
How to Code Policies in
iRODS

Arcot (Raja) Rajasekar
Reagan Moore
DICE Center/SILS/RENCI
University of North Carolina
Chapel Hill, NC, USA.

Introduction

 How Policy Is Invoked?
  Policy Points – Where Policy is

Invoked in iRODS
 Rules as computed-executable

Policies
 Semantics of Rule Execution
 Data Involved in Policy Execution
 Sample Policies through Examples

Using a Policy-EnabledData Grid

iRODS Server
Rule Engine

•  Data request goes to 1st Server

iRODS Server
Rule Engine

iRODS Server
Rule Engine

DB

•  Server looks up info in Metadata Catalog & Applies
policies
•  Catalog tells 2nd server has data
•  1st server asks 2nd server for data
•  2nd server applies policies and serves data

•  User asks for data using logical properties

Meta Data
Catalog

San Diego Seattle Chapel Hill

Policy Points in iRODS

  Policies are applied at specific points in iRODS
  Examples:

  Just before data creation (useful to find where to put the data,
what access control to apply, what type of streaming to use,
versioning of overwritten files,…)

  Just after data has been transferred into iRODS (useful to perform
metadata extraction and registration into Metadata Catalog,
Replicating or Copying Data, Computing Checksums, Giving Other
user access permissions, setting flags, launching tasks to create
derived products, sending email to subscribed users,…)

  Just before removing a file/collection (useful to stop this operation,
putting things into trash bin instead of removing it, notifying
someone, delaying the operation for a day, removing derived
products,…)

  Just before creating a user (useful to put in groups, creating
system objects such as home collection, trash bin,etc., making
more security checks, notifying group managers, creating user
profiles, …)

Some Policy Points in iRODS
  acPostProcForDelete
  acPostProcForCollCreate
  acPostProcForRmColl
  acPostProcForModifyUser
  acPostProcForModifyAVUmetadata
  acPostProcForCreateUser
  acPostProcForDeleteUser
  acPostProcForCreateResource
  acPostProcForCreateToken
  acPostProcForModifyUserGroup
  acPostProcForDeleteResource
  acPostProcForDeleteToken
  acPostProcForModifyResource
  acPostProcForModifyResourceGroup
  acPostProcForModifyCollMeta
  acPostProcForModifyDataObjMeta
  acPostProcForModifyAccessControl
  acPostProcForObjRename
  acPostProcForGenQuery

  acPreprocForDataObjOpen
  acPreprocForCollCreate
  acPreprocForRmColl
  acPreProcForModifyUser
  acPreProcForModifyAVUmetadata
  acPreProcForCreateUser
  acPreProcForDeleteUser
  acPreProcForCreateResource
  acPreProcForCreateToken
  acPreProcForModifyUserGroup
  acPreProcForDeleteResource
  acPreProcForDeleteToken
  acPreProcForModifyResource
  acPreProcForModifyResourceGroup
  acPreProcForModifyCollMeta
  acPreProcForModifyDataObjMeta
  acPreProcForModifyAccessControl
  acPreProcForObjRename
  acPreProcForGenQuery

Policy Points in iRODS

 Current Policy Points: 64
 Strategically placed in the server code
  If new ones are needed, we can add

them.
 Mostly policy points are dual: before

and after some data management task.
  Each policy point invokes a rule stored

in core.irb under a given ruleName
  Policies are made of alternative rules

but only one policy is executed fully.

  Each rule has several parts:
  RuleName – so that one can invoke a Policy

  There can be more than one rule for a RuleName

  Condition – A ‘guard’ which checks if a rule
can be fired or not
  If one rule does not fire, the next rule with same

RuleName is tried

  Action chains - Body of the rule
  List of Functions (workflow) performed
  Made of micro-services and other rules

  Recovery chains – What to do when an action
fails
  Made of micro-services and other rules

OnIngestObject (*D) {

 ON ($userDept == sils)

 {

 msiComputeChkSum(*D) ;

 acReplicateFile(*D, tapeResource)

 ::: acTrimFile(*D, tapeResource);

 }

}

Sample Rule

Condition

Actions

RuleName

Recovery

Parameters

 ::: null;

Policy: On ingestion of a new file by a ‘sils’ user, immediately
compute its checksum and store it in the iCAT. Also replicate the file
in ‘tapeResource’. If the replication fails remove all evidence of the
replica

