.
 irodsDefResource - A default resource to use when storing (rules may also apply)
 irodsZone - Your iRODS Zone (the name of your home iRODS Data Grid)
 irodsServerDn - (for future use with GSI)
 irodsLogLevel - The level of messages to log or display
 irodsAuthFileName - The file storing your scrambled password (for authentication)
 irodsEnvFile - Name of the file storing the rest of the environment variables

If you do not provide the irodsHome, it will be set based on the irodsZone and irodsUserName.
If you do not specify the irodsCwd, it will be assumed to be irodsHome.

Each of these can be set via a unix environment variable or as a line in a text file, your iRODS
environment file. The environment variables, if set, override the lines in the environment file.
By default, your iRODS environment file is ~/.irods/.irodsEnv. The install script creates a
~/.irods/.irodsEnv file for the admin account, for example:

 irodsHost 'zuri.sdsc.edu'
 irodsPort 1378
 irodsDefResource=demoResc
 irodsHome=/tempZone/home/rods
 irodsCwd=/tempZone/home/rods
 irodsUserName 'rods'
 irodsZone 'tempZone'

You can change the ~/.irods/.irodsEnv to some other file by setting the irodsEnvFile environment
variable. When you do this, a child process will share that environment (and cwd - the current
working directory (collection)) which is useful for scripts. By default, without irodsEnvFile set,
the cwd will be read by children processes but not by 'grand-children' and beyond; this is so that
separate sessions are possible at the same time on the same computer.

5 The iRODS Rule System

iRODS Rules can generally be classified into two Rule Classes. These are:

1. System Level Rules: These are Rules that are invoked on the iRODS Servers internally
to enforce/execute Management Policies for the system. Examples of policies include
data management policies such as enforcement of authenticity, integrity, access
restrictions, data placement, data presentation, replication, distribution, pre- and post-
processing, and metadata extraction and assignment. Another example is the automation

 24

of services such as administration, authentication, authorization, auditing, and
accounting.

2. User Level Rules: The iRODS Rule Engine can also be invoked externally by clients

through the irule command or the rcExecMyRule API. Typically, these are work-flow
type Rules which allow users to request that the iRODS Servers perform a sequence of
operations (Micro-services) on behalf of the user. In addition to providing useful services
to users, this type of operation can be very efficient because the operations are done on
the servers where the data are located.

Some Rules require immediate execution while others may be executed at a later time in the
background (depending upon the Rule Execution mode). The Delayed Execution Service allows
Rules/Micro-services to be queued and executed at a later time by the Rule Execution Server.
Examples of Micro-services that are suitable for delayed execution are post-processing operations
such as checksuming, replication and metadata extraction. For example, the post-processing
Micro-service msiExtractNaraMetadata was designed specifically to extract and register metadata
from NARA Archival Information Locator data objects (NAIL files) that are uploaded into a
NARA collection.

5.1 The iRODS Rule Architecture
At the core of the iRODS Rule System is the iRODS Rule Engine which runs on all iRODS
Servers. The Rule Engine can invoke a number of predefined Micro-services based on the
interpretation of the Rule being executed.

The underlying operations that need to be performed are based on C functions that operate on
internal C structures. The external view of the execution architecture is based on Actions
(typically called tasks) that need to be performed, and external input parameters (called
Attributes) that are used to guide and perform these Actions. The C functions themselves are
abstracted externally by giving them logical names (we call the functions "internal Micro-
services" and the abstractions "external Micro-services"). To make the links between the external
world and the internal C apparatus transparent, we define mappings from client libraries to Rules.
Moreover, since the operations that are performed by iRODS need to change the Persistent State
Information in the ICAT Metadata Catalog, the attributes are mapped to a persistent Logical
Name Space for metadata names that are used in the ICAT.

The foundation for the iRODS architecture is based on the following key concepts, partially
discussed in section 2.1 on ROP:

1. A Persistent Database [#] that shares data (facts) across time and users. Information that
is extracted from the persistent database is labeled in the following with the symbol “#”.

2. A Transient Memory [$] that holds data during a session. Session Information that resides
in the transient memory is labeled in the following with the symbol “$”.

3. A set of Actions [T] that name and define the tasks that need to be performed.
4. A set of internal well-defined callable Micro-services [P] made up of procedures and

functions that provide the methods for executing the sub-tasks that need to be performed,
5. A set of external Attributes [A] that is used as a Logical Name Space to externally refer to

data and metadata.
6. A set of external Micro-services [M] (or methods) that is used as a Logical Name Space

to externally refer to methods in the Rules.

 25

7. A set of data variable mappings [DVM] that define a relationship from external Attributes
in A to internal elements in # and $.

8. A set of Micro-service name mappings [FNM] that define a relationship from external
Micro-services in M and Actions T to procedures and functions in P and other Action
names in T. In a sense FNM can be seen as providing aliases for Micro-services. One use
will be to map different versions of the functions/procedures in P at run time to the actual
execution process.

9. A set of Rules [R] which defines what needs to be done for each Action [T] and is based on
A and M.

5.2 Rules

A Rule consists of a name, condition, workflow-chain, and recovery-chain. A Rule is specified
with a line of text that contains these four parts separated by the '|' separator:

actionDef | condition | workflow-chain |recovery-chain

'actionDef' is the name of the Rule. It is an identifier that can be used by other Rules or external

functions to invoke the Rule.

'condition' is the condition under which this Rule may be executed. I.e., this Rule will apply

only if the condition is satisfied. Typically, one or more of the session Attributes are
used to compose a condition. For example:

 $rescName == demoResc8
is a condition on the storage resource name. If the storage resource is “demoResc8”,
then the Rule that uses this condition will be applied. Another example:

$objPath like /x/y/z/*
is a condition on the data object or collection path name. The Rule will only be
fired if the file in the iRODS Data Grid is underneath the collection x/y/z.

'workflow-chain' is the sequence of Micro-services/Rules to be executed by this Rule. The Micro-

services/Rules in the sequence are separated by the '##' separator. Each may contain
a number of input/output parameters. Note that a Rule can invoke another Rule, or
even itself (recursion). If a Rule invokes itself, the designer of the Rule must ensure
that the recursion will terminate.

'recovery-chain' is the set of Micro-services/Rules to be called when execution of any one of the

Micro-services/Rules in the workflow-chain fails. The number of Micro-
services/Rules in the recovery-chain should be equal to the number in the workflow-
chain. If no recovery Action is needed for a given Micro-service/Rule, a 'nop' action
should be specified. When a Micro-service fails, all of the Micro-services in the
‘recovery-chain’ are executed. Thus all components within a Rule need to succeed.

5.3 Rule Grammar
The detailed syntactic structure for Rule specification is given below (alternate definitions are
given below each other).

 26

Table 3. Rule Grammar
Rule ::= actionDef | condition | workflow-chain |recovery-chain
actionDef ::= actionName
 ::= actionName(param1, ..., paramn)
action ::= actionName
 ::= actionName(arg1, ..., argn)
actionName ::= alpha-numeric string
Micro-service ::= msName
 ::= msName(arg1, ..., argn)
msName ::= alpha-numeric string /* pre-defined and compiled */
condition ::= /* can be empty */
 log-expr
 (log-expr) /* parentheses to impose order */
 condition && condition /* and condition */
 condition !! condition /* or condition */
log-expr ::= 1 /* true */
 ::= 0 /* false */
 expr == expr
 expr > expr
 expr < expr
 expr >= expr
 expr <= expr
 expr != expr /* not equal */
 expr like reg-expr
 expr not like reg-expr
expr ::= string
 number
 $-variable /* session variable */
 -variable / state variable */

concatenation of string, $-variables
and/or *-variables

reg-expr ::= regular-expression-string
argx ::= expr
paramx ::= *-variable
 number
 string
workflow-chain ::= Micro-service
 action
 workflow-chain ## workflow-chain
recovery-chain ::= workflow-chain

The above syntax defines how Rules can be composed from conditions, state information, session
information, and Micro-services. Some sample Rules are:

 27

acCreateUser||msiCreateUser##acCreateDefaultCollections##msiCommit|msiRollback##msiRoll
back##nop

This Rule invokes the following chained Micro-service and Rule:

• msiCreateUser /* execute a Micro-service to create a new user */
• acCreateDefaultCollections /* execute another Rule to create default collections */
• msiCommit /* register the new state information into the iCAT

 Metadata Catalog */
The corresponding recovery Micro-services are:

• msiRollback /* delete user information from the iCAT Metdata
 Catalog */

• msiRollback /* delete collection information from the iCAT Metadata
 Catalog */

• nop /* no operation required */

A second sample Rule is:

acSetRescSchemeForCreate||msiSetDefaultResc(demoResc,noForce)##msiSetRescSortScheme(r
andom)##msiSetRescSortScheme(byRescType)|nop##nop##nop

This Rule invokes the following chained Micro-services:

• msiSetDefaultResc /* set the default resource if it is available */
• msiSetRescSortScheme /* set random selection of vaults within a storage resource
 group */
• msiSetRescSortScheme /* set select selection of vaults based upon storage type */

The Rule sets three different mechanisms for selecting the location where a file will be created.
The corresponding recovery Micro-services are all nop’s, meaning no recovery operation is
required.

A third example is:

acRegisterData|$objPath like
/home/collections.nvo/2mass/*|acGetResource##msiRegisterData##msiAddACLForDataToUser(
2massusers.nvo,write)|nop##recover_msiRegisterData##recover_msiAddACLForDataToUser(2
massusers.nvo,write)

This Rule specifies a condition “$objPath like /home/collections.nov/2mass/*”. If the iRODS
collection under which the file will be registered includes the path name
“/home/collections.nov/2mass/*”, then the Rule will be executed. The Rule invokes the
following Rule and chained Micro-services:

• acGetResource /* find an acceptable storage location based on the

 resource selection scheme */
• msiRegisterData /* register a file into the iRODS Data Grid */
• msiAddACLForDataToUser /* give write permission on the file to the user group

 “2massusers” in the “nvo” project. */
The recovery operations are:
• recover_msiRegisterData /* this Micro-service will delete registration of the file */
• recover_msiAddACLForDataToUser /* this Micro-service will delete the ACL for the file */

 28

5.4 RuleGen Language
To make it easier to construct rules, a rulegen parser has been developed which translates from a
nicer rule language to the grammar spedified in Section 5.3. The naming convention for the input
files to rulegen is that they should have a “.r” extension. The output files created by rulegen
should have a “.ir” extension. The grammar for the langauge of the input files is given in section
5.4.1

5.4.1 Using the RuleGen Parser
The rulegen parser is creatd by executing
 make
in the ~/irods/clients/icommands/rulegen directory. A binary file 'rulegen' is created in the
~irods/clients/icommands/bin directory.

The rulegen parser will convert a rulegen input file (“.r” extension) into a rule file (“.ir”
extension). This is done by running the rulegen as shown below:

 ~/irods/clients/icommands/bin/rulegen -s test1.r > test1.ir

The output file, test1.ir, can be used as an input file for the irule command.

5.4.2 Grammar of the rulegen language
The reserved words used by the rulegen program are listed below:

program
 : program rule_list inputs outputs
 ;
inputs
 : INPUT inp_expr_list
 ;
outputs
 : OUTPUT out_expr_list
 ;
rule_list
 : rule
 | rule rule_list
 ;
rule
 : action_def '{' first_statement '}'
 | action_def '{' first_statement statement_list '}'
 ;
action_def
 : action_name
 | action_name '(' arg_list ')'
 ;
microserve
 : action_name
 | action_name '(' arg_list ')'
 ;
action_name
 : identifier

 29

 ;
arg_list
 : arg_val
 | arg_val ',' arg_list
 ;
arg_val
 : STR_LIT
 | Q_STR_LIT
 | NUM_LIT
 ;
first_statement
 : selection_statement
 |
 ;
compound_statement
 : '{' '}'
 | '{' statement_list '}'
 ;
statement_list
 : statement
 | statement_list statement
 ;
statement
 : selection_statement
 | iteration_statement
 | compound_statement
 | action_statement ';'
 | ass_expr ';'
 | execution_statement
 ;
selection_statement
 : ON '(' cond_expr ')' statement
 | ON '(' cond_expr ')' statement or_list_statement_list
 ;
iteration_statement
 : WHILE '(' cond_expr ')' statement
 | FOR '(' ass_expr_list ';' cond_expr ';' ass_expr_list ')' statement
 | IF '(' cond_expr ')' THEN statement
 | IF '(' cond_expr ')' THEN statement ELSE statement
 | 'break'
 ;
or_list_statement_list
 : ORON '(' cond_expr ')' statement
 | OR statement
 | ORON '(' cond_expr ')' statement or_list_statement_list
 | OR statement or_list_statement_list
 ;
action_statement
 : microserve ACRAC_SEP microserve
 | microserve
 ;

 30

execution_statement
 : DELAY '(' cond_expr ')' statement
 | REMOTE '(' identifier ',' cond_expr ')' statement
 | PARALLEL '(' cond_expr ')' statement
 | ONEOF statement
 | SOMEOF '(' identifier ')' statement
 | FOREACH '(' identifier ')' statement
 ;

5.4.3 Expressions used by Rulegen Parser:
inp_expr
 : identifier '=' cond_expr
 ;
inp_expr_list
 : inp_expr
 | inp_expr ',' inp_expr_list
 ;
out_expr
 : arg_val
out_expr_list
 : out_expr
 | out_expr ',' out_expr_list
 ;
ass_expr
 : identifier '=' cond_expr
ass_expr_list
 : ass_expr
 | ass_expr ',' ass_expr_list
 ;
cond_expr
 : logical_expr
 | '(' logical_expr ')'
 | cond_expr AND_OP cond_expr
 | cond_expr OR_OP cond_expr
 | cond_expr '+' cond_expr
 | cond_expr '-' cond_expr
 ;
logical_expr
 : TRUE
 | FALSE
 | relational_expr
 | logical_expr EQ_OP logical_expr
 | logical_expr NE_OP logical_expr
 | logical_expr '<' logical_expr
 | logical_expr '>' logical_expr
 | logical_expr LE_OP logical_expr
 | logical_expr GE_OP logical_expr
 | logical_expr LIKE logical_expr
 | logical_expr NOT LIKE logical_expr
 ;

 31

relational_expr
 : STR_LIT
 | NUM_LIT
 | Q_STR_LIT
 ;
identifier
 : STR_LIT
 | Q_STR_LIT
 | NUM_LIT
 ;

STR_LIT : string of characters
Q_STR_LIT : quoted (") string of characters
NUM_LIT : number-string
AND_OP : "&&"
OR_OP :"||"
LE_O :"<="
GE_OP :">="
EQ_OP :"=="
NE_OP :"!="
ACRAC_SE :":::"

5.4.4 Example Rule Build
Using the rulegen language, a rule can be defined in a syntax similar to the C language. The body
of the rule is specified in the brackets after the rule name “myTestRule”. The input parameters
are listed as a comma separated list. The output parameters are listed as a second comma
separated list. An example from the file ~/irods/clients/icommands/rulegen/test2.r is listed below:

myTestRule
{
 acGetIcatResults(*Action,*Condition,*B);
 foreach (*B)
 {
 remote ("andal.sdsc.edu" , "null")
 {
 msiDataObjChksum(*B,*Operation,*C);
 }
 msiGetValByKey(*B,DATA_NAME,*D);
 msiGetValByKey(*B,COLL_NAME,*E);
 writeLine(stdout,"CheckSum of *E/*D is *C");
 }
}

INPUT *Action=chksum,*Condition="COLL_NAME =
'/tempZone/home/rods/loopTest'",*Operation=ChksumAll
OUTPUT *Action,*Condition,*Operation,*C,ruleExecOut

This rule queries the iCAT metadata catalog, loops over the result set which is stored in variable
“B”, for each item in the result set it calculates a checksum on a remote resource, gets the file
name and the collection name from the iCAT catalog, and writes an output line. After running

 32

the rulegen program, an iRODS rule file is generated (listed in
~/irods/clients/icommands/rulegen/test2.ir

myTestRule||acGetIcatResults(*Action,*Condition,*B)##forEachExec(*B,remoteExec(a
ndal.sdsc.edu,null,msiDataObjChksum(*B,*Operation,*C),nop)##msiGetValByKey(*B,
DATA_NAME,*D)##
msiGetValByKey(*B,COLL_NAME,*E)##writeLine(stdout,CheckSum of *E/*D is
*C),nop##nop##nop##nop)|nop##nop##nop
*Action=chksum%*Condition=COLL_NAME =
'/tempZone/home/rods/loopTest'%*Operation=ChksumAll
*Action%*Condition%*Operation%*C%ruleExecOut

The rule is written on a single very-long line. The input parameters are listed at the end of the
rule (no blank lines), followed by the output parameters. This rule can be executed by typing

 Irule –vF test2.ir

5.5 iRODS Rule Engine
The Rule Engine is the interpreter of Rules in the iRODS system. The Rule Engine can be
invoked by any server-side procedure call using the applyRule API.

int applyRule(char *inAction, msParamArray_t *inMsParamArray,
 RuleExecInfo_t *rei, int reiSaveFlag)

The Rule Engine reads the Rule Base to decide which Rules will apply. First, the Rule Engine
selects all the Rules whose Action names are the same as given by the inAction string. These
Rules are prioritized based on how they were read into the Rule Base of the Rule Engine when
the system was started. The first Rule in the list is checked for validation of its condition. If the
condition fails, then the next Rule is tried. If no more Rules are available then the Action fails and
a failure status (negative number) is returned to the calling routine. The Micro-services can use
the REI strucure to pass other failure status and messages. If the condition succeeds, then the
Micro-services and Action chain in the Rule are executed one after the other in a left-to-right
order. If all of the Micro-services succeed, then the Action is considered a success and a success
status (0) is sent to the calling routine. After successful completion, the inMsParamArray will
hold any output values returned by the Rule execution and the structure REI will reflect any
modifications that were made by the Rule execution.

While executing the chain of Micro-services/Actions, if one of them fails, then the Rule Engine
starts a recovery procedure. It applies the corresponding recovery Micro-service or Action
defined in the Rule. The recovery for the failed Micro-service/Action is first performed, followed
by the recovery of all the previously successful Micro-services/Actions in reverse order. By the
time the recovery is completed, the status of the black-board($) and the persistent database (#)
and any side-effects should have been rolled back by these recovery procedures. If the calling
procedure wants the Rule Engine to recover changes in the REI structure, it can do so by setting
the reiSaveFlag. In this case, the Rule Engine will save the REI structure before invoking the first
Micro-service/Action in a Rule and will recover back by resetting the REI structure in case of any
Rule failure before invoking any alternate Rules.

 33

Most of the values in the REI structure have a logical name defined for them. We call these
names “$variable” names. The mappings from the REI structure to the $variable names can be
found in the file “server/config/reConfigs/core.dvm”.

For example, the string $objPath provides the value in the structure rei->doi->objPath. The
"assign" Micro-service can change the value of the $variable:

assign($objPath, $objPath.Ver0)
will add ".Ver0" to the dataName.

5.6 Default iRODS Rules

The core.irb file contains the Rules that are applied by default when an iRODS Data Grid is
created. These Rules are typically modified by the Data Grid Administrator to impose the data
Management Policies for the shared collection. For example, the modifications can be specific to
a data collection, or to a data type, or to a storage resource, or to a user group.

These Rules can be thought of as policy hooks into the operation of the iRODS Data Grid that
enable different policies to be enforced at the discretion of the Data Grid Administrator. Multiple
versions of each Rule can be placed in the core.irb file. The Rule listed closest to the top of the
core.irb file will be executed first. If the Rule does not meet the required condition or fails, the
next version of the Rule will be tried. A generic version of the Rule should be included that will
apply if all of the higher priority Rules fail. Note that most of the Rules in the default core.irb file
are place holders that do not execute any Micro-services. The core.irb file (located in the release
directory server/config/reConfigs) contains multiple examples of each Rule that have been
commented out by inserting a “#” symbol at the beginning of the line.

Table 2. Default iRODS Rules in the core.irb File

Default Rules in core.irb
Input
Parameters Meaning

acCreateUser Create a new user

acVacuum *arg1

Optimize the Postgresql database after waiting
“arg1” specified time. See delayExec Micro-
service

acCreateDefaultCollections Create default collections (home,trash)
acCreateUserZoneCollections Create collections in Data Grid zone

acCreateCollByAdmin
*parColl,
*childColl

Create a new collection with name “childColl”
under the parent collection “parColl”

acDeleteUser Delete user
acDeleteDefaultCollections Delete home collection
acDeleteUserZoneCollections Delete collections in a Data Grid zone

acDeleteCollByAdmin
*parColl,
*childColl

Delete the child collection “childColl” under
the parent collection “parColl”

acRenameLocalZone
*oldZone,
*newZone

Rename the Data Grid zone from the name
“oldZone” to the name “newZone”

acSetRescSchemeForCreate Define selection scheme for default resource
acPreprocForDataObjOpen Select which copy of file to open
acSetMultiReplPerResc Specify number of copies per resource

 34

acPostProcForPut Apply processing to file on put
acPostProcForCopy Apply processing to file on copy

acSetNumThreads
Set the default number of threads for data
transfers

acDataDeletePolicy Set policy for data deletion

acNoChkFilePathPerm
Set policy for checking permissions on
registering a file

acTrashPolicy Set policy for using trash can
acSetPublicUserPolicy Set policy for allowed operations by public
acChkHostAccessControl Set policy for host access control

acSetVaultPathPolicy# Set policy for assigning physical path name
acDataObjCreate Test Rule for object creation
acSetCreateConditions Test Rule for object descriptor
acDOC Test Rule for registering object
acSetResourceList Test Rule for setting resources
acSetCopyNumber Test Rule for setting copy number
acRegisterData Test Rule for registering data

acGetIcatResults

*Action,
*Condition,
*GenQOut

Apply the “action to the list of files that meet
the specified condition

acPurgeFiles *Condition
Purge files satisfying condition on expiration
time

6 iRODS Attributes

The system state information that is generated by application of Micro-services is stored in the
iCAT Metadata Catalog. The iCAT catalog can be queried. The source file

lib/core/include/rodsGenQuery.h
defines the columns available via the General Query interface. Each of the names for a column
(metadata attribute or item of state information) begins with 'COL_' (column) for easy
identification throughout the source code. The “iquest” client program also uses these field names
but without the COL_ prefix.

6.1 First-Class Objects in iRODS
Table 3 defines the list of first class objects (FCOs) about which information is stored in the
iRODS iCAT Metadata Catalog . These first class objects have unique identifiers and associated
metadata information, also listed in Table 3. This file defines derived objects based on the first
class objects and ontologies maintained by the ICAT system. We attempt to keep the list of
metadata attributes to the minimum.

