
Enhancing iRODS Integration:
Jargon and an Evolving iRODS

Service Model

Mike Conway
DICE Center – UNC-CH

IRODS User Meeting 2010

michael_conway@unc.edu
Skype: michael.c.conway

Overview

  Up until today – recent history
  Today – perspectives and issues
  Roadmap – target architecture and

getting there
  Discussion, doing this right...

Recent History – Jargon 2.2.0

  Jargon had been in a holding pattern and
transitioning from Google Code to IRODS SVN

  Consolidation in SVN for Jargon 2.2.0.
  Collection of accumulated patches
  Addition of unit testing
  Some restructuring of build

  Main purpose – create canonical version and lay
groundwork for increasingly aggressive changes.

Recent History – Jargon 2.2.1

  Collect all known patches and reported bugs.
  As many tests as could be written in the time

period.
  Main purpose

  Establish a level of stability.
  Develop an 'SOP' for Jargon releases.

Recent History – Jargon 2.3.0

  Close on the heels of Jargon 2.2.1
  Not a lot of time to make big changes
  Still a somewhat 'conservative' approach
  Don't break stuff

  More tests, including some 'functional' tests.
  Multiple 'unreported' bugs caught by testing
  Testing pays off with a much easier validation of

the new IRODS Release
  Backward compatability testing now part of SOP

Today –
Jargon 2.3.1

 Jargon trunk will carry patches to most recent release, and will be
test-compliant at all times

  No patches! Grab the trunk and go
  The trunk will always be 'better' then the last release

 Jargon 2.3.1 is a branch and feature release. (approx 1 month
away).

 Main purpose

  Get rid of baggage where we can
  New IRODS 2.3 feature support
  Refactoring more aggressive as testing better

Today
Starting with a perspective

  I knew some IRODS from
enginFrame project

  I knew nothing of Jargon
  Background in enterprise Java

development

Before taking about issues

  #1 – Props to Lucas
  The XML protocol is complex, with many

subtle twists.
  Jargon has been used for a while, and that

experience is embedded within the code.

Yes, I know, it's just a simple function to display a
window, but it has grown little hairs and stuff on it and
nobody knows why. Well, I'll tell you why: those are
bug fixes.

-Joel on Software

Issues confronting developers
and IRODS domain users

  Jargon is hard to use, especially for folks new
to IRODS.

  IRODS is (necessarily) complex and feature-
rich.

  Software development has moved on:
  IoC
  Testability (mocks, unit testing)
  Mid-tier standards
  SOAP and REST-ful services

Issues
Interfaces – GUI and API

  Command line doesn't cut it, expectations
have changed & IRODS has sophisticated
capabilities.

  We can't create a one-size-fits-all GUI
interface, and the call for new/custom
interfaces will only grow.

  Public vs. private API, redundant pathways.
  Where is the boundary?
  DRY!!!!

A mission statement

Jargon will be a tool that feels familiar to developers,
admins, and archivists, and that helps open up the
IRODS data grid to new domains.

Jargon will provide a clean foundation that enables new
kinds of integration, and plays well with established
and emerging platforms and standards.

Jargon is a stack that works with mature open source
tools to extend IRODS interfaces.

The real action is IRODS, and Jargon will not get in the
way.

Roadmap
Jargon is a stack

Stack elements

  jargon.core.*
  Connections
  low-level code
  XML protocol

Stack elements

  jargon.core low-
level sevices

  Abstract 'meta'
interaction
modes

  Mockable to
points above

  Example:
General Query

Stack elements

  Public API
boundary

  Only services
and POJO's
visible

  No String[][]
  No Tag{}
  No sockets or

packing
instructions

Stack elements

  Access objects and
AO's composed
into high-level
services

Services and AO's

  Styled after Hibernate
DAO's

  POJO's in and out of
simple methods

  AO's composable into
services inside or
outside of 'Jargon'.

  Automatically manage
connection.

