
 Enhancing iRODS Integration: Jargon and an Evolving iRODS Service Model

Mike Conway
Data Intensive Cyber Environments Center (DICE Center), University of North Carolina at Chapel Hill

Abstract
Jargon is a pure-Java API that encapsulates an

XML protocol defined by the iRODS Data Grid. Jargon
allows integration with iRODS [1], and is evolving to
provide new integration possibilities. This paper
describes planned enhancements to the Jargon API
developed by Lucas Gilbert.

Index Keyword Terms— Jargon, Java

1. Introduction
iRODS is described by its creators as a type of

“adaptive middleware that provides a flexible,
extensible, and customizable data management
architecture [2].” The iRODS system facilitates the
creation of a distributed data grid across heterogeneous
storage platforms. iRODS manages communication,
metadata, security, auditing, federation, and other vital
aspects of a distributed data grid with a unique policy-
based approach. The iRODS system expresses data
management policies as rules, which are high-level
work-flows. These rules are composed of micro-
services, which are small modules that perform data
grid operations of various types [3].

Jargon, originally developed by Lucas Gilbert, is a
pure Java API that allows thin-client connectivity to the
iRODS Data Grid. Jargon handles low-level
communication with iRODS using a native XML
protocol. This protocol describes the sending of
commands and data from a network client, as well as
the receiving of status and data from the iRODS system
[4]. Currently, Jargon is used to integrate a diverse set
of custom applications and frameworks with iRODS.

As the number of grid-enabled applications grows,
and as distributed systems evolve, so should the Jargon
API. Web services using SOAP and REST are now
common [5]. Messaging middleware, workflow tools,
custom Java applications written on top of the Jargon
API, and custom applications written using dynamic
scripting languages are anticipated patterns of Jargon
usage. By adhering to open standards and development
practices, Jargon will become a useful tool, extending
iRODS functionality to a wide array of audiences.

2. Recent Jargon Developments
Jargon is receiving new attention as community

demand has grown. Jargon is actively used, therefore,
efforts to update Jargon are proceeding carefully.
Recent efforts include updating the code base to current
standards, introducing unit testing, a large number of
bug fixes, and refactoring activities.

3. Assessing Jargon
The most recent Jargon development has been done

from the perspective of a developer who had an
intermediate knowledge of iRODS, and no prior
experience with the Jargon Java API. The experience
provided valuable insights that have influenced Jargon
development plans. These insights, and the resulting
design choices, are the subject of this paper.

First, it must be said that the current Jargon does a
very good job of navigating the iRODS XML Protocol.
There are a myriad number of details that must be
handled, and many of the difficult problems with low-
level iRODS communication were solved by Lucas
Gilbert in the initial versions of Jargon. The utility of
the existing Jargon code is an asset that will enable the
future evolution.

A primary issue is that Jargon is difficult to use
without in-depth prior knowledge. Much of this is due
to the complexity of the problems that iRODS
addresses. Even so, Jargon exposes too many of the
low-level details of iRODS in the public API.

Over time, Jargon has lost track of current best
practices. Examples include the 'hand-rolled' nature of
logging in Jargon, the lack of unit testing and measured
code coverage, and the lack of a build and dependency
management system such as Maven [7]. Many Jargon
functions are now better supported in mature open-
source libraries. One example is the Jargon support for
HTTP file systems, which is significantly less capable
than the Apache HTTP Client library [8].

Jargon has evolved to a point where refactoring is
necessary. Small steps have already been taken, and
will increase as releases proceed. This refactoring and
enhancement will produce a set of libraries and
capabilities to achieve Jargon's goals.

4. Jargon goals
4.1. Higher Level API

A primary goal in designing a follow-on version of
Jargon will be to more effectively hide low-level details
from API users. Only a few packages for domain
objects and services should be presented to users as the
public API, and there should only be one route to
accomplish a task. This means that any reference to the
iRODS XML protocol, or any semantics about
connections or thread-safety should be hidden. The
ideal would be a service level API, and interaction using
familiar POJO's to represent domain data and actions.
The strategy should be to leverage the existing Jargon
code as much as possible, as there is a significant
accumulation of real-world experience reflected in the
code.

4.2. Enabling Familiar Development Practices

One important 'target audience' for Jargon will be a
developer in another domain who is not intimately
familiar with iRODS. This will likely be a developer
who is used to developing web-facing or web service
applications using existing best practices.

