
Conceptualizing Policy-Driven Repository Interoperability (PoDRI)
Using iRODS and Fedora

David Pcolar
Carolina Digital Repository (CDR)
UNC Chapel Hill
david_pcolar@unc.edu

Daniel W. Davis
Cornell Information Sciences (CIS)
DuraSpace Affiliate
dwdavis@cs.cornell.edu

Bing Zhu
Data Intensive Cyber Environments
(DICE)
University of California: San Diego
bizhu@ucsd.edu

Alexandra Chassanoff
School of Information & Library
Science (SILS)
UNC Chapel Hill
achass@email.unc.edu

Chien-Yi Hou
Sustainable Archives & Leveraging
Technologies (SALT)
UNC Chapel Hill
chienyi@unc.edu

Richard Marciano
Sustainable Archives & Leveraging
Technologies (SALT)
UNC Chapel Hill
richard_marciano@unc.edu

Abstract
Given the growing need for cross-repository

integration to enable a trusted, scalable, open and
distributed content infrastructure, this paper introduces
the Policy-Driven Repository Interoperability (PoDRI)
project investigating interoperability mechanisms
between repositories at the policy level. Simply moving
digital content from one repository to another may not
capture the essential management policies needed to
ensure its integrity and authenticity. This project is
focused on integrating policy-aware object models,
including policy expressions, and a distributed
architecture for policy-driven management,
demonstrated using iRODS and Fedora as representative
open source software products. Using iRODS and its
Rules engine, combined with Fedora’s rich semantic
object model for digital objects, enables use of the best
features of both products.

Index Keyword Terms—iRODS, Fedora,
Preservation, Policy Management

1. Introduction
This paper introduces the Policy-Driven Repository

Interoperability (PoDRI) project, investigating inter–
operability between repositories at the policy level.
PoDRI is led by the University of North Carolina at
UNC, with units ranging from SALT (Sustainable
Archives & Leveraging Technologies), RENCI
(Renaissance Computing Institute), SILS (School of
Information and Library Science), and the
Libraries/CDR (Carolina Digital Repository). Key
partners include Bing Zhu at UCSD (DICE, Data
Intensive Cyber Environments) and Daniel Davis at
DuraSpace (combining DSpace and Fedora Commons)
and Cornell Information Sciences. The project is
sponsored by an Institute of Museum and Library
Services (IMLS) National Leadership grant and is

motivated by the growing need to create a scalable,
open, and distributed infrastructure that provides
durable, trusted access and management of our valuable
digital content of all kinds (e.g. research data sets,
documents, video, metadata).

Simply replicating digital content from one
repository, with or without any associated metadata, may
not capture the essential management policies that
ensure integrity and authenticity, a critical requirement
for establishing a trust model. “A policy is typically a
rule describing the interactions of actions that take place
within the archive, or a constraint determining when and
by whom an action may be taken.” [1]. A distributed
policy management architecture is an essential
component in realizing a trust mechanism for repository
interoperability. The PoDRI project investigates the
requirements for policy-aware interoperability and
demonstrates key features needed for its implementation.
The project is focused on integrating object models,
including interoperable policy expressions, and a policy-
aware distributed architecture that includes both
repositories and middleware services.

The PoDRI project addresses the following research
problem: What is the feasibility of repository
interoperability at the policy level? Research questions
to be addressed are:

• Can a preservation environment be assembled from

two existing repositories?
• Can the policies of the federation be enforced across

repositories?
• Can policies be migrated between repositories?
• What fundamental mechanisms are needed within a

repository to implement new policies?

iRODS, the Integrated Rule-Oriented Data System

[2, 3] and the Fedora Repository [4, 5] will be used as
representative open source software to demonstrate the
PoDRI architecture. Combining iRODS and Fedora

enables use of the best features of both products for
building sustainable digital repositories. iRODS provides
an integrated rule engine, distributed virtual storage, the
iCAT (iRODS Metadata Catalog)1, and Micro-services2.
Fedora offers a rich semantic object modeling for digital
objects, extensible format-neutral metadata and a
flexible service mediation mechanism.

