
Proceedings
iRODS User Group Meeting 2010

Policy-Based Data Management

Sharing and Preservation

Edited by

Reagan W. Moore, Arcot Rajasekar, Richard Marciano

March 24–26, 2010

University of North Carolina at Chapel Hill USA



 



 
 

 
 

Proceedings  
iRODS User Group Meeting 2010 

 
 

Policy-Based Data Management, Sharing  
and Preservation 

 
 
 

Edited by 
Reagan W. Moore 
Arcot Rajasekar 

Richard Marciano 
 
 

March 24–26, 2010 
University of North Carolina at Chapel Hill, NC, USA 

 
 

Data Intensive Cyber Environments Center  
School of Information and Library Science at UNC Chapel Hill 

Renaissance Computing Institute  
 

Data Intensive Cyberinfrastructure Foundation 
San Diego 

 
 

     



 
 
 
 
 

Proceedings of iRODS User Group Meeting 2010 
 

Policy-Based Data Management, Sharing  
and Preservation 

 
This volume contains contributions to iRODS User Group Meeting 2010, held March 24–26, 
2010 at the University of North Carolina at Chapel Hill. 

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 
Unported license. You are free to share this work (copy, distribute, and transmit) under the 
following conditions: attribution, noncommercial, and share under the same license. To view a 
copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0. 

ISBN-13 978-1-452813-42-4 
ISBN-10 978-1-452-813-42-4 

LCCN 2010906581 

Any opinions, findings, conclusions or recommendations expressed in this Proceedings are 
those of the authors and do not necessarily reflect the views of the authors’ institutions or the 
NSF.  

Development of the core iRODS open source software is supported by NSF awards SDCI 
0910431 and NARA 0848296.  

Acknowledgements: We wish to express our appreciation to the NSF Office of 
Cyberinfrastructure (OCI) and the National Archives and Records Administration Center for 
Advanced Systems and Technologies for support and encouragement.  

We would also like to acknowledge support from Data Intensive Cyber Environments Center 
at the University of North Carolina at Chapel Hill; the Renaissance Computing Institute; the 
School of Information and Library Science at UNC Chapel Hill; and the Data Intensive 
Cyberinfrastructure Foundation. Proceedings volume edited by Paul Tooby.  
 

Data Intensive Cyberinfrastructure Foundation  
For a PDF of this Proceedings see diceresearch.org. 

 
About the cover 
Global Data Sharing and Preservation: iRODS, the Integrated Rule-Oriented Data System, is 
a key component in large-scale projects using “federation” which lets data flow freely between 
repositories across the nation and around the world. This opens the door to new cross-
disciplinary science to solve pressing problems in climate change, biology, astronomy, social 
science, humanities, and more, as well as long-term archiving and preservation of irreplaceable 
data. Photograph from Space Shuttle shows clouds and sunlight over the Indian Ocean. Credit: 
NASA.  
 



iRODS User Group Meeting 2010 3 

Table of Contents 

Overview of iRODS User Group Meeting 2010.......................................................................5 
Summary of Papers and Posters ................................................................................................7 
 

1. iRODS User Applications .......................................................................................................9 
High Availability iRODS System (HAIRS) ...........................................................................11 

Y. Kawai, A. Hasan 
iRODS at CC-IN2P3 ...............................................................................................................16 

J-Y Nief, P. Calvat, Y. Cardenas, P-Y Jallud, T. Kachelhoffer 
Using iRODS to Preserve and Publish a Dataverse Archive ..................................................21 

M. Chua, A. de Torcy, J.H. Ward, J. Crabtree 
Conceptualizing Policy-Driven Repository Interoperability Using iRODS and Fedora ........25 

D. Pcolar, D.W. Davis, B. Zhu, A. Chassanoff, C-Y Hou, R. Marciano 
Community-Driven Development of Preservation Services...................................................32 

R. Marciano, C-Y Hou, J. Ricker, G. McAninch, D. Pcolar, et al 
iRODS User Applications – Posters .......................................................................................39 
Distributed Data Sharing with PetaShare for Collaborative Research....................................39 

PetaShare Team, LSU 
UNC Information Technology Services..................................................................................41 

W. Schultz 
The ARCS Data Fabric ...........................................................................................................42 

S. Zhang, F. Goessmann, P. Mak 
Building a Trusted Distributed Archival Preservation Service with iRODS..........................44 