The first class objects are organized into the following groups:

1. Zone (Data Grid) parameters
2. User parameters
3. Resource parameters
4. Collection parameters
5. Digital object (data) parameters
6. Attribute (metadata) parameters

 35

7. Rule parameters
8. Token parameters

Derived properties are also organized into classes:

1. Collection hierarchy parameters
2. Data collection mapping parameters
3. User group mapping parameters
4. Resource group mapping parameters
5. Metadata mapping parameters
6. Accesss control list parameters
7. Deny access control list parameters
8. Audit information parameters
9. User session information parameters

 36

Table 4. First Class Objects in iRODS

First Class Objects:

Note: All first class objects have
internal identifiers (id numbers).

These identifiers are all generated from the same sequence
numbering scheme.

FC01 : Zone

 R_ZONE_ID Internal identifier.
 R_ZONE_NAME The name of the ICAT. Unique globally.
 R_ZONE_TYPE Type of zone - local|remote|other.
 R_ZONE_CONN_STRING Connection information to (remote) zone.

This a tagged list with elements of the form:
<PASSWORD>RPS1<PASSWORD><GSI>DISTNAME</GSI>
<PASSWORD>system</PASSWORD>...

 R_ZONE_COMMENT Information about the zone.
 R_ZONE_CRT_TIME Creation timestamp.
 R_ZONE_MOD_TIME Last modification timestamp.

FC02 : User

 R_USER_ID Internal identifier.
 R_USER_NAME A string of the form 'name@domain'.

 R_USER_ZONE
Native zone of user (from R_ZONE_NAME). An ICAT can
register users from foreign zones.

 R_USER_TYPE User-type: rodsadmin, normal, group, public, ...
 R_USER_PASS Password which is probably scrambled.

 R_USER_DISTIN_NAME
Any external name of the user. This is a tagged list with elements
of the form: <authtype>distinguishedname</authtype>.

 R_USER_INFO
Information. This a tagged list with elements of the form:
<email>user@sdsc.edu</email> <phone>5555555555</phone>..

 R_USER_CRT_TIME Creation timestamp.
 R_USER_MOD_TIME Last modification timestamp.

FC03 : Resource

 R_RSRC_ID Internal identifier.
 R_RSRC_NAME The name of the resource.

 R_RSRC_ZONE
Native zone of resource (from R_ZONE_NAME). An ICAT can
register resources from foreign zones.

 R_RSRC_TYPE Resource type: hpss, samfs, database, orb,...
 R_RSRC_CLASS Resource class: primary, secondary, archival, ...
 R_RSRC_NET Internet address of the resource host.
 R_RSRC_DEF_PATH Default path used by the resouce.
 R_FREESPACE Free space available on resource.

 R_RSRC_INFO

Information. This is a tagged list with elements of the form:
<max_obj_size>2gb</max_obj_size>
<min_latency>1msec</min_latency>...

 R_RSRC_CRT_TIME Creation timestamp.

 37

 R_RSRC_MOD_TIME Last modification timestamp.

FC04 : Collection

 R_COLL_ID Internal identifier.

 R_COLL_NAME
Data objects are clustered into collections. Each collection name
is unique in the icat. It also has the format /r_zone_name/....

 R_INHERITANCE
Information about what is inherited by the objects and sub-
collections: ACL, metadata, pins, locks,

 R_COLL_OWNER Collection owner.
 R_COLL_COMMENTS Comments about the collection.
 R_COLL_CRT_TIME Creation timestamp.
 R_COLL_MOD_TIME Last modification timestamp.

FCO5 : Data - Accessible Digital
Objects stored in iRODS

 R_DATA_ID Internal identifier.
 R_DATA_NAME Logical name of the digital object (see also DCO2) .

 R_REPLICA

A replica number given to the physical instance of the digital
object. This is an integer. Replica numbers start at 1 and increase
over time. For a given digital object, the replica number is not
reused.

 R_VERSION

A version string given to the physical instance of the digital
object. A replica can have more than one version. Older versions
of a replica will have a negative r_replica number. For access,
when no version is specified, a positive r_replica is selected.

 R_PDATA_ID

Internal identifier. The combination: (r_zone_name,
r_coll_name, r_data_name, r_replica, r_version) uniquely
identifies one physical copy of the digital object. We refer to this
combination as pdata.

 R_PDATA_TYPE Data-type: jpeg image, PDF doc,....
 R_PDATA_SIZE Size of the digital object in bytes.
 R_PDATA_RSRC Resource-name where the copy of the digital object is stored.
 R_PDATA_PATH Access path for the object in the resource.
 R_PDATA_OWNER User who created the object.
 R_PDATA_IS_DIRTY Dirty status of the object - used for synch.
 R_PDATA_STATUS Status: locked, is-deleted,pinned,hide,...

 R_PDATA_CHECKSUM
Checksum. This is a tagged list with elements of the form:
<binhex>12344</binhex><md5>22234422</md5>...

 R_PDATA_EXPIRY Sunset date for the object.
 R_PDATA_COMMENTS Comments about the physical object.
 R_PDATA_CRT_TIME Creation timestamp.
 R_PDATA_MOD_TIME Last modification timestamp.

FC06 : Attribute-Value Metadata

 R_META_ID Internal identifier.
 R_META_NAMESPACE Namespace in which attribute is located.
 R_META_ATTR Attribute name of the metadata.

 38

 R_META_VALUE Attribute value of the metadata.
 R_META_UNIT Unit of the value: cms, mph, deg. Cel.,...
 R_META_OWNER User who created the metadata.
 R_META_COMMENTS Any comments about the metadata.
 R_META_CRT_TIME Creation timestamp.
 R_META_MOD_TIME Last modification timestamp.

FC07: Rules

 R_RULE_ID Internal identifier.
 R_RULE_NAME Name of the Rule - normally the head predicate.

 R_RULE_SEQ
Sequence number of Rule (an enumeration that is used to set
priority of execution) .

 R_RULE_OBJ_TYP
First class object type to which the Rule applies: collection, data,
zone,...

 R_RULE_EVENT Event on which to trigger the Rule.

 R_RULE_CONDITION
Conditions to be checked to trigger the Rule. This check should
not have any side effects.

 R_RULE_BODY

Body of the Rule. Execution may have side effects and hence if
the Rule fails somewhere in the middle, there should be recovery
to the state before the Rule body execution (transaction: all or
none) .

 R_RULE_EXEC_TYPE
When the Rule-body needs to be executed: immediate, delayed,
background,...

 R_RULE_OWNER User who created the metadata.
 R_RULE_COMMENTS Any comments about the Rule.
 R_RULE_CRT_TIME Creation timestamp.
 R_RULE_MOD_TIME Last modification timestamp.

FC0D87: Tokens

 R_TOKEN_NAMESPACE Namespace of the token, eg. Data_type.
 R_TOKEN_NAME A value in the name space. Eg. 'Gif image'.
 R_TOKEN_ID Exposed internal identifier for the token_name.
 R_TOKEN_VALUE (Possibly) null string for other purposes.

Derived Class Objects:

DC01 : Collection hierarchy Child can be in more than one parent.

 R_PARENT_COLL_ID Internal identifier for parent collection.
 R_CHILD_COLL_ID Internal identifier for child collection.
 R_COLL_COLL_MAP Type of parentage: direct, soft link.

DC02: Data collection mapping - data
can be in more than one coll.

 R_COLL_ID Internal identifier for collection.
 R_DATA_ID Internal identifier for data in collection.

 39

 R_DATA_COLL_MAP Type of mapping: direct, soft link.

DCO3 : User Group

 R_GROUP_USER_ID Internal identifier of user-group.
 R_MEMBER_USER_ID Internal identifier of user.

DC04: Resource Group mapping

 R_RSRC_GROUP_NAME Name of logical resource.
 R_RSRC_ID Internal identifier for physical resource.

DC05 : Metadata mapping

 R_OBJ_ID

Internal identifier. Note that all internal identifiers are generated
from same sequence. Metadata can be attached to any first class
object including other metadata! The obj_id is used internally.
But the client will access using the first class object’s name.

 R_META_ID Internal identifier of the metadata.

DC06 : Access Control List

 R_OBJ_ID

Internal identifier. Note that all internal identifiers are generated
from same sequence. Access control can be attached to any first
class object. The obj_id is used internally. But the client will
access using the first class object’s name.

 R_USER_ID User or group-user identifier.
 R_ACCESS_TYPE Access allowed for the user: r,w,x,....

DC07 : Deny Access Control List

 R_OBJ_ID

Internal identifier. Note that all internal identifiers are generated
from same sequence. Access control can be attached to any first
class object. The obj_id is used internally. But the client will
access using the first class object’s name.

 R_USER_ID User or group-user identifier.
 R_ACCESS_TYPE Access allowed for the user: r,w,x,....

DC08 : Audit Information

 R_OBJ_ID

Internal identifier. Note that all internal identifiers are generated
from same sequence. The obj_id is used internally. But the client
access using the first class object’s name.

 R_USER_ID User identifier.
 R_ACTION_TYPE Action being performed.
 R_COMMENT Information about the action.
 R_AUDIT_CRT_TIME Creation timestamp.

DC09 : User Session Info

 40

 R_USER_NAME User_name.
 R_SESSION_KEY Session key generated for the session.

 R_SESSION_INFO
Information about host:ppid - can be any string that uniquely
identifies the session for that user. This string is sent by client.

 R_SESSION_EXPIRY Time at which the session expires.

7 iRODS Micro-services

Micro-services are small, well-defined procedures/functions that perform a certain task. Micro-
services are developed and made available by system programmers and application programmers
and compiled into the iRODS Server code. Users and administrators can chain these Micro-
services to implement a larger macro-level functionality that they want to use or provide for
others. In this manner, the users/administrators can have full control over what happens when one
performs a macro-level functionality. These macro-level functionalities are called Actions. By
having more than one chain of Micro-services for an Action, a system can have multiple ways of
performing the Action. Using priorities and validation conditions at run-time, the system chooses
the 'best' Micro-service chain to be executed. There are other caveats to this execution paradigm
which were discussed in section 3 on Rule Oriented Programming.

The task performed by a Micro-service can be quite small or very involved. We leave it to the
Micro-service developer to choose the proper level of granularity for their task differentiation. A
good Rule of thumb is to divide a large task into sub-tasks with well-defined interfaces and make
each into a Micro-service. If two such sub-tasks are always done together, it would be a good idea
to group them together into one Micro-service. Since the user/administrator chains the Micro-
services into Actions, having too fine grained a differentiation will make the splicing
cumbersome and difficult. On the other hand, making a large task into a single Micro-service
takes away the control that is given to the end user/administrator who might want to choose not to
do some parts of the task. We recommend that normal coding practices and good design
principles used in module and method generation be applied in deciding the granularity for each
Micro-service task.

The Micro-services are organized into the following categories:

• Core Micro-services
o Rule Engine Micro-services
o Workflow Micro-services
o Data Object Low-level Micro-services
o Data Object Micro-services
o Collection Micro-services
o Proxy Command Micro-services

• iCAT Services
o iCAT System Services:
o iCAT Micro-services:

• Framework Services:
o Rule-oriented Database Access Micro-services
o XMessaging System Micro-services
o Email Micro-services
o Key-Value (Attr-Value) Micro-services
o User Micro-services
o System Micro-services

 41

• Module Micro-services
o ERA - Electronic Records Archives Program
o XML
o HDF
o Properties
o Web Services
o Guinot

Within each category, multiple Micro-services may be defined. The list will grow over time as
more functionality is added to the data grid.

Core Micro-services
Rule Engine Micro-services
 * msiAdmChangeCoreIRB - Changes the core.irb file from the client
 * msiAdmAppendToTopOfCoreIRB - Prepends another irb file to the core.irb file
 * msiAdmAddAppRuleStruct - Adds application level IRB Rules and DVM and FNM
 mappings to the Rule engine.
 * msiAdmClearAppRuleStruct - Clears application level IRB Rules and DVM and FNM

 mappings that were loaded into the Rule engine.
 * msiAdmShowIRB - Displays the currently loaded Rules
 * msiAdmShowDVM - Displays the currently loaded variable name mappings
 * msiAdmShowFNM - Displays the currently loaded microServices/Actions

 name mappings

Workflow Micro-services
 * nop, null - No action
 * cut - Not to retry any other applicable Rules for this action
 * succeed - Succeed immediately
 * fail - Fail immediately - recovery and retries are possible
 * msiGoodFailure - Useful when you want to fail but no recovery initiated.
 * msiSleep - Sleep
 * whileExec - While loop
 * forExec - For loop with initial,step and end condition
 * forEachExec - For loop iterating over a row of tables or a list
 * break - Breaks out of while, for and forEach loops
 * writeString - Writes a string to stdout buffer
 * writeLine - Writes a line (with end-of-line) to stdout buffer
 * assign - assigna a value to a parameter
 * ifExec - If-then-else conditional branch
 * delayExec - Delays an execution of Micro-services or Rules
 * remoteExec - Remote execution of Micro-services or Rules
 * applyAllRules -Apply all applicable Rules when executing a given

 Rule

Data Object Low-level Micro-services (Can be called by client through irule.)
 * msiDataObjCreate - Create a data object
 * msiDataObjOpen - Open a data object
 * msiDataObjClose - Close an opened data object
 * msiDataObjLseek - Lseek
 * msiDataObjRead - Read an opened data object
 * msiDataObjWrite - Write

 42

Data Object Micro-services (Can be called by client through irule.)
 * msiDataObjUnlink - Delete
 * msiDataObjRepl - Replicate
 * msiDataObjCopy - Copy
 * msiDataObjGet - Get
 * msiDataObjPut - Put
 * msiDataObjPutWithOptions - Put with options
 * msiDataObjChksum - Checksum a data object
 * msiDataObjPhymv - Move a data object from one resource to another
 * msiDataObjRename - Rename a data object
 * msiDataObjTrim - Trim the replica
 * msiPhyPathReg - Register a physical file into iRODS
 * msiObjStat - Stat an object
 * msiDataObjRsync - Rsync a data between iRODS and local file
 * msiGetObjType - Finds if a given value is a data,coll,resc,...
 * msiCheckPermission - Check whether permission is granted
 * msiCheckOwner - Check whether user is owner

Collection Micro-services
 * msiCollCreate - Create a collection
 * msiCollRepl - Replicate all files in a collection
 * msiRmColl - Delete a collection

Proxy Command Micro-services
 * msiExecCmd - Remote execute a command

iCAT Services
iCAT System Services:
 * msiVacuum - Postgres vacumm - done periodically

iCAT Micro-services:
 * msiCommit - Commit the database transaction
 * msiRollback - Roll back the database transaction
 * msiCreateUser - Create a new user
 * msiDeleteUser - Delete a user
 * msiAddUserToGroup - Adds a user to a group
 * msiCreateCollByAdmin - Create a collection by administrator
 * msiDeleteCollByAdmin - Delete a collection by administrator
 * msiRenameLocalZone - Renames the local zone by updating various tables
 * msiRenameCollection - Renames a collection; used via a Rule with the above

 msiRenameLocalZone
 * msiExecStrCondQuery - Given a condition string creates an iCAT query,

 executes it and returns the values
 * msiExecGenQuery - Executes a given general query structure and returns

 results
 * msiMakeQuery - Given a select list and a condition list, creates a

 pseudo-SQL query
 *msiGetMoreRows - Continues an unfinished query, calls

 msiExecStrCOndQuery and returns results
 * msiMakeGenQuery - Combines msiMakeQuery and msiExecGenQuery and

 43

 returns the results of the execution

Rule-oriented Database Access Micro-services
 * msiRdaToStdout - Calls new RDA functions to interface to an arbitrary

 database returning results in standard-out.
 * msiRdaToDataObj - As above but stores results in an iRODS DataObject.
 * msiRdaNoResults - As above, performs a SQL operation but without

 resulting output.
 * msiRdaCommit - Commit changes to the database.
 * msiRdaRollback - Rollback (don't commit) changes to the database.

XMessaging System Micro-services
 * msiXmsgServerConnect - Connects to the XMessage Server designated by an

 iRODS Environment file variable
 * msiXmsgCreateStream - Creats a new Message Stream
 * msiCreateXmsgInp - Creates an Xmsg packet, given required information
 * msiSendXmsg - Sends an Xmsg packet
 * msiRcvXmsg - Receives an Xmsg packet
 * msiXmsgServerDisConnect - Disconnects from the XMessage Server

Email Micro-services
 * msiSendMail - Sends email!
 * sendStdoutAsEmail - Sends rei's stdout as email

Key-Value (Attr-Value) Micro-services
 * writeKeyValPairs -Write keyword value pairs to stdout or stderr, using the

 given separator
 * msiPrintKeyValPair - Print key-value pairs to rei's stdout buffer
 * msiGetValByKey - Given a key and a keyValPair struct, extract the

 corresponding value
 * msiString2KeyValPair - Convert a %-separated key=value pair strings into

 keyValPair Structure
 * msiStrArray2String - Array of Strings converted to a string separated by %-

 signs
 * msiAssociateKeyValuePairsToObj - Ingest object metadata into iCAT from a AVU

 structure
• msiRemoveKeyValuePairsFromObj -Remove object metadata from iCAT using a AVU

 structure

User Micro-services
 * msiExtractNaraMetadata - Extracts NARA-style metadata from AVU triplets
 * msiLoadMetadataFromFile - Loads AVU metadata from a file
 * msiApplyDCMetadataTemplate - Adds Dublin Core Metadata fields to an object or

 collection
 * writeBytesBuf - Writes the buffer in an inOutStruct to stdout or stderr
 * msiFreeBuffer - Frees a buffer in an inOutStruct
 * writePosInt - Writes an integer to stdout or stderr
 * msiGetDiffTime - Returns the difference between two system timestamps,

 given in Unix format (stored in a string)
 * msiGetSystemTime - Returns the local system time of an iRODS Serer
 * msiHumanToSystemTime - Converts a human readable date to a system timestamp

 44

 * msiGetIcatTime - Returns the system time for the iCAT Server
 * msiGetTaggedValueFromString - Given a Tag-Name gets the value from a file in tagged-

 format (pseudo-XML)
 * msiExtractTemplateMDFromBuf - Extract AVU information using a template
 * msiReadMDTemplateIntoTagStruct -Load template file contents into Tag structure

System Micro-services (Can only be called by the server process)
 * msiSetDefaultResc - Set the default resource
 * msiSetNoDirectRescInp - Sets a list of resources that cannot be used by a normal

 user directly.
 * msiSetRescSortScheme - Set the scheme for selecting the best resource to use
 * msiSetMultiReplPerResc - Sets the number of copies per resource to unlimited
 * msiSetDataObjPreferredResc - If the data has multiple copies, specify thepreferred

 copy to use
 * msiSetDataObjAvoidResc - Specify the copy to avoid
 * msiSetGraftPathScheme - Set the scheme for composing the physical path in the

 vault to GRAFT_PATH.
 * msiSetRandomScheme - Set the the scheme for composing the physical path in

 the vault to RANDOM.
 * msiSetResource - Sets the resource from default
 * msiSortDataObj - Sort the replica randomly when choosing which copy

 to use
 * msiSetNumThreads - Specify the parameters for determining the number of

 threads to use for data transfer.
 * msiSysChksumDataObj - Checksum a data object.
 * msiSysReplDataObj - Replicate a data object.
 * msiStageDataObj - Stage the data object to the specified resource before

 operation.
 * msiNoChkFilePathPerm - Do not check file path permission when registering
 * msiNoTrashCan - Set the policy to no trash can.
 * msiSetPublicUserOpr - Sets a list of operations that can be performed by the

 user "public".
 * msiCheckHostAccessControl - Set the access control policy.
 * msiDeleteDisallowed - Set the policy for determining certain data cannot be

 deleted.
 * msiSetDataTypeFromExt - Get data type based on file name extension

Module Micro-services
ERA - Electronic Records Archives Program
 * msiRecursiveCollCopy - Recursively copies a collection and its contents

 including metadata
 * msiGetDataObjACL - Gets ACL (Access Control List) for a data object in “|”

 separated format
 * msiGetCollectionACL - Gets ACL (Access Control List) for a collection in “|”

 separated format
 * msiGetDataObjAVUs - Retrieves metadata AVU triplets for a data object and

 returns them as an XML file
 * msiGetDataObjPSmeta - Retrieves metadata AVU triplets for a data object in “|”

 separated format
 * msiGetCollectionPSmeta - Retrieves metadata AVU triplets for a collection in “|”

 separated format

 45

 * msiGetDataObjAIP - Gets the Archival Information Package of a data object
 in XML format

 * msiLoadMetadataFromDataObj - Parses an iRODS object for new metadata AVUs
 * msiExportRecursiveCollMeta - Export metadata AVU triplets for a collection and its

 contents in a “|” separated format
 * msiCopyAVUMetadata - Copies metadata triplets from an iRODS object to

 another iRODS object
 * msiGetUserInfo - Gets information about user
 * msiGetUserACL - Gets user ACL for all objects and collections
 * msiCreateUserAccountsFromDataObj – Creates new user from information in a iRODS data

 object
 * msiLoadUserModsFromDataObj - Modify user information from information in a iRoDS

 data object
 * msiDeleteUsersFromDataObj - Delete user based on information in a iRODS data

 object
 * msiLoadACLFromDataObj - Loads ACL from information in a iRODS data object
 * msiGetAuditTrailInfoByUserID - Retrieves Audit Trail information for a user ID
 * msiGetAuditTrailInfoByObjectID - Retrieves Audit Trail information for an object ID
 * msiGetAuditTrailInfoByActionID - Retrieves Audit Trail information for a given action ID
 * msiGetAuditTrailInfoByKeywords - Retrieves Audit Trail information by keywords in the

 comment field
 * msiGetAuditTrailInfoByTimeStamp – Retrieves Audit Trail information by time stamp

 period
 * msiSetDataType - Sets data type for an object
 * msiGuessDataType - Guesses the data type of an object based on its file

 extension
 * msiGetCollectionContentsReport - Returns the object count and total disk usage of a

 collection

XML
 * msiXsltApply - Given an XML object and an XSLT object, returns the

 XML object after applying the XSLT transformation

HDF
 * msiH5File_open - Open an HDF file
 * msiH5File_close - Close an HDF file
 * msiH5Dataset_read - Read data from and HDF file
 * msiH5Dataset_read_attribute - Read data attribute from an HDF file
 * msiH5Group_read_attribute - Read attributes of a group in an HDF file

Properties
 * msiPropertiesNew - Create a new empty property list
 * msiPropertiesClear - Clear a property list
 * msiPropertiesClone - Clone a property list, returning a new property list
 * msiPropertiesAdd - Add a property and value to a property list. If the

 property is already in the list, its value is changed.
 Otherwise the property is added.