2. Rationale for Integrating
Fedora and iRODS

Early in 2006, the DART [6] project created an
Storage Resource Broker (SRB) storage interface for
Fedora that allows all Fedora digital content, including
Fedora Digital Objects (FDO) and their Datastreams, to
be stored in SRB distributed repositories. Similarly, a
storage module was developed by Aschenbrenner and
Zhu [7] for iRODS. Using the Fedora-iRODS storage
module, iRODS can act as a back-end for Fedora, and
thus provide opportunities for Fedora to use iRODS
capabilities such as virtual federated storage, micro-
services and the rules engine.

iRODS offers an appealing platform for
implementing a distributed policy-driven management
architecture. The integrated rules engine can be used to
invoke a range of rules including policy expressions and,
through the use of micro-services, can execute code for
those policies in a distributed environment. Rules can act
as simple workflows, performing a sequence of pre-
defined actions. iRODS rules can be executed explicitly,
triggered by external conditions or events, and executed
at timed intervals. For example, iRODS can implement a
replication policy, geographically disbursing file copies
across the network. Micro-services can be written for
feature extraction, format migration, integrity checks and
other preservation services.

While used to efficiently hold and query structured
data and metadata, the iCAT relational database is not
optimal for handling the complex, variable metadata
needed for preservation and curation. Indeed, any
relational database will require considerable coding to
support complex metadata schemas, making the use of
unstructured data (files) possibly in combination with
XML databases or semantic triplestores a more flexible
alternative [8].

Fedora is file-centric; all Fedora data and metadata
is stored in files [9]. The Fedora Digital Object (FDO), a
kind of compound digital object, provides the organizing
metadata used to “make sense” of itself and other
resources. It uses the FOXML schema to encapsulate

1 iCAT is the iRODS Metadata Catalog that stores metadata
about all objects in iRODS in a relational database.
2 Micro-services are function snippets or executables that can
be used to perform a distinct task using well-defined input
information structures.

metadata, and to reference other files or web resources.
Since the FDO is a file, it can be stored in iRODS like
any other file.

Digital content (or user-defined metadata) managed
by the FDO is stored in one or more separate files – each
registered in a FOXML element called a Datastream.
Datastreams can also capture relationships to other
objects and external resources. Users may add metadata
to the FDO or add additional metadata Datastreams (to
be stored like any other file.

This means, however, that metadata is stored in an
unstructured, often XML or RDF way, and requires
external indices to support queries such as search
engines, semantic triplestores, XML databases, and now
the iCAT. Fedora’s approach provides a format-neutral,
extensible framework for representing data and
metadata.

The rich metadata environment provided by the
FDO can augment the structured metadata found in the
iCAT. Metadata can be copied from the iCAT into a
more easily preserved unstructured file format, as
demonstrated by Bing Zhu and colleagues [10]. Critical
data can be copied from the FDO, or as user metadata
files (Datastreams), so they can be queried from the
iCAT. With suitable metadata, both the iCAT and
Fedora could be entirely rebuilt from files if the indices
were lost or corrupted.

Fedora has a set of “front-end” APIs that provide the
means to ingest and manipulate FDOs (CRUD). iRODS
is capable of calling these APIs to perform operations
from micro-services. Fedora also provides an extensible
mechanism to add custom functionality called “services”
that are executed within the context of the FDO. Services
act as extensions to the “front-end” API of the object.
Fedora mediates the service request calling the
appropriate “back-end” functionality. The back-end
functionality can be a Web service, in this case
potentially provided by iRODS. Custom Fedora services
provide another mechanism to interact with iRODS.
Since iRODS can interact with Fedora’s “front-end”
APIs, “back-end” services, and the Fedora-iRODS
storage module one may picture iRODS wrapping
around Fedora.

