
Enhancing iRODS Integration: 
Jargon and an Evolving iRODS 

Service Model 

Mike Conway 
DICE Center – UNC-CH 

IRODS User Meeting 2010 

michael_conway@unc.edu 
Skype: michael.c.conway 



Overview 

  Up until today – recent history 
  Today – perspectives and issues 
  Roadmap – target architecture and 

getting there 
  Discussion, doing this right... 



Recent History – Jargon 2.2.0 

  Jargon had been in a holding pattern and 
transitioning from Google Code to IRODS SVN 

  Consolidation in SVN for Jargon 2.2.0. 
  Collection of accumulated patches 
  Addition of unit testing 
  Some restructuring of build 

  Main purpose – create canonical version and lay 
groundwork for increasingly aggressive changes. 



Recent History – Jargon 2.2.1 

  Collect all known patches and reported bugs. 
  As many tests as could be written in the time 

period. 
  Main purpose 

  Establish a level of stability. 
  Develop an 'SOP' for Jargon releases. 



Recent History – Jargon 2.3.0 

  Close on the heels of Jargon 2.2.1 
  Not a lot of time to make big changes 
  Still a somewhat 'conservative' approach 
  Don't break stuff 

  More tests, including some 'functional' tests. 
  Multiple 'unreported' bugs caught by testing 
  Testing pays off with a much easier validation of 

the new IRODS Release 
  Backward compatability testing now part of SOP 



Today –  
Jargon 2.3.1  

 Jargon trunk will carry patches to most recent release, and will be 
test-compliant at all times 

  No patches!  Grab the trunk and go 
  The trunk will always be 'better' then the last release 

 Jargon 2.3.1 is a branch and feature release.  (approx 1 month 
away).  

 Main purpose 

  Get rid of baggage where we can 
  New IRODS 2.3 feature support 
  Refactoring more aggressive as testing better 



Today  
Starting with a perspective 

  I knew some IRODS from 
enginFrame project 

  I knew nothing of Jargon 
  Background in enterprise Java 

development 



Before taking about issues 

  #1 – Props to Lucas 
  The XML protocol is complex, with many 

subtle twists. 
  Jargon has been used for a while, and that 

experience is embedded within the code. 

Yes, I know, it's just a simple function to display a 
window, but it has grown little hairs and stuff on it and 
nobody knows why. Well, I'll tell you why: those are 
bug fixes. 

-Joel on Software 



Issues confronting developers 
and IRODS domain users 

  Jargon is hard to use, especially for folks new 
to IRODS. 

  IRODS is (necessarily) complex and feature-
rich. 

  Software development has moved on: 
  IoC 
  Testability (mocks, unit testing) 
  Mid-tier standards 
  SOAP and REST-ful services 



Issues 
Interfaces – GUI and API 

  Command line doesn't cut it, expectations 
have changed & IRODS has sophisticated 
capabilities. 

  We can't create a one-size-fits-all GUI 
interface, and the call for new/custom 
interfaces will only grow. 

   Public vs. private API, redundant pathways. 
  Where is the boundary? 
  DRY!!!! 



A mission statement 

Jargon will be a tool that feels familiar to developers, 
admins, and archivists, and that helps open up the 
IRODS data grid to new domains.   

Jargon will provide a clean foundation that enables new 
kinds of integration, and plays well with established 
and emerging platforms and standards. 

Jargon is a stack that works with mature open source 
tools to extend IRODS interfaces. 

The real action is IRODS, and Jargon will not get in the 
way. 



Roadmap 
Jargon is a stack 



Stack elements 

  jargon.core.* 
  Connections 
  low-level code 
  XML protocol 



Stack elements 

  jargon.core low-
level sevices 

  Abstract 'meta' 
interaction 
modes 

  Mockable to 
points above 

  Example: 
General Query 



Stack elements 

  Public API 
boundary 

  Only services 
and POJO's 
visible 

  No String[][] 
  No Tag{} 
  No sockets or 

packing 
instructions 



Stack elements 

  Access objects and 
AO's composed 
into high-level 
services 



Services and AO's 

  Styled after Hibernate 
DAO's 

  POJO's in and out of 
simple methods 

  AO's composable into 
services inside or 
outside of 'Jargon'. 

  Automatically manage 
connection. 