 * msiPropertiesRemove - Remove a property from the list
 * msiPropertiesGet - Get the value of a property in a property list. The

 property list is left unmodified
 * msiPropertiesSet - Set the value of a property in a property list. If the

 46

 property is already in the list, its value is changed.
 Otherwise the proprety is added.

 * msiPropertiesExists - Return true (integer 1) if the keyword has a property
 value in the property list, and false (integer 0)
 otherwise. The property list is unmodified.

 * msiPropertiesToString - Convert a property list into a string buffer. The
 property list is left unmodified.

 * msiPropertiesFromString - Parse a string into a new property list. The existing
 property list, if any, is deleted

Web Services
 * msiGetQuote - Returns a stock quotation using web service provided

 by http://www.wegserviceX.NE
 * msiIp2location - Returns host name and details given an IP address,

 using the web service provided by
 http://ws.fraudlabs.com/

 * msiConvertCurrency - Returns conversion reate for currencies from one
 country to another, using web service provided by
 http://www.webserviceX.NET

 * msiObjByName - Returns position and type of an astronomical object
 given a name using the NASA/IPAC Extragalactic
 Database (NED) web service at
 http://voservices.net/ws_v2__0/NED.asmx

 * msiSdssImgCutout_GetJpeg - Returns an image buffer given a position and cutout
 size using the SDSS Image Cut Out web service at
 http://skyserver.sdss.org

Guinot
 * msiGetFormattedSystemTime - Returns the local system time

Though Micro-services can be any normal C procedure, there is a standard interfacing mechanism
that needs to be adopted when making a C procedure into a Micro-service. A C procedure that
you want to turn into a Micro-service can have any number of arguments and any type or
structure (with some caveats, see discussion on the parameter structure) . When a Rule Engine
interacts with a Micro-service, it interacts with a published (standardized within iRODS)
parametric structure of the type called msParam_t. Hence, glue code is needed that converts from
msParam_t to the actual argument type of the underlying Micro-service. We call this glue code a
Micro-service interface (msi for short). The msi routine will map the msParam_t structure to the
call arguments and convert back any output parameters to the msParam_t structure. We illustrate
with an example below.

We recommend that the Micro-service interface procedures be pre-fixed with the three-letter
acronym msi. Hence, a procedure called createCollection can have an interface routine called
msiCreateCollection. The Rule Engine will invoke msiCreateCollection which in turn will invoke
createCollection.

Each of the msi procedure calls is registered in the Rule Engine. Only these registered Micro-
services can be invoked by the Rule Engine. The registration is done by adding the name of the
msi procedure call to a C structure table maintained for this purpose. The table is called
ActionTable[] and is found in the server/include/reAction.h file.

 47

7.1 Micro-service Input/Output Arguments

One can pass arguments to a Rule, Micro-service or Action through explicit arguments, as done
in the case of C function or procedure calls. The input parameters can take two forms:

• Literal: If an argument does not begin with a special character (#, $ or *), it is treated as a

character string input. For example, in the Micro-service msiSortRescSortScheme(random),
the character string "random" will be passed in as input. Literal can only be used as input
parameters and not output parameters.

• Variable: If an argument begins with the * character, it is treated as a variable argument.

Variable arguments can be used both as input and output parameters. The output parameter
from one Micro-service can be explicitly specified as the input parameter of another Micro-
service. This powerful capability allows very complex workflow-like rules to be constructed.
For example, in the following workflow chain:

msiDataObjOpen(/x/y/z,*FD)##msiDataObjRead(*FD,10000,*BUF)
msiDataObjOpen opens a data object with the input path /x/y/z and the output file descriptor
is placed in the variable parameter *FD. *FD is then used by msiDataObjRead as an input
parameter for the read.

User-level workflow-like rules can be invoked through the irule command or the rcExecMyRule
API. Internally, the Rule system uses the msParam_t struct to store the content of Variable
arguments. The definition of the structure can be found in the file
clientLib/include/api/dataObjInpOut.h.

 typedef struct MsParam {
 char *label;
 char *type; /* this is the name of the packing instruction in
 * rodsPackTable.h */
 void *inOutStruct;
 bytesBuf_t *inpOutBuf;
 } msParam_t;

This data structure is universal in the sense that it can be used to represent all parameter types
including very complex data structures. The field label is the identifier used in the actual Rule.
e.g., if a Rule calls a Micro-service msiDataObjCreate(*A,*S_FD), the strings "*A" and "*S_FD"
are the labels of their respective structures. The type field identifies the type of data that is stored
in the inOutStruct. The data-types suppported, though fairly extensive, are restricted to the ones
that are given in the file clientLib/include/api/rodsDef.h. The set of supported data types and
structures is listed in Table 4. The value of the input/output is given in the inOutStruct field. The
inpOutBuf is a buffer that can be used to pass binary data as part of the parameter. The
parameters are passed as an array as defined in the following type definition.

typedef struct MsParamArray {
 int len;
 int oprType;
 msParam_t **msParam;
} msParamArray_t;

 48

The msParam_t structure provides a uniform type definition for the Rule Engine to handle and
operate. msParam_t has the following type definition:

typedef struct MsParam {
 char *label;
 char *type; /* this is the name of the packing instruction in
 * rodsPackTable.h */
 void *inOutStruct;
 bytesBuf_t *inpOutBuf;
} msParam_t;

Here “label” is the name given to the argument in the call; “type” is the C structure type that is
supported by the iRODS system. The set of supported types is listed in Table 4. The data
structures include support for passing parameters for rule invocation using the msParam structure
and for passing values between client-server and server-server interactions. The values can be
found in the file clientLib/include/rodsPackTable.h.

Table 4. Data Structures Supported by iRODS

STR_PI
INT_PI
StartupPack_PI
Version_PI
RErrMsg_PI
RError_PI
RHostAddr_PI
RODS_STAT_T_PI
RODS_DIRENT_T_PI
KeyValPair_PI
InxIvalPair_PI
InxValPair_PI
PortList_PI
PortalOprOut_PI
PortList_PI
DataOprInp_PI
GenQueryInp_PI
SqlResult_PI
GenQueryOut_PI
DataObjInfo_PI
TransStat_PI
RescGrpInfo_PI
AuthInfo_PI
UserOtherInfo_PI
UserInfo_PI
CollInfo_PI
Rei_PI
ReArg_PI
ReiAndArg_PI
BytesBuf_PI
MsParam_PI
MsParamArray_PI

 49

The inOutStruct is a pointer to the value of the input structure being passed. It can be NULL. The
inpOutBuf is used to pass any binary buffers that need to be passed as part of the argument.

7.2 Naming Conventions
When adding files and functions, we recommend some naming conventions for ease of
maintenance. Naming conventions are useful for helping maintain the programs and functions
that are created under iRODS. Even though we do not force these conventions on developers, we
recommend their usage for maintaining good programming practice.

7.2.1 Variable Naming Conventions
We recommend that:

• Variable names use multiple descriptive words.
 Example: myRodsArgs
• Variable names use camel-case to distinguish words:
 Example: genQueryInp

7.2.2 Constant Naming Conventions
We recommend using one of the two following conventions:

• Constant string names use multiple descriptive words and start with an upper-case letter.
Example: Msg_Header_PI

• Constant string names use upper-case letters separated with an under-score.
Example: NAME_LEN

7.2.3 Function Naming Conventions
All C functions in iRODS occupy the same namespace. To avoid function name collisions, we
recommend that:

• Function names use multiple descriptive words.
Example: getMsParamByLabel

• Function names use camel-case to distinguish words:
Example: printMsParam

• Micro-service function names start with "msi":
Example: msiDataObjGet

• Micro-service helper function names start with "mh":
• Server function names start with "rs".
• Client function names start with "rc".

7.2.4 File Naming Conventions
General file purpose may be inferred by the location of the file in the iRODS directory tree. For
instance, those in the server/re/src directory are part of the Rule engine, while those in the
clients/icommands/src directory are command-line tools. Beyond this, we recommend that:

• File names use multiple descriptive words.
Example: rodsServer.c contains the iRODS Server main program.

• File names reflect the names of functions in the file.
Example: msParam.c contains utility functions that work with the msParam struct.

• File names use camel-case to distinguish words:
Example: irodsReServer.c

No two files in the same directory have names that differ only by case. This causes problems
with Windows and old Mac file systems.

 50

8 Extending iRODS

The iRODS Data Grid is highly extensible. New Micro-services can be added, new Rules can be
created, and new state information can be saved. This means the iRODS Data Grid can evolve.
A new collection can be created that is governed by the new Rules and Micro-services and the
associated state information. The new collection can be run in parallel with an original collection
that is still governed by the original Rules, Micro-services, and state information. The user of the
data grid can then migrate files from the collection managed by the old policies to the collection
managed by the new policies. Detailed instructions are available on how to apply these
extensions to an iRODS Data Grid.

8.1 Changing the IP Address

The iRODS Data Grid assumes that a fixed IP address is used for the iRODS Servers and the
iCAT metadata catalog. If a system is moved to a new IP address, multiple parameters should be
reset to enable communication to be established between the servers.

On installation, it is possible to have the system use LOCALHOST for the IP address. This
makes it possible to set up systems that are self-containted, and suitable for giving
demonstrations. The use of LOCALHOST can be set up during installation by setting the
environment variable USE_LOCALHOST before running irodssetup. For example, if you are
using the bash shell, you would type:

USE_LOCALHOST=1
export USE_LOCALHOST

Instead of setting USE_LOCALHOST, another way to do this is to disconnect from the network
before installing the software. The installation procedure will automatically use LOCALHOST
for the IP address.

To modify the IP address of an existing installation, use the following steps:

• Stop iRODS and PostgreSQL:
irodsctl stop

• Edit each of the following files, changing the host name to the new address:
.odbc.ini in the home directory
.irods/.irodsEnv in home directory

 pgsql/etc/odbc.ini in the Postgres directory
 server/config/server.config in IRODS directory

• Then start iRODS again:
irodsctl start

• And modify the address of the local resource:
 iadmin modresc demoResc host localhost

8.2 How to interface a Micro-service
Micro-services can be added either as a system Micro-service in the server area, or as a module
Micro-service that is compiled only as necessary. We discuss both options below.

 51

8.2.1 How to interface a Micro-services as a module
This requires a two-step process:

1. Create a module, which is done once for each module.
2. Add a Micro-service to the module, which is done for every new Micro-service that is

added to the module.

8.2.1.1 Creating a Module
A "module" is a bundle of optional software components for iRODS. Typically, a module
provides specialized Micro-services. Modules also may provide new rules, library functions,
commands, and even application servers. Once you have developed the software to perform a
new iRODS function, you can add your software as a new iRODS module via the following
steps:

1. Create a directory named for the module:
 mkdir modules/MODNAME

2. Move into that directory:
 cd modules/MODNAME

3. Create one or more subdirectories for components being added to iRODS:
 mkdir microservices
 mkdir rules
 mkdir lib
 mkdir clients
 mkdir servers

For the rest of these instructinos, we'll assume you're adding Micro-services, but similar
instructions apply for other additions.

4. Create source, include, and object subdirectories:
 mkdir microservices/src
 mkdir microservices/include
 mkdir microservices/obj

5. Add source and include files to the "src" and "include" directories.
6. Create a Makefile by copying one from an existing module, such as "properties":

 cp ../properties/Makefile .
7. Edit the Makefile to list your source files and add any special compile flags or libraries

you may need. The Makefile must respond to a set of standard targets:
 all build everything
 microservices build new microservices
 client build new clients
 server build new servers
 rules build new rules
 clean remove built objects, etc.
 client_cflags compile flags for building clients
 client_ldflags link flags for building clients
 server_cflags compile flags for building servers
 server_ldflags link flags for building servers

The Micro-services, client, and server targets should compile your code. The client and server
targets should link your custom clients and servers. If your module doesn't have one or more of
these, the target should exist but do nothing.

 52

The client and server flag targets should echo to stdout the compiler or linker flags needed on
other clients and servers that use the module. The "cflags" echos should list -I include paths
and specific include files. The "ldflags" echos should list -L link paths, -l library names, and
specific library or object files.

8. Create an info.txt file by copying one from an existing module:
 cp ../properties/info.txt .

9. Edit the info.txt file to include information about your module. The file must contain:
 Name: the name of the module
 Brief: a short description of the module
 Description: a longer description of the module
 Dependencies: a list of modules this module needs
 Enabled: whether the module is enabled by default

Each of these must be on a single (possibly long) line. For dependencies, list module names
separated by white-space. Module names must match exactly the directory name of other
modules. Case matters.

8.2.1.2 How to use module's info.txt
The "info.txt" file in a module's top-level directory describes the module. It is intended for use by
the iRODS Makefiles and configuration scripts.

The file is a list of keyword-value pairs, one per line. For instance:

 Name: sample
 Brief: A sample microservice module
 Description: This is a sample module description.
 Dependencies: example
 Enabled: yes
 Creator: University of California, San Diego
 Created: Sept 2007
 License: BSD

Name: The name of the module. The name should match the module directory name. (currently
unused)

Brief: A brief half-line description of the module. The iRODS configure script uses this value
when printing help information about available modules.

Description: A longer description of the module. While the value must be on a single line, it can
be several sentences long. (currently unused)

Dependencies: A list of module names upon which the module depends. Names should be space-
separated and must match module directory names. The iRODS configure script uses this to
insure that all modules that must be enabled together are enabled together.

Enabled: The value "yes" or "no" to indicate if the module should be enabled by default. The
iRODS configure script uses this to set defaults on configuring iRODS.

 53

Creator: The name of the principal individual or organization responsible for creating the module.
(currently unused)

Created: The approximate creation date of the module. (currently unused)

License: The license covering the module's source code. Additional information may be in the
source files or in module documentation. This value is only used as a general indicator. (currently
unused)

8.2.1.3 Adding a Micro-service to a Module
All Micro-service functions are discovered by the iRODS Server by reading a master "action"
table compiled into the Server. The action table is split into three files:

1. server/re/include/reAction.header
2. server/re/include/reAction.table
3. server/re/include/reAction.footer

The iRODS Makefiles assemble these files, and those provided by modules, to build the file
server/re/include/reAction.h. This file contains:

• reAction.header - The header for each Micro-service module.
• reAction.table - The table entries for each Micro-service module.
• reAction.footer

There are two ways to add a Micro-service:

For system Micro-services:
• Edit reAction.header to add function prototypes
• Edit reAction.table to add table initializations

For module Micro-services:
1. Create MODNAME/microservices/include/microservices.header. Edit this to add

function prototypes.
2. Create MODNAME/microservices/include/microservices.table. Edit this to add table

initializations.

Function prototypes declare the C Micro-service function. While these can be added to the above
files directly, authors are encouraged to use a separate include file and just add a #include of that
file. For instance, here's a typical Micro-services.header file for a module:
 // Sample module microservices
 #include "sampleMS.h"

The reAction.table and each module's microservices.table file contains a C array initialization
listing all available Micro-services. Each line in the initialization looks like this:
 // Sample module microservices
 { "sample", 2, (funcPtr) msiSample },

There are three values, in order:

1. The service name is the user-visible name of the Micro-service. It is a string using letters,
numbers, and underbar. It should be descriptive and need not match the Micro-service
function name.

2. The argument count is the number of msParam_t arguments for the function. It does not
include the ruleExecInfo_t argument.

 54

3. The function name is a pointer to the C function for the Micro-service.

8.2.1.4 How to rebuild reAction.h
The server's reAction.h action table is rebuilt automatically by the iRODS root Makefile if any
include file changes in server/re/include or modules/*/microservices/include. To force reAction.h
to be rebuilt, delete the existing file and run the "reaction" Makefile target:
 rm server/re/include/reAction.h
 make reaction

8.2.1.5 How to interface a system (server) Micro-service
1. Create the Micro-service function as needed.

int myPetProc(char *in1, int in2, char *out1, int *out2)
{
 ... my favorite code ...
}

2. Create the Micro-service interface (msi) glue procedure.
int msiMyPetProc(msParam_t *mPin1, msParam_t *mPin2,
 msParam_t *mPout1, msParam_t *mPout2,
 RuleExecInfo_t *rei)
{
 char *in1, out1;
 int i, in2, out2;

 RE_TEST_MACRO (" Calling myPetProc")
 /* the above line is needed for loop back testing using the irule -i option */

 in1 = (char *) mPin1->inOutStruct;
 in2 = (int) mPin2->inOutStruct;
 out1 = (char *) mPout1->inOutStruct;
 out2 = (int) mPout2->inOutStruct;

 i = myPetProc(in1, in2, out1, &out2);
 mPout2->inOutStruct = (int) out2;

 return(i);
}

3. Define the msi call in the file server/re/include/reAction.table by adding the function

signature in the area where all function signatures are defined.

int msiMyPetProc(msParam_t *mPin1, msParam_t *mPin2, msParam_t *mPout1,
msParam_t *mPout2, RuleExecInfo_t *rei);

4. Register the Micro-service by making an entry in the file server/re/include/reAction.table.

The first item in the entry is the external name of the Micro-service, the second is the
number of user-defined arguments for the msi procedure call (excluding the
RuleExecInfo_t *rei), and the third argument is the name of the msi procedure. Note that
the names are the same in the following example for the first and third values in the entry.
We recommend this format for clarity purposes:

 55

{"msiMyPetProc", 4, (funcPtr) msiMyPetProc}

5. If there are any 'include' files that are needed, they can be added to

server/re/include/reAction.header.

6. Define the called procedure in an appropriate include file (for the present reFuncDefs.h

file would be a fit place for this, since this will require no change in any Makefile) by
adding the signature.

int myPetProc(char *in1, int in2, char *out1, int *out2);

The Micro-service is now ready for compilation and use!

8.3 Web Services as Micro-services
Web services can be turned into Micro-services. The iRODS Data Grid already has a few Micro-
services that invoke Web services as part of the release. Interfacing a web service is a slightly
involved process. There are two steps for encapsulating web-servivces in Micro-services.

1. The first step is to build a common library that can be used by all Micro-services that
connect to web services. This is done ONLY ONCE.

2. The second step is done for each Micro-service that is built.

8.3.1 First Step (Done Only Once)
1. Acquire the gsoap distribution. This can be found at:

http://sourceforge.net/projects/gsoap2 or other mirrored sites.
2. Put the files in the webservices/gsoap directory.
3. Build the gsoap libraries and copy them to appropriate directories (See README.txt in

the gsoap distribution for more information on building.)
 cd gsoap
 ./configure
 ./make
 cd soapcpp2
 cp libgsoap++.a libgsoap.a libgsoapck++.a libgsoapck.a libgsoapssl++.a libgsoapssl.a
../../microservices/lib
 cp stdsoap2.h ../../microservices/include
 cp stdsoap2.c stdsoap2.h ../../microservices/src/common
 cd ../../microservices/src/common
 rm *
 touch env.h
 ../../../gsoap/soapcpp2/src/soapcpp2 -c -penv env.h
 gcc -c -DWITH_NONAMESPACES envC.c
 gcc -c -DWITH_NONAMESPACES stdsoap2.c
 cp envC.o stdsoap2.o ../../obj

4. Add a file called info.txt in the webservices directory if it is not already there. The
content of this file is similar to that of the info.txt file in the modules/properties directory.

5. Make sure that the value for “Enabled” in the info.txt file is “yes” (instead of “no”).
6. Add the word ‘web services’ (without the quotes) to the MODULES option in the

~/iRODS/config/mk/config file. Make sure that the line is not commented out

MODULES- webservices properties

 56

8.3.2 Second Step (Done for Each Web Service)
Here we show an example Micro-service being built for getting a stockQuotation. Building a
Micro-service for a web-service is a multi-step process. If not already enabled, enable the Micro-
services for web-services by changing the enabling flag to 'yes' in the file
modules/webservices/info.txt

1. mkdir webservices/microservices/src/stockQuote
2. Place stockQuote.wsdl in the directory webservices/microservices/src/stockQuote.

The wsdl file is obtained from the web services site.
3. cd webservices/microservices/src/stockQuote
4. setenv GSOAPDIR ../../../gsoap/soapcpp2
5. $GSOAPDIR/wsdl/wsdl2h -c -I$GSOAPDIR -o stockQuoteMS_wsdl.h

stockQuote.wsdl
This creates a file called stockQuoteMS_wsdl.h

6. $GSOAPDIR/src/soapcpp2 -c -w -x -C -n -pstockQuote stockQuoteMS_wsdl.h
This creates files: stockQuote.nsmap, stockQuoteC.c, stockQuoteClient.c,
stockQuoteClientLib.c, stockQuoteH.h and stockQuoteStub.h

7. Create the Micro-service in a file. In this case, file stockQuoteMS.c is created in
webservices/microservices/src/stockQuote. The structures and the call can be found
at stockQuoteStub.h.

