
A Service-Oriented Interface to the iRODS Data Grid 
 

Nicola Venuti*, Francesco Locunto*, Michael Conway**, Leesa Brieger◊ 
*Nice S.r.l., **Data Intensive Cyber Environments Center, UNC, ◊RENCI, UNC  

 
Abstract 

iRODS microservices and rules can be used to build 
a data grid that implements a community's own data 
policy. However, often the data administrators are not 
the developers who customize the services or deploy the 
data grid. A tool that gives the data administrator 
intuitive access to the rules and special-purpose services 
of their data grid is important in separating the IT tasks 
from the data administration tasks.  

The EnginFrame (EF) cloud interface framework 
from Nice S.r.l. was used to build a service-oriented 
iRODS interface. This interface demonstrates how data 
grid access can be customized for community use; one 
view of the data grid, determined by data usage 
scenarios, is provided for the community user, and 
another view, determined by data management criteria, 
is provided for the administrative user. 
 

Index Keyword Terms—iRODS data grid, data grid 
interface, data grid access, web interface, EnginFrame, 
EF, Grid Portal, cloud interface, administrative 
interface. 

1. Introduction 
Development of special-purpose microservices and 

rules will equip an iRODS data grid to implement 
specialized data access and preservation policy as 
required by a target community.  The developers who 
would customize a data grid in this way may not, 
however, be the data administrators who determine 
and/or enforce data policy for that community.  

Therefore, along with a customized data grid, it is 
imperative to offer a user-friendly interface that 
provides not only user access to community data, but 
also administrative access to the services that support 
and implement data policy.  The data grid, with special-
purpose services and with an administrative interface, 
then provides the data administrator with the necessary 
tools to curate and preserve his community's electronic 
data - without being an iRODS programmer to do it. 

The user-friendly interface provides a separation 
between the data administrator and the systems 
administrator. It can offer intuitive access to the 
specialized data services, freeing up the data admin to 
concentrate on applying, enforcing, and verifying data 
policy for his community. 

The authors used the EnginFrame (EF) cloud 
interface framework to develop a prototype of such an 

interface; this was used for a live demonstration of 
iRODS services at an NSF/NARA/NITRD iRODS 
presentation in August 2009. The interface was used to 
showcase important iRODS archival services in a real-
time demo. It serves to illustrate how an interface can be 
customized to offer specialized views of the services 
implemented in a given data grid. Further, the interface 
presents one view of data and services for community 
users and another view, which includes more 
administrative functionalities, for the data administrator. 

Several basic iRODS services were selected for the 
demonstration; we briefly mention implementation 
considerations for some of these special services, 
followed by a description of the EnginFrame interface 
and then the blending of the two technologies. 

2. Specialized iRODS Services  
While iRODS can be viewed as a framework for 

implementing data policy for the curation of electronic 
assets, it is also a tool kit that comes with many pre-
defined rules, microservices, and capabilities. Some of 
these enable functionalities such as audit tracking and 
quota checking, in support of verification of policy; 
others enable capabilities such as searching on user-
defined metadata.  

These were the sorts of functionalities, based on 
out-of-the-box iRODS services, that were showcased at 
the NSF demo; thus these were the services exposed in 
the EF interface to the data grid.  

 
2.1. Audit Tracking 

Audit tracking is enabled in iRODS by changing the 
setting of the parameter auditEnabled from "0" to "2" in 
iRODS_root/server/icat/src/icatMidLevelRoutines.c, 
then recompiling, and restarting the iRODS server. Once 
audit tracking is enabled, any operation that calls upon 
the iCAT metadata catalogue is logged - in the iCAT. 
Any requests, such as downloading a data object, 
changing permissions on a collection, deleting or 
creating an object, etc., are all logged in the iCAT's 
audit table, along with record of the change that was 
made if authorization for the operation was granted. 
Audit information can then be tracked by querying this 
table and presenting the results in a user-friendly format. 
The queries can be implemented with the iquest 
icommand or with microservices by using 
msiMakeGenQuery and msiExecGenQuery. 