These practices should be reflected in the code,
including:

• An “inversion of control” [8] pattern and

development using the de-facto standard
Spring container [9].

• The use of “POJO's” (Plain-Old-Java-Objects)
[10].

• Facilities to enable test-driven development.
• Use of common build management practices,

familiar libraries for logging, and other
common practices.

4.3. Providing an Out-of-the-box Administrative and
Archivist' Interface

iRODS has a large suite of tools, and a well-defined
low-level interface. Like the Unix shell, icommands
provide a knowledgeable user with a quick path to
desired functionality [11], but can present some
difficulty to occasional users. As the user base grows in
size and diversity, it cannot be assumed that all users of
iRODS will want to work with their data grid in this
manner. It has become a common expectation that there
will be web-based tools to interact with middleware
platforms, including iRODS. A new, out-of-the-box
administrative and archivist's interface is being
developed on top of Jargon. The working name of this
facility is “Jargon-Lingo”. At the time of this writing, a
full-stack working prototype has been developed.

Figure 1 - Jargon web administrative interface

4.4 Enabling iRODS Integration

iRODS itself has many facilities for integration,
including a driver architecture that allows many
different storage types, and the ability to integrate
databases and data streams into the grid. Jargon will
provide an even richer integration environment at
multiple levels:

• Java API level integration utilizing Jargon core

libraries directly in custom applications. An
example is the PoDRI project at UNC, which is
integrating iRODS with DuraSpace using the
Akubra API [12].

• Integration with dynamic scripting languages
leveraging JVM dynamic language capabilities
[13].

• Service integration with REST and SOAP
interfaces on top of Jargon. An example is the
integration of iRODS functionality with the
Islandora project [14], where PHP scripts could
act on the iRODS Data Grid using a service
API.

• Integration of iRODS services in emerging
cloud computing frameworks, such as jclouds
[15].

In addition to the proposed Administrative and

Archivist's interface, there will be a large number of
custom interfaces for specific purposes. An example of
this is an ongoing project to integrate the Islandora [11]
Drupal module with iRODS, providing a simple, clean
interface for many audiences.

5. Proposed Jargon Architecture
The following diagram illustrates the current Jargon
design model, and reflects the above stated observations
and goals. The remainder of this paper will discuss the
properties of the proposed technology stack.

Figure 2 -Proposed Jargon Architecture

Jargon will evolve into a layered architecture, providing
a clean separation of concerns, easier extension, and
more effective testing through small, mockable units.
Jargon will also move forward with the goal of effective
test coverage at each level, providing a dependable
toolkit as iRODS versions progress.

5.1. jargon.core.*

At the base of the API are the jargon.core libraries.
Jargon, as it currently exists, will be transformed over
time to become part of the low-level facilities in
jargon.core, and this API will be made invisible to
public users. Jargon refactoring activities have already
begun, and will continue with the jargon.core model in
mind.

Networking and low-level protocol handling will be
encapsulated at this level, and this should enable easier
optimization and tuning while shielding users from API
changes. The development of a test suite dedicated to
exercising the full iRODS XML at this level protocol
will be of great assistance in validating Jargon-based
applications as successive iRODS versions are
developed.

The primary entry point into the jargon.core
functionality will be an iRODSProtocol object that
encapsulates the raw network connection to iRODS, as
well as the passing to and receiving of messages from
the iRODS agent. Also, at this API level, the Jargon
prototype includes new facilities for creating and
keeping connections such that pooling and caching
strategies can be plugged in. No code above the base

jargon.core library will access the network connections
to iRODS, and will only deal with XML messages.

5.2. jargon.core Mid-level Services

Above the infrastructure that handles connections
to iRODS will be a set of mid level services. This
intermediate layer will represent the major types of
interactions that a client may have with iRODS. The
jargon.core mid-level services are not a part of the
public API, but do define common capabilities that can
be combined by higher level services. Service will
include:

• General Query Service – Provides a JDBC like

interface to submit SQL-like queries and
receive results resembling a JDBC ResultSet.
The requests are for pre-defined columns using
pre-defined relationships, and mirror the
capabilities of the “iquest” icommand.

