Enhancing iRODS Integration:
Jargon and an Evolving iRODS
Service Model

Mike Conway
DICE Center — UNC-CH

IRODS User Meeting 2010

michael conway@unc.edu
Skype: michael.c.conway

Overview

Up until today — recent history
Today — perspectives and issues

Roadmap — target architecture and
getting there

Discussion, doing this right...

Recent History — Jargon 2.2.0

Jargon had been in a holding pattern and
transitioning from Google Code to IRODS SVN

Consolidation in SVN for Jargon 2.2.0.

« Collection of accumulated patches
» Addition of unit testing
« Some restructuring of build

Main purpose — create canonical version and lay
groundwork for increasingly aggressive changes.

Recent History — Jargon 2.2.1

Collect all known patches and reported bugs.

As many tests as could be written in the time
period.

Main purpose
. Establish a level of stability.
« Develop an 'SOP' for Jargon releases.

Recent History — Jargon 2.3.0

o Close on the heels of Jargon 2.2.1
. Not a lot of time to make big changes
. Still a somewhat 'conservative' approach
« Don't break stuff

« More tests, including some 'functional’ tests.

Multiple 'unreported’ bugs caught by testing

Testing pays off with a much easier validation of
the new IRODS Release

Backward compatability testing now part of SOP

Today —
Jargon 2.3.1

.Jargon trunk will carry patches to most recent release, and will be
test-compliant at all times

« No patches! Grab the trunk and go
» The trunk will always be 'better' then the last release

.Jargon 2.3.1 is a branch and feature release. (approx 1 month
away).

«Main purpose
. Get rid of baggage where we can

« New IRODS 2.3 feature support
« Refactoring more aggressive as testing better

Today
Starting with a perspective

. | knew some |IRODS from
enginFrame project

. | knew nothing of Jargon

« Background in enterprise Java
development

Before taking about issues

#1 — Props to Lucas

. The XML protocol is complex, with many
subtle twists.

Jargon has been used for a while, and that
experience is embedded within the code.

Yes, | know, it's just a simple function to display a
window, but it has grown little hairs and stuff on it and

nobody knows why. Well, I'll tell you why: those are
bug fixes.

-Joel on Software

Issues confronting developers
and IRODS domain users

Jargon is hard to use, especially for folks new
to IRODS.

IRODS is (necessarily) complex and feature-
rich.

Software development has moved on:

loC
Testability (mocks, unit testing)

Mid-tier standards
SOAP and REST-ful services

Issues
Interfaces — GUI and API

Command line doesn't cut it, expectations

have changed & IRODS has sophisticated
capabilities.

We can't create a one-size-fits-all GUI
interface, and the call for new/custom
interfaces will only grow.

Public vs. private API, redundant pathways.
Where is the boundary?
DRY!

A mission statement

Jargon will be a tool that feels familiar to developers,
admins, and archivists, and that helps open up the
IRODS data grid to new domains.

Jargon will provide a clean foundation that enables new
kinds of integration, and plays well with established
and emerging platforms and standards.

Jargon is a stack that works with mature open source
tools to extend IRODS interfaces.

The real action is IRODS, and Jargon will not get in the
way.

Roadmap
Jargon is a stack

DuraSpace

Custom
development

jargon.akubra

jargon.lingo

jargon.core high-level services and access objects

Gen query simple query rule exec XML
services services services services Protocol

jargon.core.*

Stack elements

e I

jargon.akubra ° Connections

jargon.core.”

jargon.core high-level services and access objects < IOW- I evel COd e

« XML protocol

Gen query simple query rule exec XML
services services services services Protocol

jargon.core.* «

Stack elements

level sevices

41 o jargOn.COre low-
-

jargon.akubra [AbStra Ct 'meta'
Interaction
modes

Gon auery ki Mockable to
query |mple'query ruI_e exec XML 1
services services services services Protocol p0| ntS a bove

jargon.core.* Example
General Query

jargon.lingo

jargon.core high-level services and access objects

Stack elements

Public API

|
. boundary

| . Only services
jargon.lingo jargon.aiubra an d P O J O) S

jargon.core high-level services and access objects VISI b I e

No String[][]

Gen query simple query rule exec XML
services services | services | Protocol NO Tag{}

No sockets or
packing
Instructions

jargon.core.*

Stack elements

e Access objects and
“ T AQO's composed
jargon.akubra intO h |g h'level
services

jargon.lingo

jargon.core high-level services and access objects

Gen query simple query rule exec XML
services services services services Protocol

jargon.core.*

Services and AO's

Session frame open
Access object
Access object
Access object

Session frame close

Styled after Hibernate
DAO's

POJO's in and out of
simple methods

AQO's composable into
services inside or
outside of 'Jargon’.

Automatically manage
connection.