There is a need to be careful, however, with these 
queries. The microservice queries use an iRODS-



specific syntax to approximate SQL but does not repli–
cate it perfectly. Iquest allows a reduced form of SQL 
querying. Neither approach yet gives full SQL 
functionality. For audit table querying, there is a further 
complication that can result in spurious results. Consider 
that the audit table in the iCAT database contains the 
following fields: 

 
AUDIT_OBJ_ID 
AUDIT_USER_ID 
AUDIT_ACTION_ID 
AUDIT_COMMENT 
AUDIT_CREATE_TIME 
AUDIT_MODIFY_TIME 
 
The audit table, in AUDIT_OBJ_ID, contains 

information about the entity (data object, collection, 
resource, user, etc.,) that is the object of an action that 
was performed and logged. It contains the ID of the 
target entity; however, there is no built-in mechanism to 
determine which it is - object, collection, user, resource, 
etc. Thus, at any one time, the AUDIT_OBJ_ID field of 
the audit table can refer to any of a number of tables 
containing detailed information on either a data object, a 
collection, a user, or a resource. The joins of the 
standard iRODS query services then have the effect of 
joining all the tables referred to by the ID, with the 
result that much spurious information is retrieved with 
the query. 

By breaking down the joins into a series of simpler 
iquest queries, it is possible to separately query on each 
type of entity in the audit table, thereby avoiding the 
joins that cause spurious results to be generated. The 
following example for an audit procedure for an 
administrative user illustrates this; the iquest commands 
are run in a script so that output can be saved from one 
step to the next. 

 
1.To see an audit trail for a given user, save an iRODS 
user name into a script variable and run the iquest 
command to query the audit table: 
 

iquest "SELECT AUDIT_OBJ_ID, 
 AUDIT_ACTION_ID, AUDIT_COMMENT, 
 AUDIT_CREATE_TIME, 
 AUDIT_MODIFY_TIME WHERE 
 USER_NAME = '${_irods_username}' 
 

2. Save the AUDIT_OBJ_ID into a script variable and 
use it to get query and get separate results from each 
entity table: 
 

iquest "SELECT COLL_NAME, DATA_NAME 
 WHERE DATA_ID = '${_objId}'” 
 

iquest "SELECT COLL_NAME WHERE 
 COLL_ID = '${_objId}'” 
 
iquest "SELECT USER_NAME WHERE 
 USER_ID = '${_objId}'" 
 
For the NSF/NARA demo, the results of these 

queries were arranged into xml files to allow for 
formatted presentation. Additional Java filters provide 
an easy way to further manipulate the results and were 
applied in order to sort and refine the search results.  

 
2.2. Other Services 

iRODS allows users to add their own AVU triplets 
(attribute, value, units) to the iCAT metadata catalogue. 
Metadata searching of user-defined metadata was 
implemented for the demo using the iquest icommand to 
query the iCAT.  

The implementation of quotas is awaited in iRODS 
and should be coming out in version 2.3. In the 
meantime, it is possible to use iquest to return and 
display usage information for each user, handling it 
similarly to the way quota information will be handled. 
This was implemented in the demo prototype. 

The irule icommand allows users to run any iRODS 
rules on a command line. The interface also provided a 
means of pointing and clicking to edit and run selected 
rules. 

3. EnginFrame     
EnginFrame is proprietary software developed by 

Nice S.r.l. It is typically used as a computational grid 
portal or a cloud interface and serves as a framework for 
logically collecting applications, services and resources 
and presenting them in a web 2.0 interface that provides 
user-friendly access to the distributed resources. It is not 
a portlet container but instead delivers services that are 
JSR168-compliant; EnginFrame allows organizations to 
provide application-oriented computing and data 
services to both users (via Web browsers) and in-house 
or ISV applications (via SOAP/WSDL based Web 
services) so EF services could be used as portlets in 
another portal. 

The main goal of EF is to hide the details and the 
complexity of the underlying infrastructure in order to 
improve usability and utilization. Usability goes up 
when end-user requirements for accessing the  



 

Figure 1. Metadata and ACL settings can be viewed and 
modified through the browser. 

infrastructure go down, and utilization is improved by 
making  the evolution of the underlying systems trans–
parent to the end-user and enforcing the utilization 
policies even as infrastructure evolves. 

EF provides a flexible authentication framework 
with built-in support for a wide set of well-known 
authentication mechanisms like OS/NIS/PAM, LDAP, 
and Microsoft Active Directory. It has been integrated 
with the iRODS challenge-response authentication 
mechanism. The EF authorization framework allows the 
definition of groups of users and access control lists, 
thus providing a means for tailoring the Web interface to  
the specific users’ roles or access rights. This was used 
in the demo interface to distinguish between community 
users and administrative users of the data grid.  
Community users were presented, in the interface, a 
reduced set of services compared to administrative 
users. 

4. The iRODS EF Interface 
The merging of the EnginFrame and iRODS 

technologies required development of an iRODS plug-in 
for EF and the wrapping of the iRODS services as EF 
services. The EF file manager for data browsing was 
also outfitted with iRODS functionalities so that some 
of the basic iRODS characteristics are present in the 
data browser. 

