
High Availability iRODS System (HAIRS)

Yutaka Kawai* Adil Hasan#
* Computing Research Center, High Energy Accelerator Research Organization (KEK)

School of English, University of Liverpool

Abstract

The integrated Rule Oriented Data Management
System (iRODS) is a policy-driven data management
system that is starting to be used by projects with large
data volume requirements that require a highly available
system. In this paper we describe an approach to provide
a Highly Availability load-balanced iRODS System
(HAIRS). We also describe the advantages and
disadvantages of the approach and future work.

Index Keyword Terms— High Availability,
UltraMonkey, PgPool, Director, ldirectord, ipvsadm

1. Introduction

The integrated Rule Oriented Data Management
System (iRODS) [6] is an open-source, policy-driven
distributed data management system developed by the
Data Intensive Cyber Environments group that insulates
its’ users from changes to the physical components of the
system. Interaction with data stored in the iRODS system
is done using logical file-names and storage names. The
iRODS system takes care of the translation from the
logical to the physical name. Changes to the physical
location of a file only requires the logical-to-physical file
mapping to be updated.

Changes to the physical storage resource require an
update to the logical-to-physical storage resource
mapping and, if required, the implementation of a new
iRODS driver that is able to translate iRODS file
commands to those used by the physical storage
resource. In this way iRODS provides a uniform
interface to heterogeneous storage resources. In addition
to a virtual file-system iRODS also provides the
possibility to impose a series of directives (collective
called policies, or rules) on the data stored. In keeping
with the iRODS philosophy the rules are defined in a
high-level, fully-featured language with each step of the
rule implemented as a C-base service (termed a micro-
service).The rule is insulated from changes to the
underlying micro-services.

An iRODS system consists of one iRODS server that
communicates directly with the iRODS Metadata Catalog
(iCAT) database and an iRODS server running on each
storage resource. All iRODS servers require an iRODS
rule engine that executes the triggered rules. An iRODS
system can be federated with another iRODS system
providing seamless access to data stored in a remote
iRODS system. The iRODS is starting to be used by
projects with large numbers of users and with large data
volume requirements in Japan [10, 11, 14], France [10,
4], the USA [10, 18] and Australia [1]. Such projects
operate in an ‘always-on’ mode and cannot tolerate a
failure in accessing the data. Within iRODS a failure of a
single storage resource can be mitigated by replicating
the data over more than one resource. But, the iCAT and
the iCAT-enabled iRODS server remain as a single point
of failure. If the iCAT database is down, or if the iCAT
enabled server is offline the iRODS system cannot be
used.

In Section 2 we describe the approach of database
replication to mitigate against iCAT server failure and in
Sections 3 we describe the approaches to mitigate against
iCAT-enabled server failure. Section 4 describes some of
the tests we performed in order to determine the impact
of the approach and Section 5 outlines future work.

2. Redundant iCAT

The iRODS Metadata Catalogue (iCAT) contains all
the information necessary to manage files stored in
iRODS. The iCAT is implemented as a set of tables in a
PostgreSQL, ORACLE or MySQL database. Only one
iCAT exists per iRODS system and, as such, forms a
single point of failure. Implementing database replication
techniques can eliminate this critical point.

The Australian Research Collaborative Service has
implemented PostgreSQL database replication for the
iCAT using PgPool [9]. The procedure essentially
requires setting up two iCAT PostgreSQL databases that
are replicated via PgPool as shown in figure 1. The iCAT
databases are interfaced to two iRODS servers A and B,
and clients can connect to either server. Any

Figure 1. iRODS High Availability using PgPool.

Figure 2. Failure situation: iRODS server A is down.

changes to either iCAT are automatically replicated to
the other iCAT.

A similar approach can be used for an iRODS that
uses MySQL [16], while Oracle provides its own
mechanisms for replicating databases [15].

This approach is extremely useful for creating a
fault-tolerant iCAT although it requires the client to
actively know which iRODS-enabled ICAT server they
are connected to and to alter their configuration if their
default server is down (see figure 2). In Section 3 we
describe an approach that addresses this problem.