• Simple Query Service – Executes specific SQL
statements permitted by iRODS and receives
results resembling a JDBC ResultSet. This is
somewhat like General Query, however, it can
be used for more complex queries. Simple
Query requires permitted SQL to be defined on
the iRODS Server. Simple Query services can
be used to optimize certain Jargon operations
as the need arises.

• Rule Service – Executes rules on iRODS and
return results. A philosophy in Jargon
development is to use native iRODS
functionality, as close to the data as possible, to
deliver services to clients.

• Execution Service – Executes arbitrary scripts
on an iRODS server from a known location.

• XML Protocol Actions – Executes actions,
such as updates, and file operations using
specific methods in the iRODS XML Protocol.

5.3. Connection Handling

The current Jargon code base attempts to share a
connection between multiple threads, but since those
threads access one common socket, the communications
occur in a serialized fashion. One side effect of the
current connection scheme in Jargon is that the
“Command” class is forced to contain all the Jargon
functionality in one place, with various levels of
synchronization. Testing with the current arrangement,
using VisualVM [16], reveals the following pattern for
multiple threads sharing a connection in the current
Jargon:

Figure 3 – Multiple threads sharing a connection

As you can see, even though multiple threads are
accessing the connection, the actual communication
with iRODS is single-threaded. The complications this
multi-threaded connection access causes are clear, and
the benefits of such sharing is doubtful. The relative
efficiency of a connection per thread versus attempting
to share a connection between multiple threads is an
important area for study and testing, especially with
connection pooling capability added to Jargon.

5.4. Access Objects

Jargon development should provide a familiar
experience to Java mid-tier developers. One way to
achieve that goal will be to utilize familiar design
patterns. An added benefit will be that such design
patterns have been battle-tested in many application
deployments.

A primary design pattern for data enabled
applications is the DAO Pattern [17]. As Sun describes
this pattern in the J2EE Patterns Catalog:

“Use a Data Access Object (DAO) to abstract and
encapsulate all access to the data source. The DAO
manages the connection with the data source to obtain
and store data.”

The Jargon prototype uses an adaptation of the DAO
pattern that is defined as a Jargon “Access Object”. The
Access Object framework will:

• Allow creation of Access Objects from a

factory.
• Manage connection sharing such that multiple

Access Objects in one thread may
automatically utilize the same connection.

• Utilize jargon.core mid-tier services to
accomplish tasks, and shield API users from
details of each Access Object method.

• Use POJO domain objects for parameters and
return values.

The concept of an “Access Object” in Jargon is

inspired by a very common pattern of development
using DAO objects and POJO domain objects with
Hibernate [18]. The handling of session in Hibernate

DAO's via a ThreadLocal Session object provides an
attractive model for a cleaner codebase, treating an
iRODS connection in a manner similar to a familiar
JDBC connection to a database.

Jargon Access Objects are the lowest level of
publicly usable API. Access Objects can be combined
into higher level services, both within the Jargon API,
and externally, by developers wishing to create new
functionality. The following code snippet shows a User
access object that utilizes a mid-level General Query
service, and returns a User domain object.

public User findById(final String userId) throws
JargonException,DataNotFoundException {

 iRODSGenQueryExecutorImpl iRODSGenQueryExecutorImpl
 = new iRODSGenQueryExecutorImpl(

 this.getiRODSProtocol());
 StringBuilder userQuery = new StringBuilder();

 userQuery.append(buildUserSelects());
 userQuery.append(" where ");

 userQuery.append(RodsGenQueryEnum.COL_USER_ID
 .getName);
 userQuery.append(" = '");
 userQuery.append(userId);
 userQuery.append("'");

 ...

 iRODSQuery iRODSQuery
 iRODSQuery.instance(userQueryString, 500, 0);
 iRODSQueryResultSet resultSet;
 resultSet = iRODSGenQueryExecutorImpl
 .executeiRODSQuery(iRODSQuery,0);

 ...

 List<String> row = resultSet.getResults().get(0);
 User user = buildUserFromResultSet(row);

 return user;

}

This example Access Object illustrates a clean,
higher-level object upon which services may be built. It
is important to note that connection handling in this
example is transparent, that no low-level protocol
operations are visible at this layer, and that the
operations of this method are easily tested with mock
objects. This example also illustrates how Access
Objects like this User Access Object make use of mid-
level services, in this case a General Query Service.
That General Query Service, in turn, relies on low-level
jargon.core packages to turn the query into an XML
protocol request, communicate the request to iRODS,
and turn the XML protocol response from iRODS into a
manageable object that resembles a familiar JDBC
ResultSet for processing by the Access Object.
Importantly, the caller of this Access Object does not

see the underlying ResultSet, rather, the findUserById()
method returns a POJO User object.