3. First Steps Toward a Policy-driven
Management Architecture

To demonstrate distributed policy-driven manage–
ment architecture, we plan to implement the following
operational scenarios:

• Integrate views of content, original arrangement
(hierarchy) and metadata

• Create an audit trail of policy execution events
and related provenance information

• Manage policies through Fedora
• Show iRODS invoking policies from Fedora

Both iRODS and Fedora fully support distributed
computing installations. In effect, both products can be
characterized as virtualization middleware for storage,
access, and service execution. The products, however,
have very different operational paradigms which must be
accommodated, but provide complementary strengths
that can be exploited when used together.

The virtual file system in iRODS makes it the
logical choice for all storage (including FDOs). In
addition, the iRODS rules engine and micro-services
provide an effective means for policy invocation.
Fedora’s capabilities are especially powerful for
handling variable content and metadata formats, to
flexibly relate resources, to facilitate presentation, and its
mediation capabilities make it appealing for supporting
systems that are “designed for change.”

A policy-driven management architecture requires
that policy expressions be persistent somewhere. Fedora
could be used to create FDOs containing policy
expressions, which are subsequently loaded into
actionable form and invoked in iRODS. As policies are
part of the provenance, Fedora can relate the policy
FDOs to the content items to which they apply. Since
policy invocation is performed by iRODS, audit records
of the execution must be created by iRODS; this will
likely be done by creating FDOs (and relating them to
the FDOs containing the content and policy expressions).

iRODS does not currently generate audit data in a
format compliant with the PREMIS schema. The CDR
implements auditing of objects via a PREMIS.XML file
for each iRODS data object. This method may not be
sustainable for repositories containing millions of
objects. Preservation activities, such as replication or
fixity checks, generate large amounts of log entries over
time and potentially exceed the byte size of the original
object. Discussions between CDR and iRODS
developers suggest multiple methods for retaining and
aggregating various component logs for translation into
PREMIS-compliant events. Do we continue to store
these events with the individual objects or as an
aggregate? Do we generate specific PREMIS
information upon request? In the case of replicas
residing on disparate nodes in a data grid, auditable
events will occur that differ from those affecting the
original object. How do we reconcile these events in a
singular view of the object?

Users and user applications will still need to interact
with Fedora or iRODS directly. This is particularly true
of research (grid) applications having large datasets.
Selected metadata will need to be duplicated in both
products to access content, represent arrangements, and
preserve integrity and authenticity. Direct interaction by
users or user applications with either Fedora or iRODS

might require both products to synchronize or update
metadata.

These interactions may trigger policy invocations.
For example, Fedora may trigger policy invocation
indirectly when interacting with a file (CRUD) or
directly through a Fedora custom service. Conversely,
iRODS’ micro-services can call Fedora services to
provide feedback in the system.

A more comprehensive “Concept of Operations”
document will be prepared as part of the PoDRI project.
The following set of questions is drawn from our current
understanding of the operational scenarios:

• How will the collection structure be represented in
the two products?

• How will Fedora be initialized for existing content
in iRODS?

• How will Fedora be informed of content or metadata
changes initiated directly in iRODS?

• How can content or metadata from Fedora be
accessed by iRODS services?

4. Enabling Use Cases
Five enabling use cases have been identified for the

Fedora-iRODS integration. These use cases are:

1. New content ingest via Fedora
2. New content ingest via iRODS
3. Bulk registration from iRODS into Fedora
4. Update of content or metadata via Fedora
5. Update of content or metadata via iRODS

We describe the first two use cases in this paper; a
full discussion of all the use cases is beyond the scope of
this paper, and will be developed and documented
throughout the project’s lifecycle. While these use cases
do not, by themselves represent policy management
operations, they are prerequisites for enabling policy-
driven operations and represent demonstrations of policy
interoperability between repositories.