J.H. Ward, T.G. Russell, and A. Chassanoff  
 

2. Clients for iRODS..................................................................................................................45 
A Service-Oriented Interface to the iRODS Data Grid...........................................................47 

N. Venuti, F. Locunto, M. Conway, L. Brieger 
iExplore for iRODS Distributed Data Management ...............................................................51 

B. Zhu 
The Development of Digital Archives Management Tools for iRODS..................................53 

T-T Yeh, H-W Wei, S-H Liu, P-C Huang, T-s Hsu, Y-C Chen 
A GridFTP Interface for iRODS (poster)................................................................................59 

S. Zhang 
 

3. iRODS Integration ................................................................................................................61 
Enhancing iRODS Integration:  Jargon and an Evolving iRODS Service Model ..................62 

M. Conway 
 

Appendices .................................................................................................................................67 
Appendix 1: Agenda of the iRODS User Group Meeting 2010 .............................................69 
Appendix 2: iRODS Requested Features ................................................................................71 
Appendix 3: iRODS Clients....................................................................................................75 



 
 



iRODS User Group Meeting 2010 5 

Overview of iRODS User Group Meeting 2010  
iRODS 
iRODS, the Integrated Rule-Oriented Data System, is an open source data grid software system developed 
by the Data Intensive Cyber Environments research group (developers of the SRB, Storage Resource 
Broker), and collaborators.  
 
The iRODS system, currently at version 2.3, is based on expertise gained through nearly a decade of user-
driven applications in support of data grids, digital libraries, persistent archives, and real-time data 
systems.  
 
iRODS management policies (sets of assertions these communities make about their digital collections) 
are characterized in iRODS as computer actionable Rules that control the execution of procedures. The 
procedures are composed from basic functions (micro-services).  The state information generated by 
application of the procedures is stored in a central metadata catalog.  
 
At the iRODS core, a Rule Engine interprets the Rules to decide how the system is to respond to actions 
initiated by all clients, as well as administrative operations. iRODS is distributed as open source software 
under a BSD license.  
 
2010 iRODS User Group Meeting  
The second annual iRODS user group meeting was held from March 24-26, 2010 in Chapel Hill, North 
Carolina. The first meeting was held in Nice, France in February 2009. The meeting attracted a wide range 
of attendees from experienced software developers who are contributing code to the open source iRODS 
software, to users with installations of varying sizes, to potential users wanting to learn more about 
iRODS. Users from academia, international and business organizations, and federal and state agencies 
were represented at the meeting. 
 
With its advanced design and highly configurable and extensible architecture, iRODS is gaining increasing 
attention and users.  The meeting attendance exceeded capacity with attendees from across the United 
States and as far away as France, Australia, and Taiwan, and participation from Japan by teleconference.  
 
The call for participation encouraged submissions on a wide range of topics, including user applications of 
iRODS, interoperatibility and clients for accessing the iRODS data system, and integration with other data 
and repository systems. Contributions include papers, posters, and slides (available on the meeting website 
at https://www.irods.org/index.php/iRODS_User_Meetings). 
 
The meeting began with sessions on an introduction to release 2.3 of iRODS, descriptions of how to create 
new micro-services and policies, a review of the unix shell command capabilities (icommands), and 
descriptions of the interactions (queries) on the iCAT metadata catalog.  
 
A majority of the meeting was devoted to sessions for papers and presentations on user applications.  The 
papers demonstrated the wide range of ways that communities have applied the iRODS framework.  More 
than a dozen presentations and posters described use of iRODS in national data grids (e.g. Australian 
Research Collaboration Service), large-scale scientific research projects (e.g. KEK high energy physics 
data grid, French national computing center CC-IN2P3), institutional repositories (e.g. Carolina Digital 
Repository), and preservation environments (e.g. Taiwan National Archives).  
 



6  Proceedings 

Additional sessions were devoted to the development of new iRODS clients and integration of new 
capabilities into the iRODS framework.  In particular, the JARGON Java I/O library was presented along 
with plans for integration with web services, development of a dropbox interface (iDrop), and support for 
digital library interfaces such as Islandora.   
 
The final day of the meeting was dedicated to seeking community input into prioritizing new feature 
development, and identifying new types of interoperability mechanisms that are needed.  A list was 
compiled of the current clients used to interact with an iRODS data grid.  More than 35 existing clients 
were identified, ranging from Grid clients (GridFTP, JSAGA), file system interfaces (FUSE, PetaFS, 
webDAV), GUI interfaces (iExplore), digital library interfaces (Fedora, DSpace, Drupal, Islandora), 
workflow systems (Kepler, Taverna) and specialized interfaces such as URSpace for synchronizing local 
resources with iRODS.  Interactions between collaborators are being supported through the Data Intensive 
Cyberinfrastructure Foundation, which supports the iRODS open source community.  
 