5.5 A Jargon Service Model

High-level Jargon services can be easily exposed as
SOAP and REST using commodity open-source
middleware such as Spring Web Services [19], Apache
Axis [20], and Metro [21]. As lower level services are
developed and tested, consideration will need to be
given to the design of a REST/SOAP service model.
This service model will allow iRODS to interact with a
large number of external systems, and will be developed
in the jargon.lingo libraries. The development of a
service model is beyond the scope of this document,
however, the Spring framework that is powering the
web administrative GUI prototype would be a potential
provider of REST-ful services, and would likely will not
present a high technical hurdle. The Fedora Repository
service model provides an excellent model for similar
iRODS services [22].

Prototypes under development validate the basic
approach outlined in this document, and it can be said
with a level of confidence that a Jargon-based service
layer providing both SOAP and REST-ful access to
iRODS is quite feasible. Beyond the remaining
technical hurdles, much consideration needs to be given
to the use-cases, security model, and implications of
such a facility.

6. Conclusion
This paper outlines some of the high-level design

goals, and a proposed architecture for future Jargon
development. At the writing of this paper, a working
prototype does exist, and is being used for validation
and experimentation. While still a work in progress, the
prototype does provide valuable guidance for near-term
Jargon refactoring. Jargon development will be guided
by careful testing, community input, and current best
practices.

Jargon, and the integration possibilities that it will
enable, has the goal of making the iRODS Data Grid as
familiar to developers as a database or messaging
middleware platform, and a dependable tool to help
manage the expanding need for secure sharing and
preservation of data.

7. References
1. Jargon, A Java client API for the DataGrid,
https://www.iRODS.org/index.php/Jargon
2. iRODS: integrated Rule Oriented Data System White
Paper Data Intensive Cyber Environments Group University
of North Carolina at Chapel Hill University of California at
San Diego September 2008 Rajasekar, A., M. Wan, R. Moore,
W. Schroeder
3. iRODS: integrated Rule-based Data System Rajasekar, A.,
M. Wan, R. Moore, W. Schroeder
4. Packing/Unpacking Scheme Used in iRODS Mike Wan,
DICE
5. Restful web services vs." big"'web services: making the
right architectural decision
http://www2008.org/papers/pdf/p805-pautassoA.pdf [PDF]
C Pautasso, O Zimmermann, F Leymann - 2008 –
portal.acm.org
6. Apache Maven, http://maven.apache.org/
7. Apache HTTP Client , http://hc.apache.org/httpclient-3.x
8. Inversion of control containers and the dependency
injection pattern,
http://www.itu.dk/courses/VOP/E2006/8_injection.pdf [PDF],
M Fowler - Actualizado el – itu.dk
9. Spring Framework, http://www.springsource.org/
10. Christopher Richardson, “What is POJO Programming?”,
Java Developer's Journal, http://java.sys-
con.com/node/180374
11. iRODS icommands,
https://www.iRODS.org/index.php/icommands
12. Akubra Project, http://www.fedora-
commons.org/confluence/display/AKUBRA/Akubra+Project
13. New JDK 7 Feature: Support for Dynamically Typed
Languages in the Java Virtual Machine,
http://java.sun.com/developer/technicalArticles/DynTypeLang/
14. Islandora Project, http://islandora.ca/
15. jclouds framework, http://code.google.com/p/jclouds/
16. VisualVM,
http://java.sun.com/javase/6/docs/technotes/guides/visualvm/
17. DAO Pattern,
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataA
ccessObject.html
18. Generic Data Access Objects,
https://www.hibernate.org/328.html
19. Spring Web Services, http://static.springsource.org/spring-
ws/sites/1.5/
20. Apache Axis, http://ws.apache.org/axis/
21. Metro Web Services Framework,
https://metro.dev.java.net/
22. Fedora Service Framework, http://fedora-
commons.org/confluence/display/FCR30/Service+Framework