Session frame open

Access object

Access object

Access object

Session frame close

Public API
Easier to use?

public interface ResourceAO {

 List<Resource> listResourcesInZone(String
zoneName) throws JargonException;

 Resource getFirstResourceForIRODSFile(IRODSFile
irodsFile) throws JargonException,
DataNotFoundException;

}

Stack elements

  Above the AO and
service level

  Your development
  Integration libraries
  GUI

Stack Elements
Integration libraries

  DuraSpace
integration as an
example

  Use Jargon
services to
integrate IRODS
with Fedora

  Other libraries
could follow

Stack Elements
Rich integration

  Islandora as an
example

  Leverage
integration
through Akubra to
present IRODS to
Islandora

  Extend through
REST-ful access
to IRODS-specific
functionality

Stack Elements
jargon.lingo

  Out-of-the box web interface
  Driver for stack

development
  Spring MVC and AJAX
  JQuery

  Demo

Stack Elements
jargon.lingo

From web to REST-ful interface
@RequestMapping("/hotels/{hotelId}")

public String getHotel(@PathVariable String hotelId, Model model) {

 List<Hotel> hotels = hotelService.getHotels();

 model.addAttribute("hotels", hotels);

 return "hotels";

}

Stack Elements
jargon.lingo

 SOAP/WS-*
 I don't know specifically yet

 Axis
 Metro
 Spring Web Services

 Somewhat out-of-scope in that mature
tools can implement

Tactics

 More tests, quality improvement.
 Parallel development of prototype to define new
API and drive mainstream refactoring.

  New web admin built on prototype
  Akubra built on prototype

 Improvements move into code stream.
  Refactoring, testability
  Code starts to mature
  Solid launching point for future.

Stack elements

  Your apps, Your
GUI's!!!

  Important that
Jargon is an
effective
enabler.

  Important to test
to run on
commodity
platforms such
as Tomcat,
Jetty, Glassfish,
JBoss

Stack elements

  We cannot predict
your app, but we
can observe
standards and
practices!!!

  Jargon should
enable YOUR
toolkit.

Stack elements

  I am an XXX
developer...what about
me?

  SOAP/REST

  Messaging?

  Dynamic Languages on
JVM

  Jython
  Groovy
  Jruby
  Scala

Tactics

 Push prototype elements into code stream now
  Packing instructions factored out
  Current code broken up into smaller components for

reuse
  Transitional implementation of 'low-level' services

 Parallel development of Jargon X powering web
interface and Akubra

  Steer current Jargon towards prototype architecture
and cross-pollinate streams

Jargon X

2.3.1 Jargon X Prototype

2.3.2

2.4? Jargon X.X SVN

Code

Make improvements now based on prototype, get into code stream
for branching down the road.

Discussion

 Doing this right!
  Use as much code in Jargon enhancements now
  Break up Jargon into smaller components

  Better testing now
  Better re-use

  Develop real things with Jargon X
  Eat our own dog-food
  Build needed capability

Discussion

  Where to set the dial???

Discussion

 How to engage as a community
  If open source = better software, how can we enhance

participation and leverage the community?
  Other committers?
  Environment for development

  Testing
  Continuous build
  Process
  Tools

Discussion

 Designing an interface for
  Admin
  User
  Archivist

 As Jargon-Lingo interface development launches, how can
we collaboratively design it?
 Other modalities?

  SysTray 'icon'?
  Islandora?

Discussion

 IRODS/Jargon relationship
  Leveraging IRODS
  Actions should run with data
  IRODS interfaces outside of Jargon scope

  What is available from Jargon, what is presented from IRODS
server mechanisms

 Mapping an IRODS Service Model
  Jargon is part of a much larger stack, what is Jargon's

role?
  What would a service model look like?

Code and Nuts and Bolts

 Connection handling
 Architecture
 Optimization

  Code optimization
  Networking optimization

 Jargon-x on SVN

Thanks!

 Your comments, needs, concerns are valuable
 This will not work without you!
 This presentation is as much a question as an
answer, look at the prototype!
 Help make Jargon work

  Contribute and Commit
  Review and Test
  Provide use cases
  Migrate your code into the Jargon stream