Benefits to the iRODS Community and Wider Cyberinfrastructure Community  
• Interchange among users accelerated the leveraging of each other’s applications of iRODS.  
• Interchange among users and iRODS developers provided direct user guidance for development of 

useful real-world features. 
• Publication of use cases and other meeting products in the Proceedings for the wider community will 

disseminate the collective iRODS community expertise. 
• Strengthening collaborations with other projects widens interoperability, leveraging the iRODS 

development investment (see list of 36 current iRODS clients in Appendix).  



iRODS User Group Meeting 2010 7 

Summary of Papers and Posters  
 
User Applications: How Communities Have Applied iRODS  

Papers 
• High Availability iRODS System (HAIRS) Yutaka Kawai (KEK, Japan), Adil Hasan (University of 

Liverpool). Describes a High Availability load-balanced iRODS System (HAIRS) developed for use 
in the KEK high energy physics data grid, with potential applications in similar large-scale scientific 
research projects. 

• iRODS at CC-IN2P3 Jean-Yves Nief, Pascal Calvat, Yonny Cardenas, Pierre-Yves Jallud, Thomas 
Kachelhoffer (CC-IN2P3, Lyon, France). Describes large scale production use of SRB (2 PB) and 
iRODS (100s TB) in multiple communities and applications, including data grids in biology and 
biomedicine; physics; Adonis large-scale humanities community (with Fedora integration); etc. as 
well as iRODS code development at the French national CC-IN2P3 supercomputing center.  

• Using iRODS to Preserve and Publish a Dataverse Archive, Mason Chua (Odum Institute, UNC), 
Antoine de Torcy (DICE Center, UNC), Jewel H. Ward (SILS, UNC), Jonathan Crabtree (Odum 
Institute, UNC). Describes interoperation with social science Dataverse Archive, allowing 
publication of the archive into iRODS to enable search through the iRODS Metadata Catalog (iCAT) 
and the ability to apply iRODS preservation capabilities to the archive. 

• Conceptualizing Policy-Driven Repository Interoperability (PoDRI) Using iRODS and Fedora, 
David Pcolar (CDR, UNC), Daniel W. Davis (Cornell, DuraSpace), Bing Zhu (DICE, UCSD), 
Alexandra Chassanoff (SILS, UNC), Chien-Yi Hou, Richard Marciano (SALT, UNC). Describes 
work to integrate and interoperate between the iRODS and Fedora digital repositories, providing 
policy-aware object models, including policy expressions, and a distributed architecture for policy-
driven management. Combining iRODS and its Rules engine with Fedora’s rich semantic object 
model for digital objects leverages the best features of both products. Funded by IMLS.  

• Community-Driven Development of Preservation Services, Richard Marciano (SALT, UNC), 
Chien-Yi Hou (SALT, UNC), Jennifer Ricker (NC State Library), Glen McAninch (KY Dept. Lib. & 
Archives), David Pcolar (CDR, UNC) et al. Describes lessons learned in the DCAPE project to 
articulate a community-based development approach for preservation services that will support 
institution-specific preservation policies (including business models) while providing required 
economy of scale for a cost-effective service. Funded by NHPRC. 

Posters 
• Distributed Data Sharing with PetaShare for Collaborative Research, PetaShare Team @LSU 

(poster). Describes use of iRODS in the PetaShare data grid to enable transparent handling of data 
sharing, archival, and retrieval mechanisms, making data easily available to scientists for analysis 
and visualization on demand. Used in 25 research projects in five state universities and two health 
sciences centers across Louisiana. Describes the PetaFs virtual filesystem. 

• University of North Carolina Information Technology Services, William Schultz (UNC)  (poster). 
Describes use of iRODS in multiple data grids in the context of UNC HPC infrastructure.  

• The ARCS Data Fabric, Shunde Zhang, Florian Goessmann, Pauline Mak (ARCS) (poster). 
Describes use of iRODS in the ARCS Data Fabric which lets researchers easily store and share 
research data across institutional boundaries in a generic service not tied to any specific kinds of data 
or research disciplines and available to every Australian researcher and international collaborators. 
Describes access through WebDAV clients. 