Session frame open 

Access object 

Access object 

Access object 

Session frame close 



Public API 
Easier to use? 

public interface ResourceAO { 

 List<Resource> listResourcesInZone(String 
zoneName) throws JargonException; 

 Resource getFirstResourceForIRODSFile(IRODSFile 
irodsFile) throws JargonException, 
DataNotFoundException; 

} 



Stack elements 

  Above the AO and 
service level 

  Your development 
  Integration libraries 
  GUI 



Stack Elements 
Integration libraries 

  DuraSpace 
integration as an 
example 

  Use Jargon 
services to 
integrate IRODS 
with Fedora 

  Other libraries 
could follow 



Stack Elements 
Rich integration 

  Islandora as an 
example 

  Leverage 
integration 
through Akubra to 
present IRODS to 
Islandora 

  Extend through 
REST-ful access 
to IRODS-specific 
functionality 



Stack Elements 
jargon.lingo 

  Out-of-the box web interface 
  Driver for stack 

development 
  Spring MVC and AJAX 
  JQuery 

  Demo 



Stack Elements 
jargon.lingo 

From web to REST-ful interface 
@RequestMapping("/hotels/{hotelId}") 

public String getHotel(@PathVariable String hotelId, Model model) { 

      List<Hotel> hotels = hotelService.getHotels(); 

      model.addAttribute("hotels", hotels); 

      return "hotels"; 

} 



Stack Elements 
jargon.lingo 

 SOAP/WS-* 
 I don't know specifically yet 

 Axis 
 Metro 
 Spring Web Services 

 Somewhat out-of-scope in that mature 
tools can implement 



Tactics 

 More tests, quality improvement. 
 Parallel development of prototype to define new 
API and drive mainstream refactoring. 

  New web admin built on prototype 
  Akubra built on prototype 

 Improvements move into code stream.   
  Refactoring, testability 
  Code starts to mature 
  Solid launching point for future. 



Stack elements 

  Your apps, Your 
GUI's!!! 

  Important that 
Jargon is an 
effective 
enabler. 

  Important to test 
to run on 
commodity 
platforms such 
as Tomcat, 
Jetty, Glassfish, 
JBoss 



Stack elements 

  We cannot predict 
your app, but we 
can observe 
standards and 
practices!!! 

  Jargon should 
enable YOUR 
toolkit. 



Stack elements 

  I am an XXX 
developer...what about 
me? 

  SOAP/REST 

  Messaging? 

  Dynamic Languages on 
JVM 

  Jython 
  Groovy 
  Jruby 
  Scala 



Tactics 

 Push prototype elements into code stream now 
  Packing instructions factored out 
  Current code broken up into smaller components for 

reuse 
  Transitional implementation of 'low-level' services 

 Parallel development of Jargon X powering web 
interface and Akubra 

  Steer current Jargon towards prototype architecture 
and cross-pollinate streams 



Jargon X 

2.3.1 Jargon X Prototype 

2.3.2 

2.4? Jargon X.X SVN 

Code 

Make improvements now based on prototype, get into code stream 
for branching down the road. 



Discussion 

 Doing this right! 
  Use as much code in Jargon enhancements now 
  Break up Jargon into smaller components 

  Better testing now 
  Better re-use 

  Develop real things with Jargon X  
  Eat our own dog-food 
  Build needed capability 



Discussion 

  Where to set the dial??? 



Discussion 

 How to engage as a community 
  If open source = better software, how can we enhance 

participation and leverage the community? 
  Other committers? 
  Environment for development 

  Testing 
  Continuous build 
  Process 
  Tools 



Discussion 

 Designing an interface for 
  Admin 
  User 
  Archivist 

 As Jargon-Lingo interface development launches, how can 
we collaboratively design it? 
 Other modalities? 

  SysTray 'icon'? 
  Islandora? 



Discussion 

 IRODS/Jargon relationship 
  Leveraging IRODS 
  Actions should run with data 
  IRODS interfaces outside of Jargon scope 

  What is available from Jargon, what is presented from IRODS 
server mechanisms 

 Mapping an IRODS Service Model 
  Jargon is part of a much larger stack, what is Jargon's 

role? 
  What would a service model look like? 



Code and Nuts and Bolts   

 Connection handling 
 Architecture 
 Optimization 

  Code optimization 
  Networking optimization 

 Jargon-x on SVN 



Thanks! 

 Your comments, needs, concerns are valuable 
 This will not work without you! 
 This presentation is as much a question as an 
answer, look at the prototype! 
 Help make Jargon work  

  Contribute and Commit 
  Review and Test 
  Provide use cases 
  Migrate your code into the Jargon stream 