4.1 New Content Ingest via Fedora

Current users of Fedora will want to continue
ingesting into Fedora. Users are also likely to use Fedora
features to add and relate rich metadata including policy,
provenance and authenticity information. As shown in
Figure 1, when new content is ingested into Fedora, it is
able to capture the metadata it needs for its operation.
Digital content (or user-defined metadata) is either
pulled in by Fedora or pushed to Fedora and stored in
individual files. The file containing the FDO (FOXML)
and the content files are subsequently stored in iRODS
with no storage directly managed by Fedora.

Selected metadata is collected by Fedora during the
ingest process and stored in an internal system index
implemented using a relational database. This database is
used only to remove latency (speed up) access to content
or bindings to services (formerly called disseminators).
Optionally, metadata or notifications can be sent to index
services such as semantic triplestores, search engines and
OAI-PMH harvesters.

The Carolina Digital Repository (CDR) is using
Solr/Lucene as the indexing and search engine for
discovery of ingested content. Metadata is extracted
during the ingest process from MODS and FOXML
files.

Objects ingested via Fedora and stored in iRODS do
not, by default, retain the logical tree structure of the
original file system. Instead, CDR preserves the
hierarchal structure of the file system via relations in the
RDF triple store.

The arrangement of objects is achieved by created
FDOs representing the parent and child. The relationship
is recorded in RDF (within the RELS-EXT Datastream)
using the “isMemberOf” asserted in the child to the
parent. The obverse relation “hasMember” is implied but

could be stated explicitly in the parent. These two
relations provide a way to build a hierarchical structure
for all objects, collections and files. In Fedora, these
relations form a “graph” and objects may participate in
any number of graphs using other relations and,
therefore, are not limited to a single hierarchy.
Relationship information can be accessed by
introspecting on the FDO or the relations can be indexed
into a RDF triplestore [11] and queried by applications
to extract a graph for navigating from parent to children
as people usually do for a tree structure. Similar methods
can be used to navigate any relationship graph.

How will the metadata in iRODS be updated in this
use case? Two alternatives being considered are: (1) call
a Fedora custom service to update the iCAT; (2) when
the FOXML file is ingested, a monitoring rule can
trigger an iRODS micro-service to introspect on the
FDO to extract the metadata.

4.2 New Content Ingest via iRODS

Current iRODS users will likely want to continue to
use iRODS directly to store data objects, particularly in
research settings where direct access to storage is

Figure 1: New Content Ingest via Fedora

desired. The digital content (data object) is typically
ingested into iRODS as a file operation. In iRODS, the
hierarchical relation of a data object and its ancestors are
encoded and described explicitly in its global object
name. Two questions arise from this scenario. First,
how will Fedora be notified of arrival of the new data
object? Second, how will an analog to its iRODS
hierarchy be represented in Fedora?

A utility is needed to register iRODS files into
Fedora. A micro-service could call this utility when
triggered by a monitoring rule on the storage operation
which would create the FDO for the data object and
ingest it into Fedora. The micro-service can be deployed
as a rule under the iRODS rule event,
‘acPostProcForPut’. Once this rule is activated in an
iRODS server, the micro-service can be triggered after
each new iRODS data object is created in a specified
collection in the iRODS Content Store (see iRODS
Storage Module), as depicted in Figure 2. It will create

pre-ingest FOXML for the new data object, querying the
iCAT for additional metadata as needed. Within the
FOXML, it will create a Datastream containing a
reference to the location of the data object within
iRODS. It will then ingest the FOXML using Fedora’s
API-M to create the FDO. This rule is activated once
placed in the rule configuration file of an iRODS server.
It monitors all file activities in the iCAT catalog and
creates an FDO for any newly created iRODS file.