 /*** Copyright (c), The Regents of the University of California ***
 *** For more information please refer to files in the COPYRIGHT directory ***/
 /**
 * @file stockQuoteMS.c
 *
 * @brief Acces to stock quotation web services
 *
 * This Micro-service handles communication with http://www.webserviceX.NET
 * and provides stock quotation - delayed by the web server.
 *
 *
 * @author Arcot Rajasekar / University of California, San Diego
 */
 #include "rsApiHandler.h"
 #include "stockQuoteMS.h"
 #include "stockQuoteH.h"
 #include "stockQuote.nsmap"

 int
 msiGetQuote(msParam_t* inSymbolParam, msParam_t* outQuoteParam,
 ruleExecInfo_t* rei)
 {
 struct soap *soap = soap_new();
 struct _ns1__GetQuote sym;
 struct _ns1__GetQuoteResponse quote;
 char response[10000];
 RE_TEST_MACRO(" Calling msiGetQuote");
 sym.symbol = (char *) inSymbolParam->inOutStruct;
 soap_init(soap);
 soap_set_namespaces(soap, stockQuote_namespaces);
 if (soap_call___ns1__GetQuote(soap, NULL, NULL, &sym, "e) ==

 57

 SOAP_OK)
{

 fillMsParam(outQuoteParam, NULL, STR_MS_T, quote.GetQuoteResult,
 NULL);
 free (quote.GetQuoteResult);
 return(0);
 }
 else
 {
 sprintf(response,"Error in execution of GetQuote::%s\n",soap->buf);
 fillMsParam(outQuoteParam, NULL, STR_MS_T, response, NULL);
 return(0);
 }
 }

8. Create the header file for the Micro-service. In this case, file stockQuoteMS.h is
created in webservices/microservice/include
 /*** Copyright (c), The Regents of the University of California ***
 *** For more information please refer to files in the COPYRIGHT directory
 ***/
 /**
 * @file stockQuoteMS.h
 *
 * @brief Declarations for the msiStockQuote* microservices.
 */

 #ifndef STOCKQUOTEMS_H /* so that it is not included multiple times by
 mistake */
 #define STOCKQUOTEMS_H
 #include "rods.h"
 #include "reGlobalsExtern.h"
 #include "rsGlobalExtern.h"
 #include "rcGlobalExtern.h"
 int msiGetQuote(msParam_t* inSymbolParam, msParam_t* outQuoteParam,
 ruleExecInfo_t* rei);
 #endif /* STOCKQUOTEMS_H */

9. Make sure that the header file is included in the build process. Add the following line

in the file microservices.header located in webservices/microservice/include

 #include "stockQuoteMS.h"

10. Add the Micro-service to the list of Micro-services that can be called by the Rule
Engine. Add the following line in the file microservices.table located in
webservices/microservice/include

 { "msiGetQuote", 2, (funcPtr) msiGetQuote },

11. The next step is to change the Makefile in the webservices directory so that the new
Micro-service gets compiled and linked during the build process. Add the following
lines at the appropriate places in the Makefile located in the modules/webservices
directory

 58

 stockQuoteSrcDir= $(MSSrcDir)/stockQuote
 STOCKQUOTE_WS_OBJS = $(MSObjDir)/stockQuoteMS.o

$(MSObjDir)/stockQuoteClientLib.o
 OBJECTS += $(STOCKQUOTE_WS_OBJS)
 $(STOCKQUOTE_WS_OBJS): $(MSObjDir)/%.o: $(stockQuoteSrcDir)/%.c
 $(DEPEND) $(OTHER_OBJS)
 @echo "Compile webservices-stockQuote module `basename $@`..."
 @$(CC) -c $(CFLAGS) -o $@ $<

12. Compile and run: gmake clean and gmake at the iRODS top level

8.4 iRODS FUSE User Level File System

FUSE (Filesystem in Userspace) is a free Unix kernel module that allows non-privileged users to
create their own file systems without editing the kernel code. This is achieved by running the file
system code in user space, while the FUSE module only provides a "bridge" to the actual kernel
interfaces.

The iRODS FUSE implementation allows normal users to access data stored in iRODS using
standard UNIX commands (ls, cp, etc) and system calls (open, read, write, etc).

Building iRODS FUSE:

a) Edit the config/config.mk file:
1. Uncomment the line:

IRODS_FS = 1
2. Set fuseHomeDir to the directory where the fuse library and include files

are installed. e.g.,
fuseHomeDir=/usr/local/fuse

b) Making iRODS Fuse:
Type in:

 cd clients/fuse
 gmake

Running irods Fuse:
1. cd clients/fuse/bin
2. make a local directory for mounting. e.g.,

mkdir /usr/tmp/fmount
3. Set up the iRODS client env (~/irods/.irodsEnv) so that iCommands will work. Type

in:
iinit

 and do the normal login.
4. Mount the home collection to the local directory by typing in:

./irodsFs/usr/tmp/fmount
5. The user's home collection is now mounted. The iRODS files and sub-collections in

the user's home collection should be accessible with normal UNIX commands
through the /usr/tmp/fmount directory.

8.5 Mounted iRODS Collection

The -m option of the imcoll command can be used to associate (mount) an iRODS collection with
a a physical directory (e.g.,a UNIX directory) or a structured file. If the mountType is 'f' or

 59

'filesystem', the first argument is the UNIX directory path to be mounted. Only the top level
collection/directory will be registered. The entire content of the registered directory can then be
accessed using iRods commands such as iput, iget, ils and the client APIs. This is simlilar to
mounting a UNIX file system except that a UNIX directory is mounted to an iRODS collection.
For example, the following command mounts the /temp/myDir UNIX directory to the
/tempZone/home/myUser/mymount collection:

 imcoll -m filesystem /temp/myDir /tempZone/home/myUser/mymount

An admin user will be able to mount any Unix directory. But for normal user, he/she needs to
have a UNIX account on the iRODS Server with the same name as his/her iRODS user account.
Only a UNIX directory created with this account can be mounted by the user. Access control to
the mounted data will be based on the access permission of the mounted collection.

If the mountType is 't' or 'tar', the first argument is the iRODS logical path of a tar file which will
be used as the 'structured file' for the mounted collection. The [-R resource] option is used to
specify the resource to create this tar structured file in case it does not already exist. Once the tar
structured file is mounted, the content of the tar file can be accessed using iRODS commands
such as iput ils, iget, and the client APIs. For example, the following command mounts the
iRODS tar file /tZone/home/myUser/tar/foo.tar to the /tZone/home/myUser/tarcoll collection:

 imcoll -m tar /tZone/home/myUser/tar/foo.tar /tZone/home/myUser/tardir

The tar structured file implementation uses a cache on the server to cache the mounted tar file.
i.e., the tar file is untarred to a cache on the server before any iRODS operation. The 'ils -L'
command can be use to list the properties of a mounted collection and the status of the associated
cache. For example, the following is the output of the ils command:

 C- /tZone/home/myUser/tardir tarStructFile /tZone/home/myUser/tar/foo.tar
/data/Vault8/rods/tar/foo.tar.cacheDir0;;;demoResc;;;1

The output shows that /tZone/home/myUser/tardir is a tar structured file mounted collection. The
iRODS path of the tar file is in /tZone/home/myUser/tar/foo.tar. The last item actually contains 3
items separated the string ;;;. It showed that the tar file is untarred into the
/data/Vault8/rods/tar/foo.tar.cacheDir0 directory in the demoResc resource. The value of '1' for
the last item showed that the cache content has been changed (dirty) and the original tar file needs
be synchronized with the changes. The -s option can be used to synchronize the tar file with the
cache. For example:

 imcoll -s /tZone/home/myUser/tardir

The -p option can be used to purge the cache. For example:

 imcoll -p /tZone/home/myUser/tardir

The -s and -p can be used together to synchronize the tar file and then purge the cache. If the
mountType is 'h' or 'haaw', the first argument is the logical path of a haaw type structured file
developed by UK eScience.

NOTE: the haaw type structured file has NOT yet been implemented in iRODS.

 60

The -U option can be used to unmount an iRODS collection. For example, the following
command unmounts the /tempZone/home/myUser/mymount collection:

 imcoll -U /tempZone/home/myUser/mymount

8.5.1 Building libtar and linking the iRODS servers with libtar

The tar structured file implementation requires linking the servers with the libtar library and the
procedures are given below.

1. Download the Free BSD libtar software from:
http://www.feep.net/libtar/
http://www.freebsdsoftware.org/devel/libtar.html

2. Make the libtar software

1. Edit the config/config.mk files by uncommenting the line:
TAR_STRUCT_FILE=1

2. Set the parameter tarDir to your libtar path. e.g.,
tarDir=/data/libtar-1.2.11

3. cd to the top iRods directory and type in "make clean; make".

It is recommended that the libtar software be installed in the same parent directory as iRODS and
PostgreSQL installation.

Also note that the current version of libtar 1.2.11 does not support tar file sizes larger than 2
GBytes. We have made a mod to libtar 1.2.11 so that it can handle files larger than 2 GBytes.
This mod is only needed for building the irods server software. Please contact
all@diceresearch.org for this mod.

8.6 Developer's Corner

Since Micro-services are being built by partners, it would be helpful to know what is available
and what is in the works. Also, if one has a wish list of Micro-services, then they may be coded
by someone else who has a similar interest. To help in this regard, we have created a wiki page
with these details. One can find this page at the Developers Corner on the iRODS wiki at
http://irods.diceresearch.org

9 Example Rules

Rules that have been written into a file can be executed through the irule command:

irule –vF Rulename.ir

The irule command has the following input parameters as listed by the help package:

Usage : irule [--test] [-F inputFile] [ruleBody inputParam outParamDesc]

Submit a user defined rule to be executed by an irods server. The command requires 3 inputs:

1. ruleBody - This is the body of the rule to be executed.

 61

2. inputParam - The input parameters. The input values for the rule are specified here. If
there is no input, a string containing "null" must be specified.

3. outParamDesc - Description of the set of output parmeters to be returned. If there is no
output, a string containing "null" must be specified.

The format of the ruleBody follows the specification given section 4.3. The workflow-chain
which is the third part of the rule body, is a sequence of Micro-services/rules to be executed by
this rule. The Micro-services/rules in the sequence are separated by the '##' separator.

The input can be specified through the command line or in a file using the -F option. The
inputFile should contain 3 lines, one for each input. An example of the input is given in the file:

 clients/icommands/test/ruleInp1

Options are:

-test enable test mode so that the Micro-services are not executed, instead a loopback is
 performed
-F inputFile - read the file for the input
-v verbose
-h this help

If an inputParam is preceded by the symbol “$”, the irule command prompts for a new value for
the attribute value.

Many types of Rules can be created that automate an administrative task, or that validate an
assessment criteria, or that enforce an administrative policy. For each example Rule, we describe
the construction of the Rule, the Micro-services that are used to compose the Rule, and the results
from application of the Rule. We provide text that shows how the Rule can be invoked from the
command line using the irule unix command.

We organize the example Rules into six classes:

1. File manipulation
2. System testing
3. User interaction
4. Rule manipulation
5. Resource setting
6. French National Library example

In rest of this section, the Rules are pretty-printed as in the Rulegen language (*.r). The original
Rules can be found in their respective *.ir files in the clients/icommands/test directory in the
iRODS release. Since none of the Micro-services have recovery equivalents, they are ignored in
the pretty printing.

 62

9.1 File Manipulation Rules

9.1.1 Rule 1: listColl.ir - Lists All Files in a Collection.
 The “listColl.ir” Rule queries the iCAT Metadata Catalog and retrieves a list of files that
satisfy a specified “Condition”. An “ActionName” specifies the operation that is performed upon
the files as they are added to the list. Each file that is manipulated is printed to “stdout”, followed
by the printing of a separator line.

The file called listColl.ir contains the body of the Rule and a specification of the input
parameters:

myTestRule (*ActionName, *Condition) {
 acGetIcatResults(*ActionName, *Condition, *B)
 forEach (*B) {
 msiPrintKeyValPair(stdout,*B)
 writeLine(stdout,*K)
 }
}
*ActionName=$list
*Condition=$COLL_NAME = '/tempZone/home/rods/loopTest'
*K=---------------------

The “listColl.ir” Rule invokes the Micro-services:

1. acGetIcatResults - this is a Rule which, given an “ActionName” and an SQL “Condition”
returns a table of values. In this case:

 “ActionName”: is the “list” command
 “Condition”: limits application to a specific Collection name,
 COLL_NAME = '/tempZone/home/rods/loopTest'
 (other conditions can be specified)

2. msiPrintKeyValPair – is a Micro-Service that prints a row in a table as a set of key-value
pairs to ‘stdout’.

3. writeLine – is a Micro-Service that writes a given string buffer to ‘stdout’. In this Rule
the “writeLine” Micro-Service prints a separator line (made of dashes).

4. forEachExec – is a Micro-Service that takes a table (or list of strings, or %-separated
string list), and for each item in the list, executes the corresponding body of the for-loop.
The first parameter specifies the variable that has the list (the same variable name is used
in the body of the loop to denote an item of the list!). The second parameter is the body
given as a sequence of Micro-Services, and the third parameter is the recoveryBody for
recovery from failures.

The two Micro-Services are executed in a loop “forEachExec” which iterates over the values in
the list, which is returned in the variable “*B”. For every row in the table returned by
acGetIcatResults, the two Micro-Services are executed.

The listColl.ir Rule prints out the ActionName and Condition values to stdout.

 63

9.1.2 Rule 2: showicatchksumColl.ir - Lists the Checksum of All Files in a Collection
The Rule chains one Rule for accessing the list of files and one Micro-Service, to obtain the
checksum of the file from iCAT, and three other Micro-Services to pretty-print the results.

1. acGetIcatResults - is a Rule which, given an “ActionName” and an SQL
“Condition” returns a table of values. In this case:

“ActionName”: is the “chksum” command
“Condition”: COLL_NAME = '/tempZone/home/rods/loopTest'

 (this can be any other condition)
2. msiDataObjChksum – is a Micro-Service which calculates the checksum for a

file and stores it in iCAT when the Operation parameter is set to ChksumAll.
3. msiGetValByKey – is a Micro-Service which, given a ‘row’ in a table and an

attribute-name, gets the value for that attribute. It is called twice, first to get the
DATA_NAME and then to get COLL_NAME.

4. writeLine – is a Micro-Service that can write a given string buffer to ‘stdout’. In
this Rule, this Micro-Service is used to print the checksum of the file in sentence
form.

The Micro-Services are executed in a loop “forEachExec”, such that they are executed for every
row in the table returned by acGetIcatResults.

myTestRule {
 acGetIcatResults(*ActionName, *Condition, *B)
 foreach (*B) {
 msiDataObjChksum(*B,*Operation,*C)
 msiGetValByKey(*B,DATA_NAME,*D)
 msiGetValByKey(*B,COLL_NAME,*E)
 writeLine(stdout,CheckSum of *E/*D is *C)
 }
}

*ActionName=chksum
*Condition=$ COLL_NAME = '/tempZone/home/rods/loopTest'
*Operation= ChksumAll

The Rule prints out the ActionName, Condition, and Operation values, as well as the
stdout.

 64

9.1.3 Rule 3: verifychksumColl.ir- Verifies the Checksum of All Files in a Collection
Verification check to make sure that the file has not been corrupted since the last checksum was
computed (similar to showicatchksumColl.ir).

The Rule chains one Rule for accessing the list of files and one Micro-service to check whether
the file’s checksum is valid, and three other Micro-services to pretty-print the results.

1. acGetIcatResults - is a Rule which, given a “ActionName” and a SQL
“Condition” returns a table of values. In this case:

“ActionName”: chksum
“Condition”: COLL_NAME = '/tempZone/home/rods/loopTest'

 (this can be any other condition)
2. msiDataObjChksum – is a Micro-service which verifies the checksum of the

physical file when the Operation parameter is set to verifyChksum.
3. msiGetValByKey – is a Micro-service that, given a ‘row’ in a table and an

attribute-name, gets the value for that attribute. It is called twice, first to get
DATA_NAME and then to get COLL_NAME.

4. writeLine – is a Micro-service writes a given string buffer to ‘stdout’. In this
Rule this Micro-service is used to print the checksum of the file in sentence form.

The Micro-services are executed in a loop “forEachExec”, such that they are executed for every
row in the table returned by acGetIcatResults.

myTestRule {
 acGetIcatResults(*ActionName, *Condition, *B)
 foreach (*B) {
 msiDataObjChksum(*B,*Operation,*C)
 msiGetValByKey(*B,DATA_NAME,*D)
 msiGetValByKey(*B,COLL_NAME,*E)
 writeLine(stdout,CheckSum of *E/*D is *C)
 }
}

*ActionName=chksum
*Condition=$ COLL_NAME = '/tempZone/home/rods/loopTest'
*Operation= verifyChksum

The Rule prints out the ActionName, Condition, and Operation values, as well as the stdout.

 65

9.1.4 Rule 4: forcchksumColl.ir - Recompute the Checksum of All Files in a Collection
Used to reset checksums. Recomputes the checksum of all files in a given Collection, and
registers them in the iCAT Metadata Catalog (similar to showicatchksumColl.ir). The Rule
chains one Rule for accessing the list of files and one Micro-service to compute a valid checksum
and register it in the iCAT, and three other Micro-services to pretty-print the results.

1. acGetIcatResults - is a Rule which, given an a “ActionName” and a SQL
“Condition” returns a table of values. In this case:

“ActionName”: chksum
“Condition”: COLL_NAME = '/tempZone/home/rods/loopTest'
 (this can be any other condition)

2. msiDataObjChksum – is a Micro-service which computes the checksum of the
physical file when the Operation parameter is set to forceChksum.

3. msiGetValByKey – is a Micro-service that, given a ‘row’ in a table and an
attribute-name, gets the value for that attribute. It is called twice, first to get
DATA_NAME and then to get COLL_NAME.

4. writeLine – is a Micro-service that can write a given string buffer to ‘stdout’. In
this Rule the Micro-service is used to print the checksum of the file in sentence
form.

The Micro-services are executed in a loop “forEachExec”, such that they are executed for every
row in the table returned by acGetIcatResults.

myTestRule {
 acGetIcatResults(*ActionName, *Condition, *B)
 foreach (*B) {
 msiDataObjChksum(*B,*Operation,*C)
 msiGetValByKey(*B,DATA_NAME,*D)
 msiGetValByKey(*B,COLL_NAME,*E)
 writeLine(stdout,CheckSum of *E/*D is *C)
 }
}

*ActionName=chksum
*Condition=$ COLL_NAME = '/tempZone/home/rods/loopTest'
*Operation= forceChksum

The Rule prints out the ActionName, Condition, and Operation values, as well as the stdout.
As a side-effect, the checksum is computed for each file and registered in the iCAT Metadata
Catalog.

 66

9.1.5 Rule 5: copyColl.ir – Copies Files from Source to Destination Collections
Makes a copy of each file from a source collection to a destination collection. The new physical
copy is stored in a specified storage resource. The Rule chains one Rule for accessing the list of
files and one Micro-service to make the copy, and other Micro-services to pretty-print the results.

1. acGetIcatResults - is a Rule which, given a “ActionName” and a SQL “Condition”
returns a table of values. In this case:

“ActionName”: copy
“Condition”: COLL_NAME = '/tempZone/home/rods/loopTest'

 (this can be any other condition)
2. msiDataObjCopy – is a Micro-service which copies a file from one logical (source)

collection to another logical (destination) collection that is physically located in the
input *Resource. *CC is the status of the copy operation.

3. msiGetValByKey – is a Micro-service that, given a ‘row’ in a table and an attribute-
name, gets the value for that attribute. It is called twice, first to get DATA_NAME
and then to get COLL_NAME.

4. writeLine – is a Micro-service that can write a given string buffer to ‘stdout’. In this
Rule the Micro-service is used to print the checksum of the file in sentence form.

The Micro-services are executed in a loop “forEachExec”, such that they are executed for every
row in the table returned by acGetIcatResults.

myTestRule {
 acGetIcatResults(*ActionName, *Condition, *B)
 foreach (*B) {
 msiGetValByKey(*B,DATA_NAME,*D)
 msiDataObjCopy(*B, *DestColl/*D, *Resource, *CC)

msiGetValByKey(*B,COLL_NAME,*E)
 writeLine(stdout,CheckSum of *E/*D is *C)
 }
}

*ActionName=$repl
*Condition=$ COLL_NAME = '/tempZone/home/rods/loopTest'

The Rule prints out the ActionName and Condition values, as well as the stdout.
As a side-effect, the files are copied into a new collection with separate physical copies.
The iCAT Metadata Catalog is modified accordingly.

 67

9.1.6 Rule 6: replColl.ir - Make a Replica of Each File in a Collection.
Makes a replica of each file in the named collection. The physical copy is stored in a storage
resource. The Rule chains one Rule for accessing the list of files and one Micro-service to make
the copy, which is executed in a loop (one for each file in the list).

1. acGetIcatResults - is a Rule which, given a “ActionName” and a SQL “Condition”
returns a table of values. In this case:

“ActionName”: replicate
“Condition”: COLL_NAME = '/tempZone/home/rods/loopTest'
 (this can be any other condition)

2. msiDataObjRepl – is a Micro-service which replicates a file in a Collection (it
assigns a different replica number to the new copy in the iCAT Metadata Catalog).
The replica is physically stored in the ‘tgReplResc’ Resource. *Junk contains the
status of the operation. In the Rule, the resource is provided as part of the call instead
of as an input through a *parameter.

The Micro-Services are executed in a loop “forEachExec”, such that they are executed for every
row in the table returned by acGetIcatResults.

myTestRule {
 acGetIcatResults(*ActionName, *Condition, *B)
 foreach (*B) {
 msiDataObjRepl(*B, tgReplResc, *Junk)
 }
}

*ActionName=repl
*Condition=$ COLL_NAME = '/tempZone/home/rods/loopTest'

The Rule prints out the ActionName and Condition values, as well as the stdout.
As a side-effect, every file is replicated in the same Collection, with a separate physical copy. The
iCAT Metadata Catalog is updated accordingly.

 68

9.1.7 Rule 7: trim Coll.ir - Trims the Number of Replicas of a File
Used to delete replicas of a file. The Rule will do nothing if the number of replicas is less than or
equal to a specified number given by ‘numCopies’. One can specify which replica is preferable
for deletion (by defining a ‘replNum’) and also specify a given resource whose copy is preferred
for deletion. If a resource is specified, only copies on that resource, if any, are deleted.

The Rule chains one Rule for accessing the list of files and one Micro-service to make the copy
which is executed in a loop (once for each file in the list).

1. acGetIcatResults - is a Rule which, given an“ActionName” and an SQL “Condition”
returns a table of values. In this case:

“ActionName”: replicate
“Condition”: COLL_NAME = '/tempZone/home/rods/loopTest'

(this can be any other condition)
2. msiDataObjTrim– is a Micro-service that trims a file replica. The file is specified by

the first parameter. The replica to be deleted is specified by the resource and
replNumber parameters. In the call below, the preferred resource is given as
‘tgReplResc’. The second parameter gives the preferred resource from which to
delete the replica. The third parameter in the Micro-service defines the preferred
replica to be deleted. The fourth parameter specifies the minimum number of copies
to be retained. Here it is ‘1’, so that at least one copy remains after the trim operation,
even if it is a preferred replica number or is located in a preferred resource for
deletion. The fifth parameter is useful when performed by an iRODS administrator,
and the final parameter is the operation status return.

The Micro-Services are executed in a loop “forEachExec”, such that they are executed for every
row in the table returned by acGetIcatResults.

myTestRule {
 acGetIcatResults(*ActionName, *Condition, *B)
 foreach (*B) {
 msiDataObjTrim(*B,tgReplResc,null,1,null,*C)
 }
}

*ActionName=trim
*Condition=$ COLL_NAME = '/tempZone/home/rods/loopTest'

The Rule prints out the ActionName and Condition values, as well as the stdout.
As a side-effect, the specified file replicas are deleted. The iCAT Metadata Catalog is modified
accordingly.

 69

9.2 User Interaction Rules

9.2.1 Rule 8: sendMailColl.ir - Send e-mail to a Specified e-mail Address.
The Rule is written as a variation of showicatchksumColl.ir, which prints out the checksum of all
files in a given Collection. In sendMailColl.ir the results are also sent as an e-mail. The Rule gets
a list of files using acGetIcatResults, and then calculates the checksum of each file using the
msiDataObjChksum Micro-service, and pretty-prints it to stdout using writeLine. The checksum
access and pretty-printing are done in a for-loop for each file in the list. After this loop is
completed, the sendStdoutAsEmail Micro-service is invoked to send the e-mail.