8  Proceedings 

• Building a Trusted Distributed Archival Preservation Service with iRODS, Jewel H. Ward, Terrell 
G. Russell, and Alexandra Chassanoff (SILS, UNC) (poster). Describes design and development of 
generic iRODS Rules to 1) validate the trustworthiness of a repository through the enactment of ISO-
MOIMS compliant policies; and 2) enable the distributed auditable administration of the repository 
through the invocation of iRODS Rules.  

 
Clients for iRODS  

Papers 
• A Service-Oriented Interface to the iRODS Data Grid, Nicola Venuti, Francesco Locunto (NICE), 

Michael Conway, Leesa Brieger (UNC RENCI and DICE). Describes an open source iRODS plugin 
that gives iRODS users access to the Nice EnginFrame cloud interface framework through an easy-
to-use GUI that can be easily customized for community use, offering multiple views for users, 
administrators, etc.  

• iExplore for iRODS Distributed Data Management, Bing Zhu (DICE group, UCSD). Describes the 
iExplore GUI client tool for navigation and manipulation of data within the iRODS distributed data 
system. Designed and implemented in the Windows platform, it offers a rich set of functions and 
excellent performance.  

• The Development of Digital Archives Management Tools for iRODS, Tsung-Tai Yeh, Hsin-Wen 
Wei, Shin-Hao Liu (Academia Sinica, Taiwan), Pei-Chi Huang (Tsing Hua University, Taiwan), 
Tsan-sheng Hsu (Academia Sinica, Taiwan), Yen-Chiu Chen (Tsing Hua University, Taiwan). 
Describes development for use in the TELDAP program in Taiwan of the UrSpace user interface and 
corresponding Sync Package and monitoring system (SIMS) that can check iRODS for errors and 
monitor the system independently.  

Posters 
• A GridFTP Interface for iRODS, Shunde Zhang (ARCS). Describes the design and implementation 

of a GridFTP interface for iRODS. Written as a plugin on Globus GridFTP for iRODS, it provides an 
OS-independent standalone solution that doesn’t rely on Globus but is compatible with existing 
Globus clients. 

 
iRODS Integration  

• Enhancing iRODS Integration: Jargon and an Evolving iRODS Service Model, Mike Conway 
(DICE Center, UNC). Describes the JARGON Java I/O library and plans for integration with web 
services, development of a dropbox interface (iDrop), and support for digital library interfaces such 
as Islandora. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. iRODS User Applications 
 
 
 



10  Proceedings 

 
 



iRODS User Group Meeting 2010 11 

High Availability iRODS System (HAIRS) 
Yutaka Kawai,* Adil Hasan** 

*Computing Research Center, High Energy Accelerator Research Organization (KEK) 
**School of English, University of Liverpool 

 
Abstract 

The integrated Rule Oriented Data Management 
System (iRODS) is a policy-driven data management 
system that is starting to be used by projects with large data 
volume requirements that require a highly available system. 
In this paper we describe an approach to provide a Highly 
Availability load-balanced iRODS System (HAIRS). We 
also describe the advantages and disadvantages of the 
approach and future work. 

Index Keyword Terms—High Availability, Ultra–
Monkey, PgPool, Director, ldirectord, ipvsadm 

1. Introduction 
The integrated Rule Oriented Data Management 

System (iRODS) [6] is an open-source, policy-driven 
distributed data management system developed by the Data 
Intensive Cyber Environments group that insulates its’ 
users from changes to the physical components of the 
system. Interaction with data stored in the iRODS system is 
done using logical file-names and storage names. The 
iRODS system takes care of the translation from the logical 
to the physical name. Changes to the physical location of a 
file only requires the logical-to-physical file mapping to be 
updated. 

Changes to the physical storage resource require an 
update to the logical-to-physical storage resource mapping 
and, if required, the implementation of a new iRODS driver 
that is able to translate iRODS file commands to those used 
by the physical storage resource. In this way iRODS 
provides a uniform interface to heterogeneous storage 
resources. In addition to a virtual file-system iRODS also 
provides the possibility to impose a series of directives 
(collective called policies, or rules) on the data stored. In 
keeping with the iRODS philosophy the rules are defined in 
a high-level, fully-featured language with each step of the 
rule implemented as a C-base service (termed a micro-
service).The rule is insulated from changes to the 
underlying micro-services. 