3. Redundant iCAT Enabled iRODS Server

An iRODS consists of only one iRODS server that

interfaces to the iCAT. Like the iCAT this server is also a
critical component of the iRODS and redundancy of this
server would eliminate this single point of failure. By
making use of a load-balancer application [12] one can
create a redundant pool of servers with a single point of
entry for the client application. In this way the client does
not need to remember which set of servers belong to the
pool and new servers can be added to the pool as
required allowing the system to scale with increasing
load.

There are a number of load-balancers available that
enable a redundant system to be built, these split along
hardware or software lines. For example, the CISCO
CATALYST 6500 [2] hardware component, can do
Layer 4 switching and has load-balancing algorithms.
Hardware load-balancers are high-performance, robust

and tend to be expensive. Examples of software load-
balancers are HAProxy [3] that supports http, ssh etc
protocols and Ultra Monkey [17] that provides support
for a wide range of protocols. At the time of writing
HAProxy does not provide support for simple-TCP based
protocols on which the iRODS protocol is based and so
Ultra Monkey was used in this study.

The approach used in this paper is to make use of a
software load-balancer and adapt it to provide a pool of
iCAT enabled iRODS servers that are mapped to a
virtual server which the client connects to. This approach
ensures that if one server is unavailable the client will be
directed to the next available server.

Ultra Monkey is a Linux-based load-balancer that
makes use of Linux Virtual Server [13] to provide a fast
load-balancer implemented as the Linux Director as
shown in figure 3. The Linux Director ideally runs on a
separate server and essentially contains a list of real
servers which are regularly polled. Clients connect to the
director which then forwards requests to the least loaded
server. If one of the servers is overloaded or down the
client is automatically redirected to another server in the
pool. The Linux Director is only used to establish a
connection between the client and the least-loaded,
working iRODS server. Once the connection has been
established iRODS takes over to complete the
interaction. This ensures that the extra cost (in time) due
to the Linux Director is minimal.

In this way the iRODS system can scale with
increasing load as new iRODS servers can be added to
the pool as needed without the client needing to update
their configuration. The following sections describe the
load-balancer setup used in this work.

3.1. Network Configuration

The network configuration of the load-balancer is
shown in figure 4 and in tables 1 and 2. The Linux
Director is installed on a separate server and behaves as a
virtual iRODS server that maps the client request to a
real iRODS server (it behaves effectively as a Network
Address Translation device). The Linux Director and the
iRODS servers need to be in the same domain as the
load-balancer cannot span different domains (i.e. the
Linux Director cannot load-balance over a pool of
servers that are located in different administrative
domains).

Figure 3. Solution using Director.

Figure 4. Example: Network Configuration

IP address Description
192.168.1.171 Linux Director for 192.168.1.0/24

network
192.168.1.191 Virtual Server
192.168.1.170 iRODS Client

Table 1. Network 192.168.1.0/24

IP address Description
192.168.1.171 Linux Director for 192.168.2.0/24

network
192.168.1.191 iRODS Real Server 1
192.168.1.170 iRODS Real Server 2

Table 2. Network 192.168.2.0/24

3.2. Linux Director Installation

The Linux Director was installed on a CentOS5
Linux server. In addition to the Linux Director server
application the following applications need to be
installed (more details can be found on the Ultra Monkey
web site [17]):

- heartbeat: runs on the Linux Director server
and polls the iRODS servers to determine
their load.

- heartbeat-ldirectord: interfaces the heartbeat
application to the Linux Director to allow
clients to be directed to the least loaded
server.

- heartbeat-pils: plug-in interface application
to interface to the Linux Director.

- heartbeat-stonith: used to remotely power
down a node in the pool.

- Ipvsadm: administers IP virtual server
services offered by the Linux kernel.

- Libnet: utilities to help with managing
network packets.

Figure 5. Routine strings iRODS server returns

There are several things to care about when
installing the Linux Director for an iRODS system. The
Linux Director daemon ldirectord reads its configurations
from the configuration file ldirectord.cf which, by default
is be installed in /etc/ha.d. The configuration file contains
the list of iRODS servers that the Linux Director must
map the client to. In order for Ultra Monkey to work with
the iRODS protocol the “service” flag in the ldirectord.cf
file should be “simpletcp”. The iRODS server returns
routine messages whenever it receives any message from
a client (figure 5). Therefore, the “request” flag in the
ldirectord.cf can contain any client request (the iRODS
ils client command was used as this interacted with the
metadata catalogue and ensured the whole system was
functioning). The “receive” flag should be specified as
“RODS VERSION” which is a part of the iRODS server
response. An example of the ldirectord.cf file is shown in
figure 6.