1. sendStdoutAsEmail – is a Micro-service which given a sendTo parameter (an e-mail
address) and a subjectLine parameter, sends out the stdout buffer as the body of the
e-mail. In this case the subject Line is ‘Checksum Results’.

The other Micro-Services are defined and used as in the showicatchksumColl.ir Rule; see section
9.1.2.

myTestRule {
 acGetIcatResults(*ActionName, *Condition, *B)
 foreach (*B) {
 msiDataObjChksum(*B,*Operation,*C)
 msiGetValByKey(*B,DATA_NAME,*D)
 msiGetValByKey(*B,COLL_NAME,*E)
 writeLine(stdout,CheckSum of *E/*D is *C)
 }
 sendStdoutAsEmail(*MailTo,Checksum Results)
}

*ActionName=chksum
*Condition=$ COLL_NAME = '/tempZone/home/rods/loopTest'
*Operation= ChksumAll
*MailTo=sekar@sdsc.edu

The Rule prints out the ActionName, Condition, and Operation values, as well as the stdout. As a
side-effect, an e-mail is sent.

 70

9.2.2 Rule 9: periodicChksumCollColl.ir - Periodically Verify Checksum of Files
Verifies that files have not been corrupted since the last checksum was computed, and sends the
results as an e-mail.

 The Rule is written as a variation of the verifychksumColl.ir, and sendMailColl.ir Rules;
verifychksumColl.ir verifies the checksum of all files in a given Collection and sendMailColl.ir
sends the results as an e-mail. The main modification is that the sendMailColl.ir rule-body (with
verify instead of show checksum) is executed inside another system Micro-service called
delayExec. delayExec queues a given sequence of Micro-services into the queue of the iRODS
batch-server, which periodically checks the time and fires the Rule when appropriate. The
parameter for delay can be set such that the execution can be done periodically at set intervals.

1. delayExec – is a Micro-service that takes the delayCondition as the first parameter,
the Micro-service/rule chain that needs to be executed as the second parameter, and
the recovery-Micro-service chain as the third parameter. The delayCondition is given
as a tagged condition. In this case, there are two conditions that are specified.

<PLUSET>1m</PLUSET> : execute the first time after 1 minute.
<EF>5m</EF> : repeating frequency is every five minutes.

The other Micro-services are defined and used as in the verifychksumColl.ir, and sendMailColl.ir
Rules.

myTestRule {
 delayExec(<PLUSET>1m</PLUSET><EF>5m</EF>) {
 acGetIcatResults(*ActionName, *Condition, *B)
 foreach (*B) {
 msiDataObjChksum(*B,*Operation,*C)
 msiGetValByKey(*B,DATA_NAME,*D)
 msiGetValByKey(*B,COLL_NAME,*E)
 writeLine(stdout,CheckSum of *E/*D is *C)
 }
 sendStdoutAsEmail(*MailTo,Checksum Results)
 }
}

*ActionName=chksum
*Condition=$ COLL_NAME = '/tempZone/home/rods/loopTest'
*Operation= verifyChksum
*MailTo=sekar@sdsc.edu

The Rule prints out the ActionName, Condition, and Operation values, as well as the stdout. As a
side-effect, an e-mail is sent at specified periodic intervals.

 71

9.2.3 Rule 10: purgeCollAndEmail.ir – Remove Expired Files
Removes files that have expired (current time greater than the time defined by the
DATA_EXPIRY parameter in the iCAT Metadata Catalog) and sends the results as an e-mail.
The Rule can be easily converted into a periodic Rule. The Rule makes a call to another Rule
named acPurgeFiles, which purges all files whose expiration Time is less than the current time,
and whose condition matches the given condition. The call also writes to the stdout buffer the
names of the files that have been purged. The sendStdoutAsEmail Micro-service call sends the
stdout as an e-mail.

1. acPurgeFiles – is a Rule that takes a Condition as a parameter. All files matching that
condition and whose expiration time (as given by the iCAT attribute
DATA_EXPIRY) is before the current clock time, are deleted. The Rule is very
similar to the Rule in copyColl.ir, but makes use of the msiDataObjUnlink Micro-
service to perform the deletion and write a message to stdout.

2. sendStdoutAsEmail – is a Micro-service which given a sendTo parameter (an e-mail
address) and a subjectLine parameter, sends the stdout buffer as the body of the e-
mail. In this case the subject Line is ‘Purge Results’.

myTestRule {
 acPurgeFiles(*Condition)
 sendStdoutAsEmail(*MailTo, Purge Results)
}

*Condition=$ COLL_NAME = '/tempZone/home/rods/loopTest'
*MailTo=sekar@sdsc.edu

The Rule prints out the Condition values as well as the stdout.
As a side-effect files are purged and an e-mail is sent. iCAT is modified accordingly.

 72

9.3 Rule Manipulation

9.3.1 Rule 11: showCore.ir - Print the Rules Being Used by the Rule Engine.
The Rule invokes a Micro-Service to pretty-print the Rules being used by the data grid:

1. msiAdmShowIRB - is a Micro-service that reads the data structure in the Rule
Engine, which holds the current set of Rules, and pretty-prints that structure to the
stdout buffer. The Micro-service has a dummy parameter!

myTestRule {
 msiAdmShowIRB(*A)
}

No input necessary.

 73

9.3.2 Rule 12: chgCoreToCore1.ir - Change the Rules in the core.irb File
Changes the Rules in the core.irb file using the content of a given input file name. The input file
should be in the server/config/reConfigs directory. The Rule invokes a Micro-service to perform
this change.

1. |msiAdmAppendToTopOfCoreIRB - is a Micro-service that copies the given file in
the configuration directory ‘server/config/reConfigs’ onto the core.irb file in the same
directory. The next time a new client-server session is started the newly copied set of
Rules will take effect. Note that the core.irb is overwritten and all previous content is
lost.

myTestRule {
 msiAdmChangeCoreIRB(*A)
}

 *A=core.irb.1

The value of *A is printed.

NOTE: The following two Rules:

chgCoreToCore2.ir has *A=core.irb.2
 chgCoreToCore3.ir has *A=core.irb.3

and are similar to chgCoreToCore1.ir, except for the input parameter value.

 74

9.3.3 Rule 13: chgCoreToOrig.ir – Change to the Rules in the core.irb.orig File
Changes the core Rules in the core.irb file in the directory server/config/reConfigs back to that of
the core.irb.orig file in the same directory. The Rule invokes a Micro-service to perform this
change.

1. msiAdmChangeCoreIRB - is a Micro-service that copies the specified file in the
configuration directory ‘server/config/reConfigs’ onto the core.irb file in the same
directory. The result is that the next time a new client-server session is started, the
new set of Rules will take effect. Note that the core.irb is overwritten and all previous
content is lost.

myTestRule {
 msiAdmChangeCoreIRB(*A)
}

 *A=core.irb.orig

 The value of *A is printed.

 75

9.3.4 Rule 25: ruleTest17.ir – Prepend Rules and Logical Name Mappings
From files in the server/config/reConfigs directory, additional Rules, function map names, and
variable map names are pre-pended to the already existing structures in the Rule Engine.
 The Rule invokes a Micro-service to perform this addition.

1. msiAdmAddAppRuleStruct - is a Micro-service that reads the given file in the
configuration directory ‘server/config/reConfigs’ and adds them to the Rule list being
used by the Rule Engine. These Rules are loaded at the beginning of the core.irb file, and
hence can be used to override the core Rules from the core.irb file.

This Micro-service is different from the Micro-service msiAdmChangeCoreIRB seen in
Rule 12, chgCoreToCore1.ir. There are two reasons: first, this Micro-service can be used
to pre-pend a new Micro-service name mapping file (*.fnm, defined in the second
argument) and a new variable name mapping file (*.dvm, defined in the third argument)
to the top of the mapping, thus effectively overriding some of them. The second
difference is that the changes made are not permanent. They exist until another change at
the end of the client-server session. In contrast, the chgCoreToCore1.ir Micro-Service
changes the content of the core.irb file, and hence is permanent and is loaded when the
next client-server session is started.

In this Rule, the core file name is ‘core1’ (the .irb extension is not needed), which is
given as the first parameter of the msiAdmAddAppRuleStruct Micro-service. The other
two parameters of the Micro-service are left as null strings in this case. The Micro-
service msiAdmShowIRB is used to show the content of the Rule structure. Remember
that msiAdmShowIRB uses a dummy argument. Hence *A and *C do not need to be set.

myTestRule {
 msiAdmShowIRB(*A)
 msiAdmAddAppRuleStruct(*B,,)
 msiAdmShowIRB(*C)
}

 *B=core.irb.1

The rules in the core.irb file are printed before and after the update.

 76

9.3.5 Rule 26: ruleTest18.ir – Pre-pend Rules and Logical Name Mappings
This Rule pre-pends (not changes!) Rules, function map names, and variable map names from
files in the server/config/reConfigs directory to the already existing structures in the Rule Engine.
See section 9.24 for more information on the msiAdmAddAppRuleStruct Micro-Service that is
used.

This Rule invokes one Micro-service to perform the addition and another to print the data-value-
mapping, before and after the addition. The data-value-mapping is used to provide logical names
to the values in the whiteboard (REI structure). For example, when one uses userNameClient (e.g.
in ruleTest16.ir), it points to a particular leaf value in the complex REI structure: rei->uoic-
>userName.

1. msiAdmShowDVM is a Micro-service that reads the data-value-mapping data
structure in the Rule Engine and pretty-prints that structure to the stdout buffer. The
Micro-Service uses a dummy parameter!

.
In this Rule, all three structures – Rules, data-value-mappings, and function-name mappings – are
changed.

myTestRule {
 msiAdmShowDVM(*A)
 msiAdmAddAppRuleStruct(*B,*B,*B)
 msiAdmShowDVM(*C)
}

 *B=core.irb.1

The values of *A, *B and *C and stdout are printed. The files that are added are core.irb.1,
core.dvm, and core.fnm.

 77

9.3.6 Rule 27: ruleTest19.ir – Appends Rules and logical name mappings.
This Rule appends (not changes!) the Rules, function map names, and variable map names from
files in the server/config/reConfigs directory to the already existing structures in the Rule Engine.
See ruleTest17.ir for more information on the msiAdmAddAppRuleStruct Micro-service that is
used.

 The Rule invokes a Micro-service to perform this addition and another to print the function-
name-mapping before and after the addition. The function-name-mapping is used to map from
logical names of Micro-services to internal function names that are compiled in the server code.
For example, in core.fnm there is a mapping from the name openObj to the name
msiDataObjOpen. Hence, if one writes a Rule using openObj (using the same parametric
sequence), then internally the C function msiDataObjOpen would be invoked. This way one can
use a logical name for a Micro-service and lazily map it at run time to a physical function name.
The msiAdmAddAppRuleStruct provides a means for doing this on the fly.

1. msiAdmShowFNM is a Micro-service that reads the function-name-mapping data
structure in the Rule Engine and pretty-prints that structure to the stdout buffer. The
Micro-Service has a dummy parameter!

.
In this Rule, all three structures – Rules, data-value-mappings, and function-name mappings – are
changed.

myTestRule {
 msiAdmShowFNM(*A)
 msiAdmAddAppRuleStruct(*B,*B,*B)
 msiAdmShowFNM(*C)
}

 *B=core.irb.1

The values of *A, *B and *C and stdout are printed. The entries in the function name mapping
structure are printed before and after the update.

 78

9.3.7 Rule 14: replCollDelayed.ir - Make a Replica of Each File in a Collection
Makes a replica of each file into the same Collection, but at a later point in time. The body of the
Rule is quite different from that of replColl.ir, which uses a forEachExec Micro-service to create
individual file replicas. In this case, a new Micro-service is used to perform Collection-level
replication.

1. msiReplColl – is a Micro-service that replicates a Collection (giving a different
replica number to each newly replicated file). In this case the replica is physically
stored in the ‘demoResc2’ Resource, which is given as the second parameter of the
Micro-service. The third parameter is a string that provides information about the
type of replication being made; the value for this parameter can be an empty string, in
which case all files are replicated, or it can be ‘backupMode’ in which case, if a good
copy already exists in the destination resource, the Rule will not perform a
replication. The fourth parameter outputs the status of the operation.

The Micro-service is executed in a delayExec mode with a 1 minute delay. See Rule 9,
periodicChksumCollColl.ir for more information on delayExec Micro-Service.

myTestRule {
 delayExec(<PLUSET>1m</PLUSET>) {
 msiReplColl(*desc_coll,*desc_resc, backupMode, *outbuf)
 }
}

*desc_coll=/tempZone/home/rods/repl_test
*desc_resc=demoResc2

The Rule prints out the stdout. As a side-effect, the files are replicated in the same Collection
with separate physical copies. iCAT is modified accordingly.

 79

9.4 System Testing

9.4.1 Rule 16: ruleTest1.ir, ruleTest2.ir, ruleTest3.ir – Tests Parametric Variable
Three versions of the rule exist, labeled ruleTest1.ir, ruleTest2.ir, and ruleTest3.ir. The Rule
assigns the result of evaluating a conditional expression to a parametric variable (*-variable).

1. Assign - is a system Micro-service. The value of the second parameter is assigned to
the first parameter, after an evaluation is performed, if needed.

The conditional expression in this Rule checks whether the iRODS client user name is equivalent
to the string expression r*s (* is a wild card string character). So, for example, if the user is rods,
it will evaluate to 1. If there is no string expression match, then 0 is assigned.

myTestRule {
 assign(*A, $userNameClient like r*s)
}

The Rule prints out the value of *A.

NOTE: The following two Rules show variations of assignment testing:

ruleTest2.ir: assigns *A to the result of the conditional expression

“$userNameClient like r*w”

 myTestRule {
 assign(*A, $userNameClient like r*w)
 }

ruleTest3.ir: assigns *A to the result of adding two numbers, 200 and 300:

 myTestRule {
 assign(*A, 200 + 300)
 }

 80

9.4.2 Rule 17: ruleTest4.ir, ruleTest5.ir, ruleTest6.ir, ruleTest7.ir -- Tests $-variable
Assign values to a Whiteboard Variable (REI or Rule Execution Infrastructure variable), or a $-
variable.

 The Rule shows assignment to whiteboard (REI) variables ($-variable).

1. Assign - is a system Micro-service. The value of the second parameter is
assigned to the first parameter, after any evaluation is performed, if needed.

ruleTest4.ir: tests assignment to string $-variable
This Rule first assigns *A to the value of $rodsZoneClient (client’s Zone name), then assigns
$rodsZoneClient to $userNameClient (client’s user name), and lastly assigns *B to the current
value in $rodsZoneClient. The test will be correct if *A prints the client’s zone name, and *B
prints the client’s user name.

 myTestRule {
 assign(*A,$rodsZoneClient)
 assign($rodsZoneClient,$userNameClient)
 assign(*B,$rodsZoneClient)

 }

ruleTest5.ir: tests assignment to numeric $-variables.
This Rule first assigns *A to the value of $sysUidClient (client’s iRODS id), then assigns the
valuation of 200+300 to $sysUidClient, and lastly assigns *B to the current value in
$sysUidClient. The test will be correct if *A is 0, *C and *B are 500.

 myTestRule {
 assign(*A,$sysUidClient)
 assign(*C, 200 + 300)
 assign($sysUidClient, 200 + 300)
 assign(*B,$sysUidClient)

 }
ruleTest6.ir: tests assignment to numeric $-variables.
This Rule is the same as ruleTest5.ir, but takes the values of assignment from a parametric
variable instead of a string.

 myTestRule {
 assign(*A,$sysUidClient)
 assign(*C, *D)
 assign($sysUidClient, *D)
 assign(*B,$sysUidClient)

 }
ruleTest7.ir: tests assignment to both parametric and whiteboard variables.

 81

9.4.3 Rule 18: ruleTest8.ir -- Tests “while” Loop Execution.
The Rule initializes a value to a while loop variable, and then executes a while Micro-service.

1. whileExec – is a Micro-service that executes a while loop. The first argument is a
condition that will be checked on each loop iteration. The second argument is the
body of the while loop, given as a sequence of Micro-services, and the third
argument is the recoveryBody for recovery from failures.

The initial assignment of 0 is made to the loop variable *A and is incremented by 4 every time
the loop is executed. In this example the loop terminates when *A is greater than or equal to 20.

The Rule executes correctly if the value of *A is 20 when printed.

myTestRule {
 assign(*A,0)
 while (*A < 20) {
 assign(*A, *A + 4)
 }
}

No input is needed, even though some are given in this example.

The Rule prints out the *A value as well as the stdout (among others).

 82

9.4.4 Rule 19: ruleTest9.ir -- Tests “for” Loop Execution.
 The Rule executes a “for loop” using the forExec Micro-service and prints a sequence.

1. forExec – is a Micro-service that executes a for loop. The first argument is an
assignment to a loop-variable. The second argument is a condition check before
executing the “for loop”, and the third argument is an assignment statement that
increments (or decrements) the loop variable. The loop variable can be a string
with string conditional checking. The fourth argument is the body of the “for
loop”, given as a sequence of Micro-services, and the fifth argument is the
recoveryBody for recovery from failures.

The initial assignment of 0 is made to the loop variable *A and is incremented by 4 every time
the loop is executed. The loop prints to stdout the value of *A, followed by a line break. The loop
terminates when *A is greater that or equal to *D which is an input parameter set to (199 * 2) +
200.

The Rule executes correctly if the value of stdout prints a sequence 4, 8, 12,..., 596, each number
in a separate line.

myTestRule {
 for (assign(*A,0), *A < *D , assign(*A,*A + 4)) {
 writeLine(stdout,*A)
 }
}

*A=1000
*D= (199 * 2) + 200

The Rule prints out the *A and *D values as well as the stdout (among others).

 83

9.4.5 Rule 20: ruleTest10.ir -- Tests “if-then-else” Execution.
 The Rule executes an “if-then-else” conditional test using the ifExec Micro-service.

1. ifExec – is a Micro-service that executes an if-then-else statement. The first
argument is a conditional check. If the check is successful (TRUE), the Micro-
service sequence in the second argument will be executed. If the check fails, then
the Micro-service sequence in the fourth argument will be executed. The third
argument is the recoveryBody for recovery from failures for the then-part, and
the sixth argument is the recoveryBody for recovery from failures for the else-
part.

The Rule prints sets both *A and *D to the lower of the two values.

myTestRule {
 if (*A < *D)
 then assign(*A,*D)
 else assign (*D,*A)
}

*A=1000
*D= (199 * 2) + 200

The Rule prints out the *A and *D values as well as stdout (among others).

 84

9.4.6 Rule 21: ruleTest11.ir, ruleTest12.ir -- Tests Writing to stdout and stderr Buffers.
 The Rule executes a writeString Micro-service. In the white board (REI structure), there is a
structure (called ruleExecOut that is part of the msParamArray) for emulating writing to stdout
and stderr buffers. These buffers are part of REI and are not actually written to the screen or
console immediately. This structure provides a means to buffer output string messages from the
Micro-services. When irule completes execution of the Rule, the buffers can be printed out to the
screen. This printing is accomplished by adding ruleExecOut as an output argument to the
ruleTest11.ir file. The ruleExecOut structure is passed along for every Micro-Service execution
(including remote and delayed executions), and hence can provide serial capture of messages
across multiple Micro-Service invocations.

1. writeString – is a Micro-service that writes to a stderr or stdout buffer in the
ruleExecOut structure. The first argument is the buffer name (stderr and stdout are
the two buffers currently supported). The second argument is the string to be written
to the buffer.

myTestRule {
 writeString(stdout,alpha beta gamma)
 writeString(stdout,alpha beta gamma)
 writeString(stderr,Error:blah)
}

The Rule writes the same string twice to stdout and another string to stderr.
These will be printed out to screen.
There is NO need for any input.
The Rule prints out the stdout and stderr values (among others).

NOTE: ruleTest12.ir is similar to ruleTest11.ir, but uses the writeLine Micro-service.

myTestRule {
 writeLine(stdout,alpha beta gamma)
 writeLine(stdout,alpha beta gamma)
 writeLine(stderr,Error:blah)
}

The Rule writes the same string twice to stdout and another string to stderr.
These will be printed out to screen.
There is NO need for any input.
The Rule prints out the stdout and stderr values (among others).

 85

9.4.7 Rule 22: ruleTest13.ir -- Test Sending e-mail.
The Rule executes the msiSendMail Micro-Service to send e-mail.

1. msiSendMail – is a Micro-service which sends e-mail using the mail command in the
unix system. The first argument is the e-mail address of the receiver. The second
argument is the subject string and the third argument is the body of the e-mail No
attachments are supported. The sender of the e-mail is the unix uxr-id running the
irodsServer.

myTestRule {
 msiSendMail(sekar@sdsc.edu,irods test,mail sent by an msi.did you get this)
}

There is NO need for any input or output.
The side effect of the Rule is that an e-mail sent to the specified recipient.

 86

9.4.8 Rule 23: ruleTest14.ir -- Tests “for each” Loop for Comma-separated List
The Rule executes a loop using the forEachExec Micro-service, based on a list of items given to
the Micro-service.

1. forEachExec – is a Micro-service that executes a loop for every item in a list given as
the first argument. The list can be a comma-separated string (STR_MS_T), array of
strings (StrArray_MS_T), array of integers (IntArray_MS_T), or iCAT query result
(GenQueryOut_MS_T). The second argument is the body of the forEach loop, given
as a sequence of Micro-services, and the third argument is the recoveryBody for
recovery from failures.

The Rule takes a comma-separated string and prints every item in that list.

myTestRule {
 forEach (*A) {
 writeLine(stdout,*A)
 }
}

*A= 123,345,567,aa,bb,678

The Rule prints out the stdout (among others).

 87

9.4.9 Rule 24: ruleTest15-16.ir -- Tests “for each” Loop Execution on a Query Result
The Rule executes a loop using the forEachExec Micro-service based on a table of rows.

1. forEachExec – is a Micro-service that executes a loop for very item in a list given as
the first argument. The list can be a comma-separated string (STR_MS_T), array of
strings (StrArray_MS_T), array of integers (IntArray_MS_T), or iCAT query result
(GenQueryOut_MS_T). The second argument is the body of the forEach loop, given
as a sequence of Micro-services, and the third argument is the recoveryBody for
recovery from failures.

2. msiExecStrCondQuery – is a Micro-service which, given an iCAT query, executes it
and returns the list in a tabular row structure (GenQueryOut_MS_T).

3. msiPrintKeyValPair – is a Micro-service that takes a row-structure from
GenQueryOut_MS_T and prints it as a ColumnName=Value pair.