An iRODS system consists of one iRODS server that 
communicates directly with the iRODS Metadata Catalog 
(iCAT) database and an iRODS server running on each 
storage resource. All iRODS servers require an iRODS rule 
engine that executes the triggered rules. An iRODS system 
can be federated with another iRODS system providing 
seamless access to data stored in a remote iRODS system. 
The iRODS is starting to be used by projects with large 

numbers of users and with large data volume requirements 
in Japan [10, 11, 14], France [10, 4], the USA [10, 18] and 
Australia [1]. Such projects operate in an ‘always-on’ mode 
and cannot tolerate a failure in accessing the data. Within 
iRODS a failure of a single storage resource can be 
mitigated by replicating the data over more than one 
resource. But, the iCAT and the iCAT-enabled iRODS 
server remain as a single point of failure. If the iCAT 
database is down, or if the iCAT enabled server is offline 
the iRODS system cannot be used. 

In Section 2 we describe the approach of database 
replication to mitigate against iCAT server failure and in 
Sections 3 we describe the approaches to mitigate against 
iCAT-enabled server failure. Section 4 describes some of 
the tests we performed in order to determine the impact of 
the approach and Section 5 outlines future work.  

 

2. Redundant iCAT 

The iRODS Metadata Catalogue (iCAT) contains all 
the information necessary to manage files stored in iRODS. 
The iCAT is implemented as a set of tables in a 
PostgreSQL, ORACLE or MySQL database. Only one 
iCAT exists per iRODS system and, as such, forms a single 
point of failure. Implementing database replication 
techniques can eliminate this critical point.  

The Australian Research Collaborative Service has 
implemented PostgreSQL database replication for the iCAT 
using PgPool [9]. The procedure essentially requires setting 
up two iCAT PostgreSQL databases that are replicated via 
PgPool as shown in figure 1. The iCAT databases are 
interfaced to two iRODS servers A and B, and clients can 
connect to either server.  Any  changes  to either iCAT are  

Figure 1. iRODS High Availability using PgPool. 



12  Proceedings 

 
 

  

Figure 2. Failure situation: iRODS server A is down. 

 
automatically replicated to the other iCAT.  

A similar approach can be used for an iRODS that uses 
MySQL [16], while Oracle provides its own mechanisms 
for replicating databases [15].  

This approach is extremely useful for creating a fault-
tolerant iCAT although it requires the client to actively 
know which iRODS-enabled ICAT server they are 
connected to and to alter their configuration if their default 
server is down (see figure 2). In Section 3 we describe an 
approach that addresses this problem.  

3. Redundant iCAT Enabled  
iRODS Server 

An iRODS consists of only one iRODS server that 
interfaces to the iCAT. Like the iCAT this server is also a 
critical component of the iRODS and redundancy of this 
server would eliminate this single point of failure. By 
making use of a load-balancer application [12] one can 
create a redundant pool of servers with a single point of 
entry for the client application. In this way the client does 
not need to remember which set of servers belong to the 
pool and new servers can be added to the pool as required 
allowing the system to scale with increasing load. 

There are a number of load-balancers available that 
enable a redundant system to be built, these split along 
hardware or software lines. For example, the CISCO 
CATALYST 6500 [2] hardware component, can do Layer 
4 switching and has load-balancing algorithms. Hardware 
load-balancers are high-performance, robust and tend to be 
expensive. Examples of software load-balancers are 
HAProxy [3] that supports http, ssh etc protocols and Ultra 
Monkey [17] that provides support for a wide range of 
protocols. At the time of writing HAProxy does not provide 
support for simple-TCP based protocols on which the 
iRODS protocol is based and so Ultra Monkey was used in 
this study. 

 
The approach used in this paper is to make use of a 

software load-balancer and adapt it to provide a pool of 
iCAT enabled iRODS servers that are mapped to a virtual 
server which the client connects to. This approach ensures 
that if one server is unavailable the client will be directed to 
the next available server. 

Ultra Monkey is a Linux-based load-balancer that 
makes use of Linux Virtual Server [13] to provide a fast 
load-balancer implemented as the Linux Director as shown 
in figure 3. The Linux Director ideally runs on a separate 
server and essentially contains a list of real servers which 
are regularly polled. Clients connect to the director which 
then forwards requests to the least loaded server. If one of 
the servers is overloaded or down the client is 
automatically redirected to another server in the pool. The 
Linux Director is only used to establish a connection 
between the client and the least-loaded, working iRODS 
server. Once the connection has been established iRODS 
takes over to complete the interaction. This ensures that the 
extra cost (in time) due to the Linux Director is minimal. 