Micro-Service Rule

OnIngestObject (*D) {
 ON ($userDept == sils)
 {
 msiComputeChkSum(*D) ;
 acReplicateFile(*D, tapeResource)
 ::: acTrimFile(*D, tapeResource);
 }
}

Sample Rule – Internal Form

OnIngestObject(*D) | $userDept == sils |

msiComputeChkSum(*D)##acReplicateFile(*D,tapeResource) |

null##acTrimFile(*D,tapeResource)
Conversion done by “rulegen” utility found in icommands/rulegen
See also the “Rules” page in iRODS Wiki

Policy Invocation

Invoke a Policy

Select First/Next
Rule

Find Appropriate
Rules

Condition
Check

Execute Next
MicroService/SubRule

Success

Execute Recovery
MicroService/SubAction

Yes No

Success: No More MS/A

True

False

Failure: No More Rules

How the Rule Engine Works:

A: C1 | M1 M2 | R1 R2
A: C2 | M3 M4 | R3 R4
A: C3 | M5 M6 M7 | R5 R6 R7
A: C4 | M8 M9 | R8 R9

Execute A (Policy Invokes ruleName A)
 Check C1 (success)
 Execute M1 (success)
 Execute M2 (fail)
 Execute R2
 Execute R1 /*R1 is also executed!*/
 Check C2 (fail)
 Check C3 (success)
 Execute M5 (success)
 Execute M6 (success)
 Execute M7 (succes)
A succeeds (Policy Succeeds)
 /* C4 is not even checked */

Data Flow between Micro-services

Whiteboard ($)

MS MS MS

Parameters

Persistent iCAT (%)

Side Effects

Parameter Passing

 Part of the MicroService Signature

 int findObjType (msiParam_t *objInParam ,

 msiParam_t *typeOutParam ,
 ruleExecInfo_t *rei);

int ingestBulkMD (msiParam_t *objInParam,
 msiParam_t *typInParam,
 msiParam_t
 *keyValuePairsInParam,
 ruleExecInfo *rei);

 When used in a rule the “rei” parameter is
implicit.

WhiteBoard ($) Variables

  They are stored in a structure: rei
  Some common ones that are of interest

  $objPath collection-path name of data object
  $rescName name of resource
  $userNameClient name of client-user

 How to Use them:
  Condition checking:
 $objPath like /zone/home/sekar/nvo/*
  Parameter passing:
 findObjType($objPath,*Type)
  assign($rescName, duke-samqfs)

 You can find the $-variable names in:
  server/config/reConfigs/core.dvm

Policies And $-variables

  Not all $-variables needed for every policy
(ruleName).

  We can find what $-variable is available at
each policy-point from Table 5.2 and 5.3 in
iRODS Primer.

  Example:
  acCreateUser : $otherUserName, $otherUserZone, all

connection-level $-variables (called S1).
  acPreProcForObjRename: $objPath (old path) + S1
  acPreProcForCollCreate: $collName, $collParentName

+ S1
  acPreProcForDataObjOpen: S3 (data object)+ S4

(resources) + S1 (connection) = 50 variable
information…..

WhiteBoard: ruleExecInfo (*rei)

  A large data structure shared when invoking a rule
  Implicitly used throughout the rule processing
 MicroServices can access values/structs in the *rei and

also set values in the *rei structure
  The structure is defined in reGlobalsExtern.h and it can be

extended if necessary
  Contains various important structures used in the iRODS

data management:
 *rsComm - client-server communication structure
 *doi - dataObject information
 *rescGrp - resource (group) informations
 *uoic - client user information
 and others ….

  The rule invoking function should set the proper values…

Example: ATM (1)

  Let us try to code the policy for an
ATM to disburse money.

 Assume that authentication has
already been done.

  Policy : payMoney
 If a user asks for money below a

‘ceiling value’ and has a balance
above the asking value, disburse the
money and debit the user account.
Recover from disbursement failure.

Example: ATM (2)

What are the key Policy-Points:
  Get User Information
  Get Amount & Account Information
  Check Balance and Ceiling (CheckMoney)
  Subtract from the User Account Value
  Count Money into the PayBin
  Open the PayBin to Pay the User
  Give Receipt

  Commit/Rollback Changes
  Write Paper Records
  Shutdown
  Notify User

Example: ATM (3)
acCheckMoney (*U, *A)
{
 ON (*A < 300)
 {
 display(“You cannot withdraw
 more than $300”);
 displayExitMessage;
 }
 OR ON (*A < balance(*U))
 {
 display(“You have insufficient balance”);
 displayExitMessage;
 }
}
*U = user *A = Amount to pay

From Policies to Rules

  Write the policy with clear “keywords” that
define side-effects that can be performed by
micro-services.