When using iRODS for back-end storage, all FDOs
and Datastreams are stored in iRODS as files in one of
two collections: FOXML Object Store and iRODS
Content Store. Therefore, users can directly access the
files containing Fedora metadata through the iRODS
interface. On the other hand, files stored in iRODS,
whether for an FDO or a Datastream, have both an
independent set of iRODS system metadata as well as a
set of user-defined metadata. The system metadata
contains important information for each replica of an

Figure 2: New Content Ingest via iRODS

iRODS file, including the file’s location, storage type,
audit trail, and associated iRODS rules. The two sets of
metadata can be represented as external Datastreams in
FOXML and generated dynamically when accessed
using the Fedora-iRODS storage module.

As described above, Fedora uses RDF relations to
describe the arrangement of objects. This requires the
creation of FDOs representing each hierarchical level
which has the advantage of enabling the participation of
iRODS in the semantic network functionality provided
by Fedora. Since iRODS can create a virtual hierarchy, it
may not be desirable to instantiate corresponding FDOs.
Users can create custom Datastreams as “finding aids”;
the virtual hierarchy can be encoded using RDF or any
other desired format. Similar to iRODS, parent-child
relationships can be modeled as path metadata and stored
in the custom Datastream. An application or a Fedora
custom service can be used to interpret the format of the
Datastream to display the hierarchy [12].

Many of the CDR’s core constituencies are the
special collections in our libraries. These collections tend
to have rich metadata associated with them and have
usually undergone preliminary curation. The longer term
goal of the repository is to harvest content directly from
research- based iRODS data grids. Metadata quality and
quantity is typically limited in these collections.
Repository outreach and development is concerned not
only with identifying and preserving “at risk”
collections, but cultivating metadata collection and data
curation proactively throughout the research lifecycle.

5. Additional Utilities
We plan to implement two utilities in addition to the

functionality described above. First is an updated storage
module as an iRODS-specific plug-in to replace
Fedora’s Low-level Store. Second is a harvester utility
which can be used in both bulk registration and for
disaster recovery.

5.1 iRODS Storage Module

We plan to store all files in iRODS. This will
require an update of the existing iRODS-Fedora Storage
Module or build a new module potentially using the
Fedora Commons Akubra interface. If a new module is
built, using Jargon is being considered. Building a new
module would permit research on using it as a feedback
path for policy operations including security policies.

When iRODS serves as a storage module for
Fedora, current thought is to use two iRODS collections:
(1) Fedora Digital Objects (FOXML) in the FOXML
Object Store, and (2) content objects (Datastreams) in
the iRODS Content Store. They are accessed through a
single curator user account in iRODS. This makes it
easier to distinguish between policies related to FDOs
from those operating on content objects (Datastreams).

This approach, however, differs from the
Fedora/Jargon default of storing objects in folders based
on timestamp. For the CDR and other existing
implementations, a restructuring of objects into the
segregated object store will be required. This will alter
iRODS based failure recovery mechanisms and integrity
audits.

5.2 iRODS Data Harvester for Fedora

The iRODS Data Harvester is an adaptive version of
the Data Rebuilder in Fedora. It is used to re-build the
object indices from the FOXML Object Store and
iRODS Content Store. It does not create any new
FOXML objects; rather, it surveys all the objects stored
within the FOXML Object Store, verifies the
Datastreams inside the iRODS Content Store, and
creates the indices in the database used by the Fedora
server. The iRODS Data Harvester also builds the
necessary RDF data to be stored in the RDF triplestore
for the navigation of hierarchical structure.

6. Policy Federation and Migration
The iRODS rule engine provides the capability to

apply rules on the data grid side to implement the
policies. The Distributed Custodial Archival
Preservation Environments (DCAPE) project [13] aims
to work with a group of archivists to develop a set of
rules to automate many of the administrative tasks
associated with the management of archival repositories
and validation of their trustworthiness. These DCAPE
rules could be applied to different repositories based on
the institution’s policies. We plan to provide the
functionality for users to manage the policies through the
Fedora interface and be able to check what rules are in
action.

Current implementations, even in data grid
environments, depend on local enforcement of policies
and typically do not consider the larger framework of
uniform policy implementation across heterogeneous
repositories. If policies are expressed in the language of
ISO-MOIMS or DCAPE criteria, we have a clear model
for identification of machine-actionable rules.