The Rule uses the result (tabular) from execution of a iCAT query. The Micro-service
msiExecStrCondQuery is used to run the query:

SELECT DATA_NAME, DATA_REPL_NUM, DATA_CHECKSUM WHERE
DATA_NAME
LIKE ‘foo%’.

The result is printed using the msiPrintKeyValPair Micro-service, which prints each row as an
attribute-value pair. A separator line is printed after each row.

myTestRule {
 |msiExecStrCondQuery(*A 'foo%' ,*B)
 forEach (*B) {
 msiPrintKeyValPair(stdout,*B)
 writeLine(stdout,*K)
 }
}
*A=SELECT DATA_NAME , DATA_REPL_NUM, DATA_CHECKSUM WHERE

DATA_NAME LIKE
*K=----------------------

The Rule prints out the query and the stdout (among others).

NOTE: ruleTest16.ir is similar, but generates the table using the acGetIcatResults Micro-service.

myTestRule {
 | acGetIcatResults(*Action,*Condition,*B)
 forEach (*B) {
 msiPrintKeyValPair(stdout,*B)
 writeLine(stdout,*K)
 }
}
*Action=trim
*Condition= COLL_NAME = '/tempZone/home/rods'
*K=---------------------

 88

9.4.10 Rule 28: ruleTest20.ir -- Tests Remote Execution of Micro-service Writes.
 The Rule invokes the remoteExec to execute a given sequence of Micro-services remotely.

1. remoteExec - is a Micro-service that executes a Micro-service chain remotely on
another iRODS Server. The first argument is the remote server’s network id; the
second argument is the sequence of Micro-services to be remotely executed; and the
third argument is the recoveryBody for recovery from failures.

In this Rule, the original Rule is invoked on srbbrick14.sdsc.edu, which in turn calls remote
executions at another server (andal.sdsc.edu) and remote calls to itself.

myTestRule {
 writeLine(stdout,begin)
 writeLine(stdout,just write in srbbrick1)
 remoteExec(andal.sdsc.edu,null) {
 writeLine(stdout,remote write in andal)
 }
 remoteExec(andal.sdsc.edu,null) {
 writeLine(stdout,remote write again in andal)
 }
 remoteExec(srbbrick14.sdsc.edu,null) {
 writeLine(stdout,remote write in srbbrick1)
 }
 remoteExec(andal.sdsc.edu,null) {
 writeLine(stdout,remote write again and again in andal)
 }
 remoteExec(srbbrick14.sdsc.edu,null) {
 writeLine(stdout,again remote write in srbbrick1)
 }
 remoteExec(andal.sdsc.edu,null) {
 writeLine(stdout,remote write third in andal)
 }
 remoteExec(srbbrick14.sdsc.edu,null) {
 writeLine(stdout,second remote write in srbbrick1)
 }
 remoteExec(srbbrick14.sdsc.edu,null) {
 writeLine(stdout,third remote write in srbbrick1)
 }
 writeLine(stdout,again just write in srbbrick1)
 writeLine(stdout,end)
}

No input is needed
The stdout is printed.

 89

9.4.11 Rule 29: ruleTest21.ir -- Tests Remote Execution of Delayed Writes.
 The Rule invokes the remoteExec Micro-service to execute a given sequence of Micro-Services
remotely.

1. remoteExec - is a Micro-service that executes a Micro-service chain remotely on
another iRODS server. The first argument is the remote server’s network id; the
second argument is the sequence of Micro-services to be remotely executed; and
the third argument is the recoveryBody for recovery from failures.

In this Rule the original Rule is invoked on srbbrick14.sdsc.edu and a line is printed to that effect;
then, a remote execution is invoked on a server called andal.sdsc.edu, which after sleeping for 10
seconds and writing a message, calls a remote execution back on srbbrick14.sdsc.edu, which,
after sleeping for 10 seconds and writing a message, returns back to andal.sdsc.edu. At
andal.sdsc.edu the execution again calls for a remote execution at srbbrick14.sdsc.edu, which
immediately executes a remote execution at andal.sdsc.edu, which sleeps and writes a message.
Control then reverts back to srbbrick14.sdsc.edu, which in turn gives it to andal.sdsc.edu, which
sleeps and writes one more message before returning back to the original invocation at
srbbrick14.sdsc.edu, which prints an end message.

myTestRule {
 writeLine(stdout,begin)
 remoteExec(andal.sdsc.edu,null) {
 msiSleep(10,0)
 writeLine(stdout,open remote write in andal)
 remoteExec(srbbrick14.sdsc.edu,null) {
 msiSleep(10,0)
 writeLine(stdout,remote of a remote write in srbbrick1)
 }
 remoteExec(srbbrick14.sdsc.edu,null) {
 remoteExec(andal.sdsc.edu,null) {
 msiSleep(10,0)
 writeLine(stdout,remote of a remote of a remote write in andal)
 }
 }
 msiSleep(10,0)

writeLine(stdout,close remote write in andal)
 }
 writeLine(stdout,end)
 }

No input is needed
The stdout is printed.

 90

9.5 Resource Selection Example
In the server/config/reConfigs/core.irb file there is a Rule called "acSetRescSchemeForCreate"
which is used for setting the resource preferences. By default, this Rule is set to:

acSetRescSchemeForCreate||msiSetDefaultResc(demoResc,null)|nop

which basically sets 'demoResc' as a default resource if no resource is specified.
This Rule can be modified to randomly select a storage resource from a group of resources as
follows:
 acSetRescSchemeForCreate||msiSetDefaultResc(demoResc,null)##
 msiSetRescSortScheme(random)
 |nop##nop
(all of above in one line - no line breaks)

Adding the "msiSetRescSortScheme" to the Rule executes a random pick of one of the resource.
If you want everyone to use your resource by force, you can change the first Micro-service in the
Rule to:
 msiSetDefaultResc(my_group,forced)

This will over-ride the resource given by the client.

The good thing abut Micro-services is that if you don’t like the random sorting given by the
default Micro-service, you can write your own and use that in the "acSetRescSchemeForCreate"
Rule and achieve your goal.

As you can see there are no conditions being checked; "||" is used in the above Rule for the
condition. You can add Rules to the core.irb file with different conditions (you need at least one
catch all Rule, as the default in case no conditions are satisfired) which might use different
resource sets and different selection criteria as you prefer with conditions based on collection
basis or on user/group basis or both!!

This level of customization provides an in depth control of resource management that can make
life easier or harder for the data manager

 91

9.6 French National Library Rule Base

Three rules were constructed to control ingestion of documents, retrieving a file, and auditing
properties of the digital library.

9.6.1 PUT Use Case
This Rule imports an input document into iRODS, adds import date and checksum as AVU
(Attribute-Value-Unit triplet) metadata, and replicates it to other resources, the list of which
should be stored as a comma-separated list as resource metadata, named replicaResources.

myiput||assign(*rodsPath,/$rodsZoneClient/home/$userNameClient/*rodsName)
##acObjPutWithDateAndChksumAsAVUs(*rodsPath,*mainResource,

*localFilePath,*inputChecksum,*outstatus)
##acGetValueForResourceMetaAttribute(*replicasAttributeCondition,*replList)
##ifExec(*replList != none,

delayExec(<PLUSET>1m</PLUSET>,
forEachExec(*replList,writeLine(stdout,"replicating to *replList ...")

##msiDataObjRepl(*rodsPath,*replList,*replStatus),nop),
nop),nop,nop,nop)

|nop##nop##nop

*localFilePath=$1%*mainResource=$2%*rodsName=$3%*inputChecksum=$4%*replicasAttrib
uteCondition= RESC_NAME = '*mainResource' AND META_RESC_ATTR_NAME =
'replicaResources'
RuleExecOut

Import document Rule. This Rule imports an input document into iRODS, adds import date and
checksum as AVU metadata, and replicates it to other resources, the list of which should be
stored as a comma-separated list:

resource metadata, named replicaResources.

Input parameters :
 localFilePath - String - Import file's current location (outside iRODS)
 mainResource - String - iRODS resource name to write to for first put

 (probably a cache resource)
 rodsName - String - iRODS content name (path will be derived from

 context for zone & username)
 inputChecksum - String - input checksum of imported content

Invocation example

iRule -F sparPut.ir foo/titi3 oscresc 9c24fde7b0a0c6e5f3b5490cb9841597

 92

9.6.2 GET use case
This Rule locates a copy of the record. If its physical checksum (computed externally using
msiExecCmd and the OS's md5sum utility) corresponds to the stored checksum (AVU), said copy
is returned. If it doesn't, asynchronous recovery (delete the replica, and copy a good one over it,
haven't tried rsync microservices yet) is scheduled using delayExec, and the next copy is checked
until a good one is located and staged onto a local directory.

sparGet||assign(*goodReplicaEncountered,0)
##assign(*rodsPath,/$rodsZoneClient/home/$userNameClient/*rodsName)
##acGetValueForDataObjMetaAttribute(*storedChecksumCondition,*objStoredChksum)
##acGetDataObjLocations(*locationsCondition,*matchingObjects)
##forEachExec(*matchingObjects,

ifExec(*goodReplicaEncountered == 0,
msiGetValByKey(*matchingObjects,RESC_LOC,
*objReplicaHost)

##msiGetValByKey(*matchingObjects,DATA_PATH,*objPhysicalPath)
##msiGetValByKey(*matchingObjects,RESC_NAME,*currRescName)
##writeLine(stdout,"getting PHY CHK for *objReplicaHost ,*objPhysicalPath")
##remoteExec(*objReplicaHost,null,

acGetPhysicalDataObjMD5SUM(*objPhysicalPath,
*objReplicaHost ,
*objPhysicalMD5),nop)

##writeLine(stdout,"Checksum of *rodsPath at *objReplicaHost on *currRescName
(*objPhysicalPath) is *objPhysicalMD5")
##ifExec(*objStoredChksum == *objPhysicalMD5,

writeLine(stdout,"input and computed MD5 checksums match")
##assign(*goodReplicaEncountered,1)
##writeLine(stdout,"getting *rodsName to *stagePath/*rodsName")
##msiDataObjGet(*rodsPath,*stagePath/*rodsName,*getStatus),

writeLine(stdout,"if cond failed"),
writeLine(stdout,"replace policy is : *replacePolicy ")

##acPolicyBasedReplicaReplacement(*rodsPath,*currRescName,*replacePolicy),nop),
nop,nop,nop),nop)
|nop##nop
*rodsName=$1%*stagePath=$2%*replacePolicy='lazy'%*locationsCondition=DATA_NAME =
'*rodsName'%*storedChecksumCondition=*locationsCondition AND
META_DATA_ATTR_NAME = 'MD5SUM'
RuleExecOut

Get data object. This Rule locates a copy of the record. If its physical checksum corresponds to
the stored checksum, said copy is returned. If it doesn't, asynchronous recovery (delete the
replica, and copy a good one over it) is scheduled, and the next copy is checked until a good one
is located and returned.

Input parameters :
 rodsName - String - iRODS content name (path will be derived from context

 for zone & username)
 stagePath - String - FS directory where a clean copy will be transferred

 93

Invocation example

rm /tmp/stage/* ; iRule -F sparGet.ir titi2 /tmp/stage

9.6.3 AUDIT use case

Audit data object. This Rule locates all replicas of a data object, computes a physical checksum
using system's md5sum, compares the result to the checksum stored in user metadata. All stale
copies are trimmed (i.e. removed), and then replicated from another good copy. When all copies
are audited and/or repaired, a clean copy will be staged onto a specified FS directory

That way, we are sure to get a good copy in return, and schedule reparation of the others either
synchronously or asynchronously (for now, we need to have at least one good copy for this to
work).

sparAudit||assign(*rodsPath,/$rodsZoneClient/home/$userNameClient/*rodsName)
##acGetValueForDataObjMetaAttribute(*storedChecksumCondition,*objStoredChksum)
##acGetDataObjLocations(*locationsCondition,*matchingObjects)
##forEachExec(*matchingObjects,msiGetValByKey(*matchingObjects,RESC_LOC,

*objReplicaHost)
##msiGetValByKey(*matchingObjects,DATA_PATH,*objPhysicalPath)
##msiGetValByKey(*matchingObjects,RESC_NAME,*currRescName)
##remoteExec(*objReplicaHost,null,acGetPhysicalDataObjMD5SUM(*objPhysicalPath,

*objReplicaHost ,*objPhysicalMD5),nop)
##writeLine(stdout,"Checksum of *rodsPath at *objReplicaHost on *currRescName
(*objPhysicalPath) is *objPhysicalMD5")
##ifExec(*objStoredChksum == *objPhysicalMD5,

writeLine(stdout,"input and computed MD5 checksums match"),
writeLine(stdout,"if recov - actual comparison failed :("),
writeLine(stdout,"replace policy is : *replacePolicy ")

##acPolicyBasedReplicaReplacement(*rodsPath,*currRescName,*replacePolicy),
writeLine(stdout,"repair schedule placeholder - recovery")),nop)

##writeLine(stdout,"getting *rodsName to *stagePath/*rodsName")
##msiDataObjGet(*rodsPath,*stagePath/*rodsName,*getStatus)|nop##nop
*rodsName=$1%*stagePath=$2%*replacePolicy='eager'%*locationsCondition=DATA_NAME
= '*rodsName'%*storedChecksumCondition=*locationsCondition AND
META_DATA_ATTR_NAME = 'MD5SUM'
RuleExecOut

Audit data object. This Rule locates all replicas of a data object, computes a physical checksum
using system's md5sum, compares the result to the checksum stored in user metadata. All stale
copies are trimmed (i.e. removed), and then replicated from another good copy. When all copies
are audited and/or repaired, a clean copy will be staged onto a specified FS directory

resource metadata, named replicaResources.
Input parameters :
 rodsName - String - iRODS content name (path will be derived from context for

 zone & username)
 stagePath - String - FS directory where a clean copy will be transferred

 94

Invocation example

rm /tmp/stage/titi3 ; iRule -F sparAudit.ir titi3 /tmp/stage

9.6.4 Utilities

The Rules above rely on a "utility" spar.irb Rule definitions:

This file is a library of utility Micro-services. Each one is a combination of existing Micro-
services. These utilities are useful to increase code reuse, and reduce the size of the actual Rules
using them. It must be linked or copied into the server/config/reConfigs directory, and referenced
in the server/config/server.config file, like this :

reRuleSet core,spar

acAddMetadataFromString : Adds metadata to an iRODS Object, from a keyval string (i.e. :

KEY=VALUE)
Input parameters :
 rodsPath - String - iRODS content path
 KVString - String - keyval string
 objType - String - object type, can be -d for data object, -R for resource,

 -C for collection, or -u for user

acAddMetadataFromString(*rodsPath,*KVString,*objType)||

msiString2KeyValPair(*KVString,*KVPair)
##msiAssociateKeyValuePairsToObj(*KVPair,*rodsPath,*objType)

acObjPutWithDateAndChksumAsAVUs : imports (puts) an object into the iRODS repository,

 computes MD5 checksum and validates it against
 the supplied one. Once validated, adds MD5SUM
 and import date as metadata. If invalid, content is
 removed from iRODS.

Input parameters :
 rodsPath - String - iRODS content path
 resource - String - resource in which content must be added
 localFilePath - String - input file path on filesystem
 inputChecksum - String - input checksum, for now MD5

acObjPutWithDateAndChksumAsAVUs(*rodsPath,*resource,*localFilePath,

*inputChecksum, *outstatus)||
msiDataObjPut(*rodsPath,*resource,*localFilePath,*outstatus)
##msiDataObjChksum(*rodsPath,null,*objChecksum)
##writeLine(stdout,"Input Checksum is *inputChecksum")
##writeLine(stdout,"Computed Checksum is *objChecksum")
##ifExec(*objChecksum == *inputChecksum,

writeLine(stdout,input and computed checksums match)
##msiGetSystemTime(*humanDate,human)
##acAddMetadataFromString(*rodsPath,MD5SUM=*objChecksum,-d)
##acAddMetadataFromString(*rodsPath,importDate=*humanDate,-d),

 95

writeLine(stdout,"if effed up"),
writeLine(stdout,"integrity failure:checksums do not match. removing content...")

##msiDataObjUnlink(*rodsPath,*deleteStatus)
##writeLine(stdout,"content cleaned up"),

writeLine(stdout,"could not delete content after integrity failure"))|nop

acGetValueForObjectAttribute : returns the value of an iRODS object metadata attribute
Input parameters :
 rodsAttribute - String - attribute which value should be retrieved

 (@see /lib/core/include/rodsGenQueryNames.h)
 attributeCondition - String - semi-SQL WHERE statement

 (such as RESC_NAME = foo AND
 META_RESC_ATTR_NAME = 'bar'}

Output parameters :
 attributeValue - String - the attribute value

acGetValueForObjectAttribute(*rodsAttribute,*attributeCondition,*attributeValue)||
msiMakeQuery(*rodsAttribute,*attributeCondition,*attributeQuery)
##msiExecStrCondQuery(*attributeQuery,*queryResults)
##forEachExec(*queryResults,

msiGetValByKey(*queryResults,*rodsAttribute,*attributeValue),nop)

acGetValueForResourceMetaAttribute : wrapper around acGetValueForObjectAttribute

prepared to retrieve a metadata attribute for a resource
Input parameters :
 attributeCondition - String - semi-SQL WHERE statement (such as RESC_NAME

= foo AND META_RESC_ATTR_NAME = 'bar'
Output parameters :
 attributeValue - String - the attribute value

acGetValueForResourceMetaAttribute(*attributeCondition,*attributeValue)||
acGetValueForObjectAttribute("META_RESC_ATTR_VALUE",

*attributeCondition,*attributeValue)

acGetValueForDataObjMetaAttribute : wrapper around acGetValueForObjectAttribute

prepared to retrieve
Input parameters :
 attributeCondition - String - semi-SQL WHERE statement (such as RESC_NAME

= foo AND META_RESC_ATTR_NAME = 'bar'
Output parameters :
 attributeValue - String - the attribute value

acGetValueForDataObjMetaAttribute(*attributeCondition,*attributeValue)||
acGetValueForObjectAttribute("META_DATA_ATTR_VALUE",

*attributeCondition,*attributeValue)

 96

acGetResourceZoneName : get the input resource's belonging zone name
Input parameters :
 resourceCondition - String - semi-SQL WHERE statement to identify the resource

(such as RESC_NAME = 'foo')
Output parameters :
 zoneName - String - the zone name

acGetResourceZoneName(*resourceCondition,*zoneName)||
acGetValueForObjectAttribute("RESC_ZONE_NAME",*resourceCondition,*zoneName)

acGetDataObjLocations : get ICAT results regarding location info for a record (name, physical

 path,collection, resource, host)
Input parameters :
 locCondition - String - semi-SQL WHERE statement to identify the object

 (such as DATA_NAME = 'foo'). Note : the object name (filename), not
 the full iRODS path must be supplied.

Output parameters :
 locationsResult - String - ICAT packaged query results

acGetDataObjLocations(*locCondition,*locationsResult)||
msiMakeQuery("DATA_REPL_NUM,DATA_NAME,DATA_PATH,

COLL_NAME,RESC_NAME,RESC_LOC",
*locCondition,*locationsQuery)

##msiExecStrCondQuery(*locationsQuery, *locationsResult)|nop##nop

acGetPhysicalDataObjMD5SUM : executes the OS's (g)md5sum utility on the physical content

 and returns the MD5 checksum
Input parameters :
 physicalPath - String - filesystem path where the object is stored
Output parameters :
 physicalMD5 - String - the physical MD5 computed by the OS

acGetPhysicalDataObjMD5SUM(*physicalPath,*rodsHost,*physicalMD5)||
msiExecCmd(rodsMD5sum,*physicalPath,*rodsHost,null,null,*physicalMD5)|nop

acGetRandomString : executes rndString script and returns a pseudo random string of specified
length using /dev/urandom.
Input parameters :
 strLength - String - desired string length
Output parameters :
 string - String - the random string

acGetRandomString(*strLength,*string)||
msiExecCmd(rndString,*strLength,*rodsHost,null,null,*string)|nop

 97

acReplaceStaleReplica : trims (delete) a stale replica (wrong checksum encountered), and
 replicates over it from another fresh copy

Input parameters :
 rodsPath - String - iRODS content path
 rescName - String - resource in which content must be added

acReplaceStaleReplica(*rodsPath,*rescName,*replStatus)||
msiDataObjTrim(*rodsPath,*rescName,null,1,null,*trimStatus)
##msiDataObjRepl(*rodsPath,*rescName,*replStatus)|nop

acPolicyBasedReplicaReplacement : stale replica replacement can be either eager , or not (lazy)
 - eager means the replacement will be done synchronously (immediately),
 - lazy means the replacement will be done asynchronously (delayed , 1 minute by default)
Input parameters :
 rodsPath - String - iRODS content path
 rescName - String - resource in which content must be added
 policy - String - eager or lazy, see description above

acPolicyBasedReplicaReplacement(*rodsPath,*resc,*policy)||
ifExec(*policy == 'eager',

acReplaceStaleReplica(*rodsPath,*resc,*replStatus),nop,
delayExec(<PLUSET>1m</PLUSET>,
acReplaceStaleReplica(*rodsPath,*resc,*replStatus),nop),nop)

9.6.5 External Scripts
Some of the utility Micro-services above rely on external scripts which are invoked using the
msiExecCmd. For example, the acGetPhysicalDataObjMD5SUM Micro-service computes the
replica's physical MD5SUM using the OS's GNU md5sum utility.
 * referenced rodsMD5SUM script :

#!/bin/bash
computes MD5 sum of given file.
$1 : file path

E_BADARGS=65
E_NOFILE=66
UNAME="`uname -s`"
if [$# -ne 1]
then
 exit $E_BADARGS
fi
if [-f $1]; then
 if ["${UNAME}" = "Linux"]; then
 echo -n `md5sum $1 | sed -e 's/ .*//g'`
 elif ["${UNAME}" = "SunOS"]; then
 echo -n `gmd5sum $1 | gsed -e 's/ .*//g'`
 fi
 exit 0
else
 exit $E_NOFILE
fi

 98

Appendix A. iRODS shell commands

The i-commands available in release 2.0 of iRODS are listed below, organized by type. The few
parameters the i-commands need to operate (for connection to a server) can be set as user
environment variables, or specified on the command line. There is a common set of command
line options for the i-commands, so that each option (-a, -b, -c, etc) will mean the same thing
(generally) in all of them. 'iinit' writes an automatic login file (scrambled password) for you in
any window on your computer (actually, any computer with your same home directory),
otherwise i-commands will prompt for your password. The options available for an i-command
can be found by using the help option “-h”. For example:

zuri% iinit –h
Creates a file containing your iRODS password in a scrambled form,
to be used automatically by the icommands.
Usage: iinit [-ehvVl]
 -e echo the password as you enter it (normally there is no echo)
 -l list the iRODS environment variables (only)
 -v verbose
 -V Very verbose
 -h this help

Environment Variables (example values are shown for each variable)
irodsHost=localhost The IP address of the metadata catalog server (iCAT).
irodsPort=1247 The port number used by the metadata catalog.
irodsDefResource=MzResc The logical name of the default storage resource.
irodsHome=/Mzone/home/Mzrods The user home collection within the Data Grid.
irodsCwd=/Mzone/home/Mzrods The current working collection within the Data Grid.
irodsUserName=Mzrods The user name known by the Data Grid.
irodsZone=Mzone The name of the Data Grid.

