
1

iRODS Micro-Services

Reagan Moore

{moore, sekar, mwan, schroeder, bzhu, ptooby, antoine,
sheauc}@diceresearch.org

{chienyi, marciano, michael_conway}@email.unc.edu

Implications

•  iRODS policies are enforced at the
remote storage location

•  Equivalent of a distributed operating
systems is needed
•  State information
•  In-memory data structures
•  Message system
•  Rule queuing
•  Scheduling
•  Remote execution

3

iRODS - Distributed Operating System

Simplification

•  Compose well-defined procedures
•  Control execution of procedures through

computer actionable rules

•  Remote procedures constructed by
chaining micro-services together
•  Micro-services are functions encoded in C
•  Strongly “typed”, explicit knowledge of the

information structures used by each micro-
service

•  Explicit names for state information

List of Micro-services (~185)

•  irule -F listMS.ir

List_Available_MS
 {
 msiListEnabledMS(*KVPairs)
 writeKeyValPairs(stdout, *KVPairs, ": ")
 }
 INPUT *A=null
 OUTPUT ruleExecOut

Micro-Service Examples

•  msiDataObjRepl
•  msiDataObjCopy
•  msiGetObjType
•  msiAssociateKeyValuePairsToObj
•  msiExtractTemplateMDFromBuf
•  msiCollCreate
•  msiNoTrashCan
•  delayExec
•  remoteExec
•  forEachExec
•  msiSleep
•  writeLine

Variables

•  Variables, used to describe input and output
parameters
•  Labeled with an “*”

•  Session variables, used to define attributes
related to the session
•  List of available session variables in iRODS Primer
•  Labeled with a “$”

•  Persistent state variables, used to define
attributes that are permanently stored in iCAT
metadata catalog
•  List of available persistent state variables in iRODS

Primer

Session Variables

•  Availability depends upon the action that is
being performed

•  Interactive rule execution provides a limited set
of session variables
•  userNameClient
•  rodsZoneClient

•  If invoke an action related to file manipulation,
get session variables for
•  objPath
•  replNum
•  dataSize
•  chksum

Persistent State Variables

•  Can be listed using the icommand
•  iquest attrs

•  Examples include
•  DATA_NAME
•  DATA_SIZE
•  DATA_CHECKSUM
•  DATA_PATH
•  DATA_REPL_NUM
•  DATA_RESC_NAME
•  DATA_VERSION

Implication - Structured Information

•  Each micro-service ingests and outputs
structured information
•  Explicit in-memory data structures defined

for exchanging structured information
•  Need to check micro-service is being given

the correct data structure type

•  Doxygen lists the structures used for
each micro-service

Data Checksum Micro-service
•  msiDataObjChksum (msParam_t * inpParam1,
•  msParam_t * msKeyValStr,
•  msParam_t * outParam,
•  ruleExecInfo_t * rei
• )
•  [in] inpParam1 - A DataObjInp_MS_T or a STR_MS_T which would be

 taken as dataObj path.
•  [in] msKeyValStr - Optional - a STR_MS_T. This is the special msKeyValStr

format of keyWd1=value1++++keyWd2=value2++++keyWd3=value3... If the keyWd
is not specified (without the '=' char), the value is assumed to be the target resource
("destRescName") for backward compatibility. Valid keyWds are:

•  * "ChksumAll" - checksum all replicas. This keyWd has no value. But the '='
 character is still needed.
•  * "verifyChksum" - verify the chksum value.
•  * "forceChksum" - checksum data-objects even if a checksum already exists in iCAT.
 This keyWd has no value.
•  * "replNum" - the replica number to checksum. This keyWd has no value.
•  [out] outParam - a STR_MS_T containing the chksum value.
•  [in,out] rei - The RuleExecInfo structure that is automatically handled by

 the rule engine.

Infrastructure Independence

•  Micro-services manipulate structures in
memory
•  iRODS framework maps from requested I/O

operations to Posix-style I/O
•  iRODS drivers map the Posix-style I/O to the

specific storage protocol

•  Implication
•  Same micro-service runs on Windows, Unix,

Linux, Mac operating system
•  Procedures can be executed across any of

the linked operating systems

13

Map from actions
requested by the access
method to a standard
set of Micro-services.

Map the standard
Micro-services to
standard operations.

Map the operations to
protocol supported by
the operating system.

Wednesday afternoon

•  Session on writing a new micro-service

•  Developing a book that will list for each
micro-service:
•  Input parameters / structures
•  Output parameters / structures
•  Persistent state information that is set
•  Operations performed upon files