Stored as Fedora Service Definitions, the policies
will have unique service deployment bindings for each
data storage system. Our demonstration storage
implementation is iRODS, but other storage
environments may be supported by changing deployment
mechanisms.

The CDR is developing a policy management
framework based on a machine interpretable series of
actions across repositories in a data grid. Implementation
of new policy requires identification of machine-
actionable components and mapping to specific, testable
deployment mechanisms.

7. Summary
In this paper, we introduced the Policy-Driven

Repository Interoperability (PoDRI) project
investigating interoperability mechanisms between
repositories at the policy level. The rationale for using
iRODS and Fedora to demonstrate key features of a
distributed policy-driven management architecture was
described. Four scenarios that will be demonstrated as
part of the project were enumerated. We have identified
five enabling use cases and described two that are
needed for the demonstration scenarios along with two
key utilities planned for development. We also
introduced work on policy federation and migration.
PoDRI is an applied research project and its details will
change as we develop a greater understanding of the
methods for policy-driven interoperability.

8. Acknowledgements
This project is funded by IMLS grant LG-06-09-

0184-09 as part of the 2009 National Leadership Grants
NLG Library-Research and Demonstration, awarded to
the University of North Carolina at Chapel Hill. Project
Director is Richard Marciano. Collaborators at UNC /
SILS include: Alex Chassanoff, Chien-Yi Hou, Reagan
Moore, and Helen Tibbo. At UNC / Libraries: Steve
Barr, Greg Jansen, Will Owen, and Dave Pcolar. At
UNC / RENCI: Leesa Brieger. At UCSD: Bing Zhu. At
DuraSpace and Cornell Information Sciences: Daniel
Davis and Sandy Payette. Finally, at the University of
Maryland iSchool: Bruce Ambacher.

9. References
[1] DuraSpace, “PLEDGE Project,” http://fedora-
commons.org/confluence/x/WSDS
[2] iRODS: Data Grids, Digital Libraries, Persistent Archives,
and Real-time Data Systems. http://www.irods.org
[3] R. Moore, A. Rajasekar, M. Wan, and W. Schroeder,
“Policy-Based Distributed Data Management Systems,” The
4th International Conference on Open Repositories, Atlanta,
Georgia, May 19, 2009.
[4] Fedora Commons, http://www.fedora-commons.org
[5] Fedora Commons, “Fedora Repository Documentation,”
http://fedora-commons.org/confluence/x/AgAU
[6] DART, University of Queensland, “Fedora-SRB Database
integration module,”
http://www.itee.uq.edu.au/~eresearch/projects/dart/outcomes/F
edoraDB.php
[7] A. Aschenbrenner, B. Zhu, iRODS, “iRODS-Fedora
Integration,” http://www.irods.org/index.php/Fedora
[8] M. Hedges, A. Hazan, and T. Blanke, “Management and
Preservation of Research Data with iRODS,” Proceedings of
the ACM first workshop on CyberInfrastructure: information
management in eScience, Lisbon, Portugal, pp. 17-22, 2007
doi: http://doi.acm.org/10.1145/1317353.1317358
[9] DuraSpace, “The Fedora Digital Object Model,”
http://fedora-commons.org/confluence/x/dgBI

[10] B. Zhu, R. Marciano, and R. Moore, “Enabling Inter-
repository Access Management between iRODS and Fedora,”
The 4th International Conference on Open Repositories,
Atlanta, Georgia, May 19, 2009.
[11] Wikipedia, “Triplestore,”
http://en.wikipedia.org/wiki/Triplestore
[12] DuraSpace, “The Content Model Architecture,”
http://fedora-commons.org/confluence/x/gABI
[13] DCAPE, “Distributed Custodial Archival Preservation
Environments”, an NHPRC-funded project, http://dcape.org