Public API
Easier to use?

public interface ResourceAQO {

List<Resource> listResourcesinZone(String
zoneName) throws JargonException;

Resource getFirstResourceForlRODSFile(IRODSFile
irodsFile) throws JargonException,
DataNotFoundException;

}

Stack elements

o
: 7
jargon.akubra «

jargon.lingo

jargon.core high-level services and access objects o Above th e AO a n d
service level

|
Gen query simple query rule exec XML

jargon.core. . Integration libraries
. GUI

Stack Elements
Integration libraries

s - DuraSpace

DuraSpace . .

Integration as an
<_ example

« Use Jargon
services to

Gen query impIe.query exec PXML I |ntegrate IRODS
services services services rotoco W| th F e d ora

jargon.core.* Oth e r I | b ra rl eS
could follow

jargon.lingo

jargon.core high-level services and access objects

Stack Elements
Rich integration

ISIanNcierg |- Islandoraasan

example

Leverage
iIntegration
through Akubra to
present IRODS to

Islandora

Extend through
REST-ful access
to IRODS-specific
functionality

Stack Elements
jargon.lingo

o QOut-of-the box web interface
o Driver for stack

development
. Spring MVC and AJAX
. JQuery
« Demo

Stack Elements
jargon.lingo

From web to REST-ful interface

@RequestMapping(”/hotels/{hotelld}")

public String getHotel(@PathVariable String hotelld, Model model) {
List<Hotel> hotels = hotelService.getHotels();
model.addAttribute("hotels”, hotels);

return "hotels”;

Stack Elements
jargon.lingo

«S>OAP/WS-*

.| don't know specifically yet
« AXIS
« Metro
« Spring Web Services

« Somewhat out-of-scope in that mature
tools can implement

Tactics

-More tests, quality improvement.

.Parallel development of prototype to define new
APl and drive mainstream refactoring.

« New web admin built on prototype
« Akubra built on prototype
«lImprovements move into code stream.

« Refactoring, testability
» Code starts to mature
« Solid launching point for future.

Stack elements

Your apps, Your

Important that
jargon.lingo RIS J d rg on | S an

effective

enabler.

Important to test
services services services services Protocol
to run on

commodity
platforms such
as Tomcat,
Jetty, Glassfish,
JBoss

jargon.core high-level services and access objects

jargon.core.*

Stack elements

your app, but we
can observe
standards and
practices!!!

enable YOUR

jargon.core.* tOO I klt

“ -—* « We cannot predict
AF DuraSpace

jargon.akubra

jargon.lingo

jargon.core high-level services and access objects

Stack elements

4_*
: 7

jargon.akubra

jargon.lingo

jargon.core high-level services and access objects

Gen query simple query rule exec XML
services services services services Protocol

jargon.core.*

| am an XXX
developer...what about
me”?

SOAP/REST
Messaging?

Dynamic Languages on
JVM

o Jython

. Groovy
Jruby
Scala

Tactics

-Push prototype elements into code stream now

« Packing instructions factored out

« Current code broken up into smaller components for
reuse

« Transitional implementation of 'low-level' services

.Parallel development of Jargon X powering web
iInterface and Akubra

« Steer current Jargon towards prototype architecture
and cross-pollinate streams

Jargon X.X

Jargon X Prototype

Make improvements now based on prototype, get into code stream
for branching down the road.

Discussion

.Doing this right!
. Use as much code in Jargon enhancements now

« Break up Jargon into smaller components
 Better testing now
- Better re-use
« Develop real things with Jargon X
« Eat our own dog-food
« Build needed capability

Discussion

« Where to set the dial???

Discussion

-How to engage as a community

. If open source = better software, how can we enhance
participation and leverage the community?

o Other committers?

« Environment for development
. Testing
« Continuous build
. Process
« Tools

Discussion

.Designing an interface for

« Admin
. User
o Archivist

-As Jargon-Lingo interface development launches, how can
we collaboratively design it?

-Other modalities?
» SysTray 'icon'?
. Islandora?

Discussion

./[RODS/Jargon relationship

» Leveraging IRODS
o Actions should run with data

. IRODS interfaces outside of Jargon scope

- What is available from Jargon, what is presented from IRODS
server mechanisms

«Mapping an IRODS Service Model

 Jargon is part of a much larger stack, what is Jargon's
role”?

. What would a service model look like?

Code and Nuts and Bolts

.Connection handling
-Architecture
«Optimization

« Code optimization

« Networking optimization

.Jargon-x on SVN

Thanks!

.YOUur comments, needs, concerns are valuable
o T'his will not work without you!

. ['his presentation is as much a question as an
answer, look at the prototype!

.Help make Jargon work

« Contribute and Commit

« Review and Test

. Provide use cases

« Migrate your code into the Jargon stream