  Identify recovery mechanisms for failure
  Create high-level signatures for the micro-

services – split complicated micro-services
  Form a workflow based on the micro-services

and test various paths
  Search existing rules/micro-services which can

be used.
  Code micro-services, if needed, and unit test
  Write and test the rules

Some Sample Policies

  acCreateUser (default policy in core.irb)
  acDataDeletePolicy (not a default – can

be turned on at admin’s discretion)

  Policies generated in DCAPE Project

acCreateUser

  Used by iRODS when an administrator creates
a new user.

  Flexibility to add “new” features when creating
users
  Create a trash bin
  Add user to groups based on her domain
  Verify the user in a list or external database or with

some community authentication system
  Allocate storage and quotas
  Notify someone about this new user (may be the

domain manager)
  Send the new user some emails about how to use

irods

acCreateUser – by default

acCreateUser {
 ON ($otherUserName == anonymous)
 {
 msiCreateUser ::: msiRollback;
 msiCommit;
 }
 OR
 {
 msiCreateUser ::: msiRollback;
 acCreateDefaultCollections ::: msiRollback;
 msiAddUserToGroup(public) ::: msiRollback;
 msiCommit
 }

acCreateDefaultCollections

acCreateDefaultCollections
 {
 acCreateUserZoneCollections
 }
acCreateUserZoneCollections
 {
 msiCreateCollByAdmin(/$rodsZoneProxy/home,
 $otherUserName);
 msiCreateCollByAdmin(/$rodsZoneProxy/trash/home,
 $otherUserName);
 }

  Creates two collections a ‘home’ and a ‘trash’

acDataDeletePolicy

  Can be used to disallow deleting files from
a collection

 acDataDeletePolicy
 {
 ON ($objPath like /myzone/home/sekar/*)
 {
 msiDeleteDisallowed; /*sets a disallow flag */
 }
 OR
 {
 nop;
 }
 }

DCAPE Policies & Rule Transformation

http://ils.unc.edu/spaces/dcape/index.php/DCAPE_Initial_Capabilities

How To Execute a Rule

Rules get executed
 As part of a server-function invoked

by the iRODS server
  Ex. rsDataPut calls acPostProcForPut

 As part of a scheduled activation
  Scheduled by other rules/micro-services
  iRODS has a built-in scheduler/executor

 As part of an explicit user invocation
  Using the client-side irule command

Scheduling A Rule/Micro-Service

 Using delayExec micro-service as part of a
rule in core.irb

 acPostProcForPut
 | $objPath like /tempzone/home/rods/nvo/*
 | delayExec(<PLUSET>1h</PLUSET>,
 msiReplDataObj(nvoReplResc),
 sendEmail(sekar, $objName failed to replicate))
 | nop

  Policy: On ingestion of a new file in “nvo” collection,
replicate the file in ‘nvoReplResc’ after 1 hour; If the
operation fails, send email to sekar about it. Recovery for the

replication operation in
delayExec

Recovery for
the delayExec
micro-service

iRule Client Command

  Can use a rule-file (*.ir files)
  Rule-files Contain exactly 3 lines

  First line is the rule, the second line has the input values and
third has a variable list to print to screen

myTestRule || acGetIcatResults(*Action,*Condition,*B)##forEachExec
(*B,msiDataObjChksum(*B,forceChksum,*C),nop)| nop##nop

*Action=chksum%*Condition= COLL_NAME = '/tempZone/home/rods/tst’

*Condition%*Action%ruleExecOut

  Policy: For every file in COLL_NAME (as given by
iCAT) force compute its checksum and store in iCAT

  How to run irule:
 irule –v –F myRule.ir

From Policies to Rules

  Write the policy with clear “keywords” that
define side-effects that can be performed by
micro-services.

  Identify recovery mechanisms for failure
  Create high-level signatures for the micro-

services – split complicated micro-services
  Form a workflow based on the micro-services

and test various paths
  Search existing rules/micro-services which can

be used.
  Code micro-services, if needed, and unit test
  Write and test the rules

Conclusion

  Policies play an important role in
iRODS

  They provide a way to customize the
iRODS

  Policies translate to rules
 Rules are executed at pre-defined

policy points in the data management
server code.

 Rules use multiple types of data
information to perform their tasks