Figure 6. An example of ldirectord.cf.

checktimeout=10
checkinterval=2
autoreload=yes
logfile="/var/log/ldirectord.log"
logfile="local0"
quiescent=no

virtual=192.168.1.191:1247
 real=192.168.2.181:1247 masq
 real=192.168.2.182:1247 masq
 protocol=tcp
 service=simpletcp
 request="test"
 receive="RODS_VERSION"
 scheduler=lc
 checktype=negotiate
 netmask=255.255.255.255

<MsgHeader_PI>
<type>RODS_VERSION</type>
<msgLen>182</msgLen>
<errorLen>0</errorLen>
<bsLen>0</bsLen>
<intInfo>0</intInfo>
</MsgHeader_PI>
<Version_PI>
<status>-4000</status>
<relVersion>rods2.1</relVersion>
<apiVersion>d</apiVersion>
<reconnPort>0</reconnPort>
<reconnAddr></reconnAddr>
<cookie>0</cookie>
</Version_PI>

The ipvsadm (Linux Virtual Server administration)
command can have one of ten types of scheduling-
method [5]. It is configured by the flag “scheduler”, table
3 shows a list of the scheduling methods ldirectord can
configure. The ldirectord configuration in the figure 6
specifies “lc” to assign more jobs to real servers with
fewer active jobs.

Scheduler Flag Scheduling Method
rr Round Robin
wrr Weighted Round Robin
lc Least-Connection
wls Weighted Least-Connection
lblc Locality-Based Least-Connection
lblcr Locality-Based Least-Connection

with Replication
dh Destination Hashing
sh Source Hashing
sed Shortest Expected Delay
nq Never Queue

Table 3. ipvsadm scheduling-method Algorithm.

4. Tests

In this section we describe the tests carried out to

determine the performance impact of the load-balancer.
The first test addresses the impact of the load-balancer on
the transfer of large files and the second concerns the
overhead the load-balancer places on client interaction
with the iRODS server. Both tests made use of the client
C-based iRODS utilities (“icommands”) that form part of
the iRODS suite [8].

4.1. Large File Transfer

The “iput” command is used to store a file into an
iRODS system. By default, if the file size is larger than
32 MB, iput performs the transfer in parallel [7]. In this
case the data transfer is carried out directly between the
physical resource and the client as shown in figure 7:

1. Client issues iput with a large file.
2. Server A finds the physical location to store the

file.
3. Server A directs the other iRODS Server C with

the physical storage to open parallel I/O ports.
4. File transfer starts between Client and Server C.
Redundancy of iRODS storage servers is provided

by replicating data over more than one storage server and
so the load-balancer does not need to be configured to
provide redundancy for these servers; only for the
iRODS iCAT-enabled server. This greatly simplifies the
configuration as shown in figure 8 as the ports that the
large file transfers occur on do not need to be mapped in
the Linux Director configuration.

Figure 7. Large file transfer: Normal case.

The configuration is almost exactly as in figure 7

except that the Linux Director forwards the client
connection to an iRODS server which then forwards the
request to the target storage system. This setup limits the
complexity of the configuration of the Linux Director
and eliminates the impact of the load-balancer on the
transfer of large files. In our tests files of 1GB in size
were successfully stored in iRODS with the client.

Figure 8. Large file transfer: The case using director.

4.2. Load-balancer Overhead

The iRODS suite contains a package for performing
concurrent tests on an iRODS system. This package was
used to understand the overhead the load-balancer places
on an iRODS system. The concurrent test sequentially
executes several icommands, iput (to store data), imeta
(to query the metadata catalogue), iget (to retrieve data),
and imv (to move data from one iRODS resource to
another). The concurrent tests were performed for 1, 10,
50 and 100-1000 clients. The network configuration is
the same as the example in the previous sections (figure
4). Physically, all the iRODS servers are Xen virtual
machines on the same physical machine and the only
iRODS client is on the different physical machine. This

can have a non-trivial and noticeable effect on the results
of the tests.