User and File Manipulation i-commands
• iinit Initialize - Store your password in a scrambled form for automatic use by other

i-commands.
• iput Store a file
• iget Get a file
• imkdir Like mkdir, make an iRODS collection (similar to a directory or Windows

folder)
• ichmod Like chmod, allow (or later restrict) access to your data objects by other users.
• icp Like cp or rcp, copy an iRODS data object
• irm Like rm, remove an iRODS data object
• ils Like ls, list iRODS data objects (files) and collections (directories)
• ipwd Like pwd, print the iRODS current working directory
• icd Like cd, change the iRODS current working directory
• irepl Replicate data objects.
• iexit Logout (use 'iexit full' to remove your scrambled password from the disk)
• ipasswd Change your irods password.
• ichksum Checksum one or more data-object or collection from iRODS space.
• imv Moves/renames an irods data-object or collection.
• iphymv Physically move files in iRODS to another storage resource.
• ireg Register a file or a directory of files and subdirectory into iRODS.
• irmtrash Remove one or more data-object or collection from a RODS trash bin.

 99

• irsync Synchronize the data between a local copy and the copy stored in iRODS or
between two iRODS copies.

• itrim Trim down the number of replica of a file in iRODS by deleting some replicas.
• iexecmd Remotely Execute (fork and exec) a command on the server.
• imcoll Manage (mount, unmount, synchronize and purge of cache) a mounted iRODS

collection and the associated cache.
• ibun Upload and download structured (e.g. tar) files.

Metadata i-commands
• imeta Add, remove, list, or query user-defined Attribute-Value-Unit triplets metadata
• isysmeta Show or modify system metadata
• iquest Query (pose a question to) the ICAT, via a SQL-like interface

Informational i-commands
• ienv Show current iRODS environment
• ilsresc List resources
• iuserinfo List users
• imiscsvrinfo Get basic server information; test communication.

Administration i-commands
• iadmin Administration commands: add/remove/modify users, resources, etc.

Rules and Delayed Rule Execution i-commands
• iRule Submit a user defined Rule to be executed by an irods server.
• iqstat Show pending iRODS Rule executions.
• iqdel Removes delayed Rules from the queue.
• iqmod Modifies delayed Rules in the queue.

As an example of the icommands, we list the help package for the iquest command. For each
icommand, invoking the –h parameter will display the input parameters and provide usage
examples.

Usage : iquest [[hint] format] selectConditionString

format is C format restricted to character strings. selectConditionString is of the form: SELECT
<attribute> [, <attribute>]* [WHERE <condition> [AND <condition>]*] attribute can be found
using iattrs command condition is of the form: <attribute> <rel-op> <value> rel-op is a relational
operator: eg. =, <>, >,<, like, not like, between, etc., value is either a constant or a wild-carded
expression. One can also use a few aggregation operatos such as sum,count,min,max and avg.
Use % and _ as wild-cards, and use \ to escape them Options are:

-h this help

Examples:

iquest "SELECT DATA_NAME, DATA_CHECKSUM WHERE DATA_RESC_NAME like
'demo%'"

iquest "For %-12.12s size is %s" "SELECT DATA_NAME , DATA_SIZE WHERE
COLL_NAME = '/tempZone/home/rods'"

 100

iquest "SELECT COLL_NAME WHERE COLL_NAME like '/tempZone/home/%'"

iquest "User %-6.6s has %-5.5s access to file %s" "SELECT USER_NAME,
DATA_ACCESS_NAME, DATA_NAME WHERE COLL_NAME = '/tempZone/home/rods'"

iquest " %-5.5s access has been given to user %-6.6s for the file %s" "SELECT
DATA_ACCESS_NAME, USER_NAME, DATA_NAME WHERE COLL_NAME =
'/tempZone/home/rods'"

iquest "SELECT RESC_NAME, RESC_LOC, RESC_VAULT_PATH, DATA_PATH WHERE
DATA_NAME = 't2' AND COLL_NAME = '/tempZone/home/rods'"

iquest "User %-9.9s uses %14.14s bytes in %8.8s files in '%s'" "SELECT USER_NAME,
sum(DATA_SIZE),count(DATA_NAME),RESC_NAME"

iquest "select sum(DATA_SIZE) where COLL_NAME = '/tempZone/home/rods'"

iquest "select sum(DATA_SIZE) where COLL_NAME like '/tempZone/home/rods%'"

iquest "select sum(DATA_SIZE), RESC_NAME where COLL_NAME like
'/tempZone/home/rods%'"

 101

Appendix B. iRODS Session Variable Mapping

The Data Variable Mapping defined in the core.dvm file located in the server/config/reConfig
directory provides a mapping from an external variable name (logical) to an internal variable
name in the Session Memory $. Each mapping consists of three parts separated by “|” symbol:

external variable name, action-list, and internal variable name

The action-list can be empty. If not, then the specified mapping is used when an action that
invokes this mapping is in the list. The mappings are searched top-down in a file. We list the
contents of the core.dvm file in Table 1. The variable names that can be used for conditions and
as input parameters on Micro-services are listed in column 1. Note that one of the $ variables
(rescName) is used by a specific action (resc_modify) and is stored in a separate structure within
the rei memory structure. The meaning of most of the variables is transparent. More detailed
explanations are given in the code using the variables.

Table 1. Mapping of External $ variables to Internal $ variable names in the REI structure

External $ variable Action Internal $ variable in REI structure
otherUser rei->uoio->user
otherUserName rei->uoio->userName
otherUserZone rei->uoio->rodsZone
otherUserType rei->uoio->userType
otherSysUidClient rei->uoio->sysUid
rescName resc_modify rei->rgi->rescInfo->rescName
objPath rei->doi->objPath
rescName rei->doi->rescName
destRescName rei->doi->destRescName
backupRescName rei->doi->backupRescName
dataType rei->doi->dataType
dataSize rei->doi->dataSize
chksum rei->doi->chksum
version rei->doi->version
filePath rei->doi->filePath
replNum rei->doi->replNum
replStatus rei->doi->replStatus
dataOwner rei->doi->dataOwnerName
dataOwnerZone rei->doi->dataOwnerZone
dataExpiry rei->doi-dataExpiry
dataComments rei->doi->dataComments
dataCreate rei->doi-dataCreate
dataModify rei->doi-dataModify
dataAccess rei->doi->dataAccess
dataAccessInx rei->doi->dataAccessInx
dataId rei->doi->dataId
collId rei->doi->collId
rescGroupName rei->doi->rescGroupName
statusString rei->doi->statusString
dataMapId rei->doi->dataMapId

 102

userClient rei->uoic
userNameClient rei->uoic->userName
rodsZoneClient rei->uoic->rodsZone
userTypeClient rei->uoic->userType
sysUidClient rei->uoic->sysUid
hostClient rei->uoic->authInfo->host
authStrClient rei->uoic->authInfo->authStr
userAuthSchemeClient rei->uoic->authInfo->authScheme
userInfoClient rei->uoic->userOtherInfo->userInfo
userCommentClient rei->uoic->userOtherInfo->userComments
userCreateClient rei->uoic-userOtherInfo->userCreate
userModifyClient rei->uoic-userOtherInfo->userModify
userProxy rei->uoip
userNameProxy rei->uoip->userName
rodsZoneProxy rei->uoip->rodsZone
userTypeProxy rei->uoip->userType
sysUidProxy rei->uoip->sysUid
hostProxy rei->uoip->authInfo->host
authStrProxy rei->uoip->authInfo->authStr
userAuthSchemeProxy rei->uoip->authInfo->authScheme
userInfoProxy rei->uoip->userOtherInfo->userInfo
userCommentProxy rei->uoip->userOtherInfo->userComments
userCreateProxy rei->uoip->userOtherInfo->userCreate
userModifyProxy rei->uoip->userOtherInfo->userModify
collName rei->coi->collName
collParentName rei->coi->collParentName
collOwnername rei->coi->collOwnerName
collExpiry rei->coi-collExpiry
collComments rei->coi->collComments
collCreate rei->coi-collCreate
collModify rei->coi-collModify
collAccess rei->coi->collAccess
collAccessInx rei->coi->collAccessInx
collMapId rei->coi->collMapId
collInheritance rei->coi->collInheritance
zoneName rei->rgi->rescInfo->zoneName
rescLoc rei->rgi->rescInfo->rescLoc
rescType rei->rgi->rescInfo->rescType
rescTypeInx rei->rgi->rescInfo->rescTypeInx
rescClass rei->rgi->rescInfo->rescClass
rescClassInx rei->rgi->rescInfo->rescClassInx
rescVaultPath rei->rgi->rescInfo->rescVaultPath
numOpenPorts rei->rgi->rescInfo->numOpenPorts
paraOpr rei->rgi->rescInfo->paraOpr
rescId rei->rgi->rescInfo->rescId
gateWayAddr rei->rgi->rescInfo->gateWayAddr
rescMaxObjSize rei->rgi->rescInfo->rescMaxObjSize

 103

freeSpace rei->rgi->rescInfo->freeSpace
freeSpaceTime rei->rgi->rescInfo->freeSpaceTime
freeSpaceTimeStamp rei->rgi->rescInfo->freeSpaceTimeStamp
rescInfo rei->rgi->rescInfo->rescInfo
rescComments rei->rgi->rescInfo->rescComments
rescCreate rei->rgi->rescInfo-rescCreate
rescModify rei->rgi->rescInfo-rescModify
connectCnt rei->rsComm->connectCnt
connectSock rei->rsComm->sock
connectOption rei->rsComm->option
connectStatus rei->rsComm->status
connectApiTnx rei->rsComm->apiInx
connectWindowSize rei->rsComm->windowSize
connectReconnFlag rei->rsComm->reconnFlag
connectReconnSock rei->rsComm->reconnSock
connectReconnPort rei->rsComm->reconnPort
connectReconnAddr rei->rsComm->reconnAddr
ConnectCookie rei->rsComm->cookie

 104

Append C: iRODS Micro-services
The Micro-services are organized into categories related to function:

• Administrative tasks
• Workflow controls
• Low-level Data Object manipulation (Posix style operations)
• Data Object manipulation tasks
• Collection manipulation tasks
• Proxy command tasks
• iCAT system services
• iCAT manipulation tasks
• Rule-oriented Database Access (RDA) tasks
• XMessaging system tasks
• E-mail tasks
• Metadata manipulation tasks
• User tasks
• System tasks
• ERA tasks (Electronic Records Archive)
• XML tasks
• HDF5 tasks
• Property manipulation tasks
• Web services
• BNL tasks (French National Library)

For each category, the corresponding Micro-services are listed, along with their input parameters,
output parameters, and status information. The input and output parameters have specific
required data types. Parameters passed between Micro-services, information sent over the
network between client and server, information sent over the network between servers, and
information stored in the msParam structure in memory are all typed. The instructions for packing
the parameters (serializing into a bit stream) can be found in the file
lib/core/include/rodsPackTable.h.

 1

Administration Micro-services
Meaning / Input
variable type Input variables used Output variables

msiAdmChangeCoreIRB change the core.irb file (can be invoked through iRule)
 Requires iRODS administration privilege

 STR_MS_T
newFileNameParam - new core file name without the .irb
extension retval - 0 on success

msiAdmAppendToTopOfCoreIRB prepend another irb file to the core.irb file
 Requires iRODS administration privilege

 STR_MS_T
newFileNameParam - prepended core file name without the .irb
extension retval - 0 on success

msiAdmAddAppRuleStruct add application level IRB Rules and DVM and FNM mappings to the Rule engine.
 Requires iRODS administration privilege

 STR_MS_T
irbFilesParam - application Rules file name without the .irb
extension

 STR_MS_T
application $-variable file name mapping without the .dvm
extension

 STR_MS_T
fnmFilesParam - pplication microService mapping file name
without the .fnm extension retval - 0 on success

msiAdmClearAppRuleStruct clear application level IRB Rules and DVM and FNM mappings that were loaded into the Rule engine.
 Requires iRODS administration privilege retval - 0 on success
msiAdmShowIRB display the currently loaded Rules
 retval - 0 on success

rei->MsParamArray->MsParam->
RuleExecOut->stdout

msiAdmShowDVM display the currently loaded variable name mappings
 retval - 0 on success

rei->MsParamArray->MsParam->
RuleExecOut->stdout

msiAdmShowFNM display the currently loaded microServices/Actions namemappings
 status - 0 on success

rei->MsParamArray->MsParam->
RuleExecOut->stdout

 2

Workflow Micro-
services
nop, null no action
 retval - 0 on success
cut not to retry any other applicable Rules for this action
 retval - 0 on success
succeed exit with success immediately
 retval - 0 on success
fail fail immediately, recovery and retries are possible
 retval - 0 on success
msiGoodFailure useful when you want to fail but have no recovery initiated.
 retval - 0 on success
msiSleep sleep
 sec - seconds to sleep
 microSec - micro-seconds to sleep retval - 0 on success
whileExec while loop
 STR_MS_T condition - logical expression (true or false)
 STR_MS_T whileBody - Micro-service/Rule list separated by ##

 STR_MS_T recoveryWhileBody - Micro-service/Rule list separated by ## retval - 0 on success
forExec for loop with initial, step and end condition

 STR_MS_T
initial - initial assignment for loop variable condition -
logical expression

 STR_MS_T step - increment of loop variable
 STR_MS_T forBody - Micro-service/Rule list separated by ##
 STR_MS_T recoveryForBody - Micro-service/Rule list retval - 0 on success
forEachExec for loop iterating over a row of tables or a list

STR_MS_T or StrArray_MS_T or
IntArray_MS_T or
GenQueryOut_MS_T

inlist - either comma separated string or array of strings or
array of integers or iCAT query result

 STR_MS_T body - Micro-service/Rule list separated by ##
 STR_MS_T recoveryBody - Micro-service/Rule list retval - 0 on success
break breaks out of while, for and forEach loops

 3

status -
BREAK_ACTION_ENCOUNTERED_ERR

writeString write a string to stdout buffer

 STR_MS_T where - buffer name (stdout or stderr)
rei->MsParamArray->MsParam->
RuleExecOut

 STR_MS_T inString - string to write to buffer retval - 0 on success
writeLine write a line (with end of line) to stdout buffer

 STR_MS_T where - buffer name (stdout or stderr)
rei->MsParamArray->MsParam->
RuleExecOut

 STR_MS_T inString - string to write to buffer retval - 0 on success
assign assign a value to a parameter
 STR_MS_T variable - msParam name or a $variable
 STR_MS_T value - expression to be computed retval - 0 on success
ifExec if then else conditional branch
 STR_MS_T condition: logical expression (true or false)
 STR_MS_T then - Micro-service/Rule list separated by ##
 STR_MS_T recoveryThen - Micro-service/Rule list
 STR_MS_T else - Micro-service/Rule list separated by ##
 STR_MS_T recoveryElse - Micro-service/Rule list separated by ## retval - 0 on success
delayExec delay an execution of Micro-services or Rules
 STR_MS_T delayCondition: condition for when to execute
 STR_MS_T body - Micro-service/Rule list separated by ##

 STR_MS_T recoveryBody - Micro-service/Rule list separted by ## retval - 0 on success
remoteExec remote execution of Micro-services or Rules
 STR_MS_T host - name of the server where the body is executed
 STR_MS_T delayCondition: condition for when to execute
 STR_MS_T body - Micro-service/Rule list separated by ##

 STR_MS_T recoveryBody - Micro-service/Rule list separted by ## retval - 0 on success
applyAllRules apply all applicable Rules when executing a given Rule
 STR_MS_T actionParam - the name of the action to execute

 STR_MS_T
reiSaveFlagParam - 0 don't save rei, 1 save rei structure at
every Rule invocation

 4

 STR_MS_T

allRuleExecFlagParam - 0 apply only to the actionParam
invocationn, 1 apply recursively at all levels of invocation for
every Rule inside the execution retval - 0 on success

Data Object Low-level
Micro-services Can be called by client through iRule
msiDataObjCreate create a data object

 DataObjInp_MS_T or STR_MS_T dataObjName - path name of data object retval - positive on success

 STR_MS_T rsrcName - option resource name
irodsObjDesc [INT_MS_T] - descriptor index for
the created object

msiDataObjOpen open a data object
 retval - positive on success

 DataObjInp_MS_T or STR_MS_T dataObjName - path name of data object
irodsObjDesc [INT_MS_T] - descriptor index for
the opened object

msiDataObjClose close an opened data object
 retval - 0 on success

 INT_MS_T or STR_MS_T
irodsObjDesc - descriptor index for the opened
object status [INT_MS_T] - positive on success

msiDataObjLseek lseek to a position within a data object

DataObjLseekInp_MS_T or
INT_MS_T or STR_MS_T

irodsObjDesc - descriptor index for the opened
object

 DOUBLE_MS_T or STR_MS_T offset - byte offset for the seek retval - positive on success

 INT_MS_T or STR_MS_T
whence - location of seek (SEEK_SET,
SEEK_CUR, SEEK_END)

status [DOUBLE_MS_T or
DataObjLseekOut_MS_T] - operation return status

msiDataObjRead read an opened data object

 5

DataObjReadInp_MS_T or INT_MS_T
or STR_MS_T

irodsObjDesc - descriptor index for the opened
object retval - positive on success

 INT_MS_T or STR_MS_T
length - length of buffer to read, optional if use
DataObjReadInp_MS_T buffer [BUF_LEN_MS_T] - bytes read

msiDataObjWrite write a data object

DataObjWriteInp_MS_T or
INT_MS_T or STR_MS_T

irodsObjDesc - descriptor index for the opened
object retval - positive on success

 INT_MS_T or STR_MS_T
length - length of buffer to write, optional if use
DataObjWriteInp_MS_T status [INT_MS_T] - bytes written

Data Object Micro-services Can be called by client through iRule
msiDataObjUnlink delete
 retval - 0 on success

DataObjInp_MS_T or
STR_MS_T dataObjName - path name of data object status [INT_MS_T] - status of the operation

msiDataObjRepl replicate

DataObjInp_MS_T or
STR_MS_T dataObjName - path name of data object retval - 0 on success

 STR_MS_T rsrcName - option resource name status [INT_MS_T] - status of the operation
msiDataObjCopy copy

DataObjInp_MS_T or
STR_MS_T dataObjName - path name ofsource data object

DataObjInp_MS_T or
STR_MS_T dataObjName - path name ofdestination data object retval - 0 on success

 STR_MS_T rsrcName - option resource name status [INT_MS_T] - status of the operation
msiDataObjGet get
 Use only with iRule. Do not use with delayExec

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path retval - 0 on success

 6

 STR_MS_T inpParam2 - optional client's local file path status [INT_MS_T] - status of the operation
msiDataObjPut put
 Use only with iRule. Do not use with delayExec

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path

 STR_MS_T inpParam2 - optional resource retval - 0 on success
 STR_MS_T inpParam3 - optional client's local file path status [INT_MS_T] - status of the operation
msiDataObjPutWithOptions put with options
 Use only from a client

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path

 STR_MS_T inpParam2 - optional resource
 STR_MS_T inpParam3 - optional client's local file path

 STR_MS_T
inpOverwriteParam - optional to overwrite content that
already exists retval - 0 on success

 STR_MS_T
inpAllCopiesParam - optional to force overwrite on all
existing copies status [INT_MS_T] - status of the operation

msiDataObjChksum checksum a data object
 Use only with iRule.

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path retval - 0 on success

 STR_MS_T
inpParam2 - optional flag (chksumAll, verifyChksum,
forceChksum) checksum [STR_MS_T]

msiDataObjPhymv move a data object from one resource to another
 Use onlywith iRule

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path

 STR_MS_T inpParam2 - optional destination resourceName
 STR_MS_T inpParam3 - optional source resourceName
 STR_MS_T inpParam4 - optional replNum retval - 0 on success

 STR_MS_T inpParam5 - optional to specify IRODS_ADMIN_KW status [INT_MS_T] - status of the operation
msiDataObjRename rename a data object
 Use only with iRule.

 7

DataObjInp_MS_T or
STR_MS_T inpParam1 - source dataObj path

DataObjInp_MS_T or
STR_MS_T inpParam2 - optional destination object Path retval - 0 on success

 INT_MS_T or
STR_MS_T

inpParam3 - optional data type (=0 means data object, >0
means collection) status [INT_MS_T] - status of the operation

msiDataObjTrim trim the number of replicas
 Use only with iRule.

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path

 STR_MS_T inpParam2 - optional resourceName
 STR_MS_T inpParam3 - optional replNum

 STR_MS_T inpParam4 - optional minimum number of copies to keep retval - 0 on success

 STR_MS_T inpParam5 - optional to specify IRODS_ADMIN_KW status [INT_MS_T] - status of the operation
msiPhyPathReg register a physical file into iRods
 Use only with iRule.

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path

 STR_MS_T inpParam2 - optional destination resourceName
 STR_MS_T inpParam3 - optional physical path to be registered retval - 0 on success

 STR_MS_T
inpParam4 - optional to specify COLLECTION_KW to
indicate a directory is being registered status [INT_MS_T] - status of the operation

msiObjStat stat an object to get its properties
 Use only with iRule. retval - 0 on success

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path

value [INT_MS_T] - COLL_OBJ_T or
DATA_OBJ_T

msiDataObjRsync synchronize a data between iRods and local file
 Use only with iRule.

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path

 STR_MS_T
inpParam2 - optional rsync mode (IRODS_TO_LOCAL,
LOCAL_TO_IRODS, IRODS_TO_IRODS)

 8

 STR_MS_T
inpParam3 - optional chksum value
(RSYNC_CHKSUM_KW) retval - 0 on success

 STR_MS_T
inpParam4 - optional to specify the destination path for the
IRODS_TO_IRODS mode (RSYNC_DEST_PATH_KW) status [INT_MS_T] - status of the operation

msiGetObjType find out if a given value is a data object, collection, resource, ...
 retval - 0 on success
 objParam - name of object typeParam [STR_MS_T] - type of object

USER_PARAM_TYP_ERROR if input parameter
type doesn't match

msiCheckPermission check authorization permission
msiCheckOwner check owner

Collection Micro-
services
msiCollCreate create a collection
 Use only with iRule.