User-defined metadata can be added, modified, 
queried, and deleted as part of basic iRODS 
functionalities. Setting and modifying ACL permissions 
are also included among the basic iRODS capabilities.  
Both these functionalities are available with the browser 
through the EF interface. See Figure 1. 

Disk usage is queried using iquest and displayed. 
 
 

 

Figure 2. Usage data 

The same sort of display is planned for quotas when 
that functionality becomes operational.  See Figure 2. 

Figure 3 shows the unfiltered results of an audit 
table query on all entries, and Figure 4 is a snapshot of 
the rule editor. 

5. Deploying Data Grids  
The customization of a data grid for a user 

community is an important step in deploying this 
technology for a given user group. Beyond simply 
installing the data grid, data management policy must be 
unambiguously defined and then translated into the  
microservices and rules of this technology. 

Another very important step in the deployment is 
the development of a user-friendly interface for 
accessing the data grid. A custom interface can provide 
intuitive access to the custom services of the data grid 
and a user-friendly way of invoking the rules that 
implement and enforce data policy.  

Further, the interface can be customized to various 
user groups that access the data and data services. As 
mentioned above, the EF interface was developed to 
show different views of the services to community and 
administrative users, thereby distinguishing between the 
different classes of services offered to the two groups. It 
would also be possible to adjust the view of the data grid 
to other user groups, so that the presentation of data and 
services fits with a group's own use cases.  

6. The Future  
A new domain of expertise will likely grow up 

around this technology, embodied by those who deploy 
the iRODS data grids. They will likely become 
increasingly separate from the DICE group who 
develops iRODS as well as from the user communities 
who are the consumers of the iRODS technology. There 
is in fact a need for a third group that bridges the gap 
between the other two. The developers know all that this 



 
 

Figure 3. Data dump of the audit table 

technology can offer, but are often not aware of the 
intricate details of the needs of the user groups. Users 
know some rudimentary aspects of the data grids but 
often define their needs in terms of the constraints they 
have learned to live with rather than exploiting the full 
potential of iRODS. There is increasingly a  need for a 
group that straddles those two perspectives and brings 
rich iRODS capabilities to user groups with complex 
data needs. 

 These deployment groups must work closely with 
data specialists from the user communities in order to 
understand the required policy to implement in the  data 
grids and how the administrative interfaces should 
operate. They will also have to understand how the users 
must view the data and services presented in order to 
meet their use cases. Policy should become easy to 
apply using the custom interface, and the full 
functionality of rich iRODS services should be 
delivered.  

Deployment groups will promote the adoption of 
iRODS data grids, supporting communities who want to 
explore the technology, and allowing its adoption even 
by groups who may not be well-supported with in-house 
IT specialists. The deployment groups will do the 
programming of the services and the development of the 
interfaces so that users and data administrators will be 
freed from these tasks. The upshot is that many more 
communities will have access to this technology. 

 
 
 
 

 
Figure 4. The rule editor 

7. References 
[1] Reagan W. Moore, Richard Marciano, Arcot 
Rajasekar, Antoine de Torcy, Chien-Yi Hou, Leesa 
Brieger, Jon Crabtree, Jewel Ward, Mason Chua, UNC 
Chapel Hill; Wayne Schroeder, Michael Wan, Sheau-
Yen Chen, UCSD, "NITRD iRODS Demonstration", 
sponsored by NARA at NSF, 2009. Can be linked from 
https://www.irods.org/index.php/Publications. 
"Technical Demonstration of Integrated Preservation 
Infrastructure Prototype", National Coordination Office 
for Information Technology Research and Development 
(NITRD) / NSF / NARA, National Science Foundation, 
Washington, D.C., August 4, 2009 Powerpoint Version. 
Combined Video and Powerpoint Slides of NITRD 
Demo. Can be linked from 
https://www.irods.org/index.php/Publications. 
[2] iRODS and Data Preservation 2nd Workshop on 
Data Preservation and Long Term Analysis in HEP, 
Wayne Schroeder, SLAC National Accelerator 
Laboratory, Menlo Park, CA, May 26, 2009. Can be 
linked from 
https://www.irods.org/index.php/Publications. 
[3] Policy-Based Distributed Data Management 
Systems, Open Repositories 09, Reagan Moore, Arcot 
Rajasekar, Mike Wan, May, 2009. Can be linked from 
https://www.irods.org/index.php/Publications. 
[4] http://www.nice-software.com 
[5] http://www.enginframe.com 
[6] http://code.google.com/p/ef-irods-plugin/ 
 

 