Three series of tests were performed to understand
the impact of the load-balancer:

case1: Normal case. The iRODS client directly
accesses one iRODS server.
case2: Using a director. The iRODS client accesses
one iRODS server through the Linux Director.
case3: Load sharing case. The iRODS client
accesses two iRODS servers through the Linux
Director.

In order to get the average values, the concurrent-test
program is executed three times for each test. The figure
9 shows the results of the tests. The case 2 is about 10%
slower than the normal case 1 so the impact of the speed
performance by using director should be considered.
However, while considering optimization of Director
implementation, controlling tradeoff between access
speed and benefits of high availability becomes practical.

Figure 9. Speed Performance Test Results.

5. Conclusion and Future work

This paper has described how a highly available
iRODS system can be implemented with a load-balancer
with negligible impact to the client. The impact of the
load-balancer on the performance of the iRODS system
is minimal and should be considered in the case where a
highly available system is needed. Although the approach
described was for the Ultra Monkey load-balancer we
believe the same approach can be used for any other
load-balancer. In addition this approach can also result in
a highly scalable iRODS system that can grow with
increasing load.

One area that we consider to be limiting is the
restriction of the redundant iRODS servers to be within
the same domain. A truly high availability system would
try to eliminate domain-specific problems by having a
pool of servers that span multiple domains. This is an
area we are looking at addressing in the future. We are

also looking at applying the concept of HAIRS to other
catalog services such as the RNS (Resource Namespace
Service) application, Gfarm (Grid Data Farm), etc.

6. Acknowledgment

The authors would like to thank to Prof.Takashi
Sasaki and Yoshimi Iida. Prof.Sasaki coordinated the
study. Ms.Iida gave us valuable support for the iRODS
setup in KEK. Adil Hasan is also grateful to the KEK
institute for their kind hospitality and to the KEK Short-
term Visiting Scientist program financial support during
the course of this study.

7. References

[1] Australian Research Collaboration Service. Online.
http://projects.arcs.org.au/trac/podd/wiki/iRODS.
[2] CISCO CATALYST 6500 SERIES CONTENT
SWITCHING MODULE. Online.
http://www.cisco.com/en/US/products/hw/modules/ps2706/pro
ducts_data_sheet09186a00800887f3.html.
[3] HAProxy - The Reliable, High Performance TCP/HTTP
Load Balancer. Online. http://haproxy.1wt.eu/.
[4] IN2P3 – National Institute of Nuclear Physics and Particle
Physics. Online. http://cc.in2p3.fr/?lang=en.
[5] ipvsadm(8) - Linux man page, scheduler option. Online.
http://linux.die.net/man/8/ipvsadm.
[6] iRODS – the Integrated Rule-Oriented Data System. Online.
http://www.irods.org.
[7] iRODS file transfer. Online.
https://www.irods.org/index.php/iRods_file_transfer.
[8] iRODS icommands. Online.
https://www.irods.org/index.php/icommands.
[9] iRODS Master/Slave Replication with pgpool. Online.
https://projects.arcs.org.au/trac/systems/wiki/DataServices/iRO
DS_Replication_Pgpool.
[10] Projects Using and Developing iRODS. Online.
http://www.diceresearch.org/DICE_Site/iRODS_Uses.html.
[11] KEK – High Energy Accelerator Research Organization,
KEK. Online. http://www.kek.jp/intra-e/index.html.
[12] Load balancing (computing).
http://en.wikipedia.org/wiki/Load_balancing_%28computing%
29.
[13] The Linux Virtual Server. Online.
http://www.linuxvirtualserver.org/.
[14] Lyon-KEK. Online.
https://www.irods.org/index.php/Lyon-KEK.
[15] P. McElroy and M. Pratt. Oracle Database 11g: Oracle
Streams Replication. Technical report, Oracle, 2007.
http://www.oracle.com/technology/products/dataint/pdf/twp_str
eams_replication_11gr1.pdf.
[16] MySQL Master Master Replication. Online.
http://www.howtoforge.com/mysql_master_master_replication.
[17] UltraMonkey, Load Balancing and High Availability
Solution. Online. http://www.ultramonkey.org/.
[18] Information Technology Services for The University of
North Carolina at Chapel Hill. Online.
http://its.unc.edu/its/index.htm.