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path retval - 0 on success

 STR_MS_T
inpParam2 - flags integer (=1 means the parent
collections will be created too) status [INT_MS_T] - status of the operation

msiCollRepl replicate all files in a collection

CollInp_MS_T or
STR_MS_T

collection - used as the irods path of the collection to
replicate retval - 0 on success

 STR_MS_T
targetResc - resource where the replicated objects are
stored status [collOprStat_t] - operation status

msiRmColl delete a collection
 Use only with iRule.

DataObjInp_MS_T or
STR_MS_T inpParam1 - dataObj path retval - 0 on success

 STR_MS_T
inpParam2 - optional forceFlag (irodsAdminRmTrash,
irodsRmTrash) status [INT_MS_T] - status of the operation

 9

Proxy Command
Micro-services
msiExecCmd remotely execute a command
 Use only from a client

ExecCmd_MS_T or
STR_MS_T inpParam1 - specify the command to execute

 STR_MS_T t
inpParam2 - optional o specify command arguements
(cmArgv)

 STR_MS_T
inpParam3 - optional STR_MS_T for the host address
where the command is executed (execAddr)

 STR_MS_T
inpParam4 - optional STR_MS_T to specify an iRODS
file path (hintPath) where the file is stored retval - 0 on success

INT_MS_T or
STR_MS_T

inpParam5 - optional to specify the resolved physical
path from the hintPath

status [ExecCmdOut_MS_T] - status of command execution
and stdout/sterr output

iCAT System Services:
msiVacuum Postgres vacumm, done periodically to optimize indices and performance
 retval - 0 on success
iCAT Micro-services
msiCommit commit the database transaction
msiRollback roll back the database transaction
msiCreateUser create a new user
msiDeleteUser delete a user
msiAddUserToGroup add a user to a group
msiCreateCollByAdmin create a collection by administrator
msiDeleteCollByAdmin delete a collection by administrator
msiRenameLocalZone rename the local zone by updating tables
msiRenameCollection rename a collection; used via a Rule with the above msiRenameLocalZone
msiExecStrCondQuery execute a conditional query
msiExecGenQuery execute a general query
msiMakeQuery make a query

 10

Rule-oriented Database
Access Micro-services
msiRdaToStdout call new RDA functions to interface to an arbitrary database returning results in standard-out

 STR_MS_T
inpRdaName - string with the name of the remote database being
accessed

 STR_MS_T inpSQL - string, the SQL to use
 STR_MS_T inpParam1 - optional bind variable for the SQL
 STR_MS_T inpParam2 - optional bind variable for the SQL

 STR_MS_T inpParam3 - optional bind variable for the SQL
rei->MsParamArray->MsParam->
RuleExecOut->stdout

 STR_MS_T inpParam4 - optional bind variable for the SQL retval - 0 on success
msiRdaToDataObj As above but store results in an iRods DataObject.

 STR_MS_T
inpRdaName - string with the name of the remote database being
accessed

 STR_MS_T inpSQL - string, the SQL to use
 STR_MS_T inpParam2 - optional bind variable for the SQL
 STR_MS_T inpParam3 - optional bind variable for the SQL
 STR_MS_T inpParam4 - optional bind variable for the SQL
 STR_MS_T inpParam5 - optional bind variable for the SQL
 inpOutObj - descriptor for writing results retval - 0 on success
msiRdaNoResults As above, perform a SQL operation but without storing the resulting output.

 STR_MS_T
inpRdaName - string with the name of the remote database being
accessed

 STR_MS_T inpSQL - string, the SQL to use
 STR_MS_T inpParam1 - optional bind variable for the SQL
 STR_MS_T inpParam2 - optional bind variable for the SQL
 STR_MS_T inpParam3 - optional bind variable for the SQL
 STR_MS_T inpParam4 - optional bind variable for the SQL retval - 0 on success
msiRdaCommit Commit changes to the database.

 STR_MS_T
inpRdaName - string with the name of the remote database being
accessed retval - 0 on success

msiRdaRollback Rollback (don't commit) changes to the database.

 STR_MS_T
inpRdaName - string with the name of the remote database being
accessed retval - 0 on success

Xmessaging System Micro-

 11

services
msiXmsgServerConnect connect to the message server designated in iRODS environment file
 retval - 0 on success

outConnParam [RcComm_MS_T] -
connection descriptor

msiXmsgCreateStream create a stream for sending messages

 inConnParam - connection descriptor from connect

outXmsgTicketInfoParam
[XmsgTicketInfo_MS_T] - information
structure for the ticket generated for the
stream

 inGgetXmsgTicketInpParam - integer expiration time retval - 0 on success
msiCreateXmsgInp create a message
 uint or STR_MS_T inMsgNumber - message serial number

 uint or STR_MS_T
inMsgType - number of messages, =0
(SINGLE_MSG_TICKET) or = 1 (MULTI_MSG_TICKET)

 uint or STR_MS_T inNumberOfReceivers - number of receivers of the message
 STR_MS_T inMsg - message body

 int or STR_MS_T inNumberOfDeliverySites - number of receiving addresses

 STR_MS_T inDeliveryAddressList - list of host addresses (comma separated)

 STR_MS_T
inDeliveryPortList - list of corresponding ports (comma
separated)

 STR_MS_T inMiscInfo - other information
outSendXmsgInpParam
[SendXmsgInp_MS_T] - Xmsg packet

 XmsgTicketInfo_MS_T
inXmsgTicketInfoParam - the outXmsgTicketInfoParam from
stream creation retval - 0 on success

msiSendXmsg send a message

 RcComm_MS_T inConParam - connection descriptor from server connect
 SendXmsgInp_MS_T inSendXmsgInpParam - the outSendXmsgInpParam retval - 0 on success
msiRcvXmsg receive a message

 12

outMsgType [STR_MS_T] - message
type

 RcComm_MS_T inConnParam - connection descriptor from server connect outMSG [STR_MS_T] - message body

XmsgTicketInfo_MS_T or
STR_MS_T or uint

inTicketNumber - outXmsgTicketInfoParam from
msiXmsgCreateStream or outXmsgTicketInfoParam->rcvTicket
(a string which the sender passes to the receiver)

outSendUser [STR_MS_T] - sender
information

 uint or STR_MS_T inMsgNumber: message serial number to fetch retval - 0 on success
msiXmsgServerDisConnect disconnect from the message server

 RcComm_MS_T iConnParam - connection descriptor from server connect retval - 0 on success

Email Micro-services
msiSendMail send email!
 STR_MS_T xtoAddr - address of the receiver
 STR_MS_T xsubjectLine - the subject of the message
 STR_MS_T sbody - the body of the message retval - 0 on success
sendStdoutAsEmail send rei's stdout as email
 STR_MS_T xtoAddr - addresss of the receiver
 STR_MS_T xsubjectLine - the subject of the message retval - 0 on success

 13

Key-Value (Attribute-value) Micro-
services
writeKeyValPairs
msiPrintKeyValPair print key-value pairs to rei's stdout
 STR_MS_T where - designate either stderr or stdout
 KeyValPair-PI inKVPair - KeyValPair list retval - 0 on success
msiGetValByKey given a key and a keyValPair struct, extract the corresponding value

 KeyValPair_PI inKVPair - KeyVallPair list outVal [STR_MS_T] - value corresponding to key
 STR_MS_T inKey - key retval - 0 on success
msiString2KeyValPair Convert a %-separated key=value pair strings into keyValPair structure

 outKeyValPairP [KeyVal_Pair-MS_T] - keyValue Pair structure

 STR_MS_T
inBufferP - key=value paris separated
by a %-sign retval - 0 on success

msiStrArray2String Array of Strings converted to a string separated by %-signs

 outStr [STR_MS_T] - string separated by %-signs
 strArr_MS_T inSAParam - array of strings retval - 0 on success
msiAssociateKeyValuePairsToObj ingest object metadata into iCAT from a AVU structure

KeyValPair-
MS_T

metadataParam - the keyValPair
structure

 STR_MS_T objParam - the name of the object retval - 0 on success

 STR_MS_T typeParam - the iCAT-type of the object
USR_PARAM_TYP_ERROR when the input parameter does not
mathc the type

msiRemoveKeyValuePairsFromObj remove object metadata from iCAT using a AVU structure

KeyValPair-
MS_T

metadataParam - the keyValPair
structure

 STR_MS_T objParam - the name of the object retval - 0 on success

 STR_MS_T typeParam - the iCAT-type of the object
USR_PARAM_TYP_ERROR when the input parameter does not
mathc the type

 14

Other User Micro-services
msiExtractNaraMetadata extract metadata from a NARA Archival Information Locator File
msiLoadMetadataFromFile bulk load of metadata from a file
msiApplyDCMetadataTemplate apply Dublin Core metadata template to extract metadata
writeBytesBuf write bytes into a buffer
msiFreeBuffer free space in a buffer
writePosInt write a positive integer into a buffer
msiGetDiffTime get the difference in time between two events
msiGetSystemTime get the current system time
msiHumanToSystemTime get the time since the last command
msiGetIcatTime get a time value from iCAT
msiGetTaggedValueFromString get a tagged value from a string
 STR_MS_T inTagParam - the tag to be matched
 STR_MS_T inStrParam - the source string retval - 0 on success
msiExtractTemplateMDFromBuf extract AVU metadata from a buffer using template

metadataParam [KeyValPair-MS_T] - extracted metadata in
KeyVal Pair structure

 retval - 0 on success

 BUF_S_T
bufParam - input buffer from which meetadata is
to be extracted

USER_PARAM_TP_ERROR when input parameters do not
match the type,

 TagStruct_MS_T
tagParam - pre-tag and post-tag combinations that
surround desired metadata INVALID_REGEXP if the tags are not correct

msiReadMDTemplateIntoTagStruct load template file contents into Tag structure
 retval - 0 on success

USER_PARAM_TYP_ERROR if the input parameters do
not match the type,

 BUF_MS_T tempObjBuf - template file INVALID_REGEXP if the tags are not correct,

 TagStruct-S_T tagStruct - tag-template NO_VALUES_FOUND if there are no tags identified

 15

System Micro- services Can only be called by the server process
msiSetDefaultResc set the default resource
 rei->doinp->condInput is used
 rei->rsComm->proxyUser.authInfo.authFlag is used

 STR_MS_T xdefaulltRescList - a list of %-deliminted resourceNames rei->rgi is set to a list of resources in the preferred order

 STR_MS_T
xoptionSTring - option (preferred, force, random) with random as
default retval - 0 on success

msiSetNoDirectRescInp set a list of resources that cannot be used by a normal user directly
 rei->doinp->condInput is used
 rei->rsComm->proxyUser.authInfo.authFlag is used retval - 0 on success

 STR_MS_T xrescList - a list of %-deliminted resourceNames
USER_DIRECT_RESC_INPUT_ERR if resource is
taboo

msiSetRescSortScheme set the scheme for selecting the best resource to use
msiSetMultiReplPerResc set the number of copies per resource to unlimited
msiSetDataObjPreferredResc if the data has multiple copies, specify the preferred copy to use
msiSetDataObjAvoidResc specify the copy to avoid
msiSetGraftPathScheme Set the scheme for composing the physical path in the vault to GRAFT_PATH
msiSetRandomScheme set the the scheme for composing the physical path in the vault to RANDOM
msiSetResource set the resource from default
msiSortDataObj Sort the replica randomly when choosing which copy to use
msiSetNumThreads specify the parameters for determining the number of threads to use for data transfer
msiSysChksumDataObj checksum a data object.
msiSysReplDataObj replicate a data object.
msiStageDataObj stage the data object to the specified resource before operation.
msiNoChkFilePathPerm Do not check file path permission when registering
msiNoTrashCan Set the policy to no trash can.
msiSetPublicUserOpr Set a list of operations that can be performed by the user "public".
msiCheckHostAccessControl Set the access control policy.
msiDeleteDisallowed Set the policy for determining certain data cannot be deleted.
msiSetDataTypeFromExt get data type based on file name extension

 16

ERA - Electronic Records Archives
Program

Copy a collection and its contents recursively
CollInp_MS_T or
STR_MS_T

inpParam1
- the irods
path of the
destination
collection

outParam [INT_MS_T] operation status
msiRecursiveCollCopy

CollInp_MS_T or
STR_MS_T

inpParam2
- the irods
path of the
source
collection

retval 0 on success

Get the access control list for a data object
DataObjInp_MS_T
or STR_MS_T

inpParam -
the irods
path of the
target
object

outParam [BUF_LEN_MS_T] results
msiGetDataObjACL

 retval 0 on success
Get the access control list for a collection
CollInp_MS_T or
STR_MS_T

inpParam1
- the irods
path of the
target
collection

outParam [BUF_LEN_MS_T] results
msiGetCollectionACL

STR_MS_T inpParam2
- Optional
- Set it to
"recursive"
to perform
the
operation
recursively

retval 0 on success

Retrieve metadata AVU triplets for a data object and return them as XML msiGetDataObjAVUs
DataObjInp_MS_T
or STR_MS_T

inpParam -
the irods
path of the

outParam [BUF_LEN_MS_T] results

 17

target
object

 retval 0 on success
Retrieve metadata AVU triplets for a data object and return them pipe separated
DataObjInp_MS_T
or STR_MS_T

inpParam -
the irods
path of the
target
object

outParam [BUF_LEN_MS_T] results
msiGetDataObjPSmeta

 retval 0 on success
Retrieve metadata AVU triplets for a collection and return them pipe separated
CollInp_MS_T or
STR_MS_T

inpParam -
the irods
path of the
target
collection

outParam [BUF_LEN_MS_T] results
msiGetCollectionPSmeta

 retval 0 on success
Get an archival information package template for a data object
DataObjInp_MS_T
or STR_MS_T

inpParam -
the irods
path of the
target
object

outParam [BUF_LEN_MS_T] results
msiGetDataObjAIP

 retval 0 on success
Parse an iRods object (file) for new metadata AVUs and add them to the ICAT
DataObjInp_MS_T
or STR_MS_T

inpParam -
the irods
path of the
metadata
file

outParam [INT_MS_T] operation status
msiLoadMetadataFromDataObj

 retval 0 on success
Export metadata AVU triplets for a collection and its contents
CollInp_MS_T or
STR_MS_T

inpParam -
the irods
path of the
target
collection

outParam [BUF_LEN_MS_T] results
msiExportRecursiveCollMeta

 retval 0 on success
Copy metadata triplets from an iRODS object to another one msiCopyAVUMetadata
STR_MS_T inpParam1 outParam [INT_MS_T] operation status

 18

- the irods
path of the
source
object

STR_MS_T inpParam2
- the irods
path of the
destination
object

retval 0 on success

Return user information for one or more iRODS users
STR_MS_T inpParam1

- the target
username.
Can
include
wildcards

outParam [INT_MS_T] operation status
msiGetUserInfo

BUF_LEN_MS_T inpParam2
- Empty - a
placeholder
for the
results

retval 0 on success

Return Access Control List for one or more iRODS users
STR_MS_T inpParam1

- the target
username.
Can
include
wildcards

outParam [INT_MS_T] operation status
msiGetUserACL

BUF_LEN_MS_T inpParam2
- Empty - a
placeholder
for the
results

retval 0 on success

Parse an iRods object for new user accounts to create msiCreateUserAccountsFromDataObj
DataObjInp_MS_T
or STR_MS_T

inpParam -
the irods
file that
contains
the
accounts to
create

outParam [INT_MS_T] operation status

 19

 retval 0 on success
Parse an iRods object for user accounts to update
DataObjInp_MS_T
or STR_MS_T

inpParam -
the irods
file that
contains
the account
updates

outParam [INT_MS_T] operation status
msiLoadUserModsFromDataObj

 retval 0 on success
Parse an iRods object for user accounts to delete
DataObjInp_MS_T
or STR_MS_T

inpParam -
the irods
file that
contains
the
accounts to
delete

outParam [INT_MS_T] operation status
msiDeleteUsersFromDataObj

 retval 0 on success
Parse an iRods object for access permissions to update/create
DataObjInp_MS_T
or STR_MS_T

inpParam -
the irods
file that
contains
the ACL
updates

outParam [INT_MS_T] operation status
msiLoadACLFromDataObj

 retval 0 on success
Get audit trail information by user identifier
STR_MS_T inpParam1

- the target
user ID

outParam [INT_MS_T] operation status
msiGetAuditTrailInfoByUserID

BUF_LEN_MS_T inpParam2
- Empty - a
placeholder
for the
results

retval 0 on success

Get audit trail information by object identifier
STR_MS_T inpParam1

- the target
object ID

outParam [INT_MS_T] operation status
msiGetAuditTrailInfoByObjectID

BUF_LEN_MS_T inpParam2 retval 0 on success

 20

 - Empty - a
placeholder
for the
results

Get audit trail information by action identifier
STR_MS_T inpParam1

- the target
action ID

outParam [INT_MS_T] operation status
msiGetAuditTrailInfoByActionID

BUF_LEN_MS_T inpParam2
- Empty - a
placeholder
for the
results

retval 0 on success

Get audit trail information by keyworkds in the comment field
STR_MS_T inpParam1

- the
keyword
string

outParam [INT_MS_T] operation status
msiGetAuditTrailInfoByKeywords

BUF_LEN_MS_T inpParam2
- Empty - a
placeholder
for the
results

retval 0 on success

Get audit trail information by time stamp
STR_MS_T inpParam1

- the
beginning
timestamp

outParam [INT_MS_T] operation status

STR_MS_T inpParam2
- the end
timestamp

retval 0 on success

msiGetAuditTrailInfoByTimeStamp

BUF_LEN_MS_T inpParam3
- Empty - a
placeholder
for the
results

Set the data_type_name attribute of a data object by path or ID msiSetDataType
STR_MS_T inpParam1

- the irods
object ID

outParam [INT_MS_T] operation status

 21

STR_MS_T inpParam2
- the irods
object path

retval 0 on success

STR_MS_T inpParam3
- the
attribute
name

Infer the data type of an object based on its extension and on the expandable ICAT list of known types
STR_MS_T inpParam1

- the irods
object path

outParam [INT_MS_T] operation status
msiGuessDataType

STR_MS_T inpParam2
- Empty - a
placeholder
for the
result

retval 0 on success

Return the number of objects in a collection by data type
CollInp_MS_T or
STR_MS_T

inpParam1
- the irods
path of the
target
collection

outParam [INT_MS_T] operation status
msiGetCollectionContentsReport

KeyValPair_MS_T inpParam2
- Empty - a
placeholder
for the
result

retval 0 on success

Return the object count and total disk usage of a collection
CollInp_MS_T or
a STR_MS_T

collPath -
the irods
path of the
target
collection

outKVPairs [KeyValPair_MS_T] results

 status [INT_MS_T] operation status

msiGetCollectionSize

 retval 0 on success

 22

XML (micro-services based on libxml2 and
libxslt)

Parse an XML iRODS file to extract metadata tags
DataObjInp_MS_T or STR_MS_T targetObj - the irods path of the target

object
retval 0 on success

msiLoadMetadataFromXml

DataObjInp_MS_T or STR_MS_T xmlObj - the irods path of the XML
object

Validate an XML file against an XSD schema, both iRODS objects
DataObjInp_MS_T or STR_MS_T xmlObj - the irods path of the XML

object
outParam [INT_MS_T] validation
result

msiXmlDocSchemaValidate

DataObjInp_MS_T or STR_MS_T xsdObj - the irods path of the XSD
object

retval 0 on success

Apply an XSL stylesheet to an XML file, both iRODS objects
DataObjInp_MS_T or STR_MS_T xsltObj - the irods path of the XSL

object
msParamOut [BUF_LEN_MS_T]
results

msiXsltApply

DataObjInp_MS_T or STR_MS_T xmlObj - the irods path of the XML
object

retval 0 on success

URL (micro-services based on libcurl)
FTP get a remote file and writes it to an iRODS object
STR_MS_T target - the remote URL status [INT_MS_T] operation status

msiFtpGet

DataObjInp_MS_T or STR_MS_T destObj - the destination object's path retval 0 on success

HDF
msiH5File_open open an HDF5 file
msiH5File_close close an HDF5 file
msiH5Dataset_read read a dataset from an HDF5 file
msiH5Dataset_read_attribute read a dataset attribute from an HDF5 file
msiH5Group_read_attribute read a group attribute from an HDF5 file

Properties
msiPropertiesNew create a new property
msiPropertiesClear clear property

 23

msiPropertiesClone copy property
msiPropertiesAdd add a property
msiPropertiesRemove remove a property
msiPropertiesGet get a property
msiPropertiesSet set a property
msiPropertiesExists check existence of a property
msiPropertiesToString copy property to a string
msiPropertiesFromString parse property from a string

Web Services
msiGetQuote execute web service to get a stock quote

outQuoteParam [STR_MS_T] - stock quotation as a float
printed into a string

 STR_MS_T inSymbolParam - stock symbol retval - 0 on success
msiIp2location execute web service to convert IP address to a location

 STR_MS_T inIpParam - the IP-address outLocParam [STR_MS_T] - the location information

STR_MS_T

inLicParam -the license string provided by
http://ws.fraudlabs.com/ retval - 0 on success

msiConvertCurrency execute web service to convert currency

 STR_MS_T
inConvertFromParam - a 3-letter country code in structure char
*countryCodeNames

outRateParam [STR_MS_T] - conversion rate as float
printed into a string

 STR_MS_T
inConvertToParam - 3-letter country code in structure char
*countryCodeNames retval - 0 on success

msiObjByName execute web service to retrieve astronomy image by name

outRaParam [STR_MS_T] - Right Ascension as float
printed into a string

outDecParam [STR_MS_T] - Declinationn as float printed
into a string

outTypParam [STR_MS_T] - type of object (star, galaxy,
...)

 STR_MS_T inObjByNameParam - astronomical object name retval - 0 on success
msiSdssImgCutout_GetJpeg execute web service to retrieve a Sloan Digital Sky Survey image cutout as a jpeg file

 24

 STR_MS_T inRaParam - right ascension as float printed into a string

 STR_MS_T inDecParam - declination as float printed into a string

 STR_MS_T inScaleParam - scaling factor as float printed into a string

 STR_MS_T inWidthParam - width of image as float printed into a string

 STR_MS_T inHeightParam - height of image as float printed into a string outImgParam [BUF_LEN_MS_T] - image buffer
 STR_MS_T inOptParam - optional parameters retval - 0 on success

Guinot
msiGetFormattedSystemTime get a formatted version of the system time

 outParam [STR_MS_T] - the formatted time
 STR_MS_T inpParam - the desired output format retval - 0 on success