In this way the iRODS system can scale with 
increasing load as new iRODS servers can be added to the 
pool as needed without the client needing to update their 
configuration. The following sections describe the load-
balancer setup used in this work. 
 

3.1. Network Configuration 
The network configuration of the load-balancer is 

shown in figure 4 and in tables 1 and 2. The Linux Director 
is installed on a separate server and behaves as a virtual 
iRODS server that maps the client request to a real iRODS 
server (it behaves effectively as a Network Address 
Translation device). The Linux Director and the iRODS 
servers need to be in the same domain as the load-balancer 
cannot span different domains (i.e. the Linux Director 
cannot load-balance over a pool of servers that are located 
in different administrative domains). 

 
 

 

Figure 3. Solution using Director. 

 



iRODS User Group Meeting 2010 13 

 
Figure 4. Example: Network Configuration 

 
 
IP address Description 
192.168.1.171 Linux Director for 192.168.1.0/24 

network 
192.168.1.191 Virtual Server 
192.168.1.170 iRODS Client 

Table 1. Network 192.168.1.0/24 

 
 
IP address Description 
192.168.1.171 Linux Director for 192.168.2.0/24 

network 
192.168.1.191 iRODS Real Server 1 
192.168.1.170 iRODS Real Server 2 

Table 2. Network 192.168.2.0/24 

 
3.2. Linux Director Installation 

The Linux Director was installed on a CentOS5 Linux 
server. In addition to the Linux Director server application 
the following applications need to be installed (more details 
can be found on the Ultra Monkey web site [17]): 

- heartbeat: runs on the Linux Director server and 
polls the iRODS servers to determine their load. 

- heartbeat-ldirectord: interfaces the heartbeat 
application to the Linux Director to allow 
clients to be directed to the least loaded server. 

- heartbeat-pils: plug-in interface application to 
interface to the Linux Director. 

- heartbeat-stonith: used to remotely power down 
a node in the pool.  

- Ipvsadm: administers IP virtual server services 
offered by the Linux kernel. 

- Libnet: utilities to help with managing network 
packets. 

 

Figure 5. Routine strings iRODS server returns 

There are several things to care about when installing 
the Linux Director for an iRODS system. The Linux 
Director daemon ldirectord reads its configurations from 
the configuration file ldirectord.cf which, by default is be 
installed in /etc/ha.d. The configuration file contains the list 
of iRODS servers that the Linux Director must map the 
client to. In order for Ultra Monkey to work with the 
iRODS protocol the “service” flag in the ldirectord.cf file 
should be “simpletcp”. The iRODS server returns routine 
messages whenever it receives any message from a client 
(figure 5). Therefore, the “request” flag in the ldirectord.cf 
can contain any client request (the iRODS ils client 
command was used as this interacted with the metadata 
catalogue and ensured the whole system was functioning). 
The “receive” flag should be specified as “RODS 
VERSION” which is a part of the iRODS server response. 
An example of the ldirectord.cf file is shown in figure 6. 

 

Figure 6. An example of ldirectord.cf. 

<MsgHeader_PI> 
<type>RODS_VERSION</type> 
<msgLen>182</msgLen> 
<errorLen>0</errorLen> 
<bsLen>0</bsLen> 
<intInfo>0</intInfo> 
</MsgHeader_PI> 
<Version_PI> 
<status>-4000</status> 
<relVersion>rods2.1</relVersion> 
<apiVersion>d</apiVersion> 
<reconnPort>0</reconnPort> 
<reconnAddr></reconnAddr> 
<cookie>0</cookie> 
</Version_PI> 

checktimeout=10 
checkinterval=2 
autoreload=yes 
logfile="/var/log/ldirectord.log" 
logfile="local0" 
quiescent=no 
 
virtual=192.168.1.191:1247 
        real=192.168.2.181:1247 masq 
        real=192.168.2.182:1247 masq 
        protocol=tcp 
        service=simpletcp 
        request="test" 
        receive="RODS_VERSION" 
        scheduler=lc 
        checktype=negotiate 
        netmask=255.255.255.255 



14  Proceedings 

The ipvsadm (Linux Virtual Server administration) 
command can have one of ten types of scheduling-method 
[5]. It is configured by the flag “scheduler”, table 3 shows a 
list of the scheduling methods ldirectord can configure. The 
ldirectord configuration in the figure 6 specifies “lc” to 
assign more jobs to real servers with fewer active jobs. 
 

Scheduler Flag Scheduling Method 
rr Round Robin 
wrr Weighted Round Robin 
lc Least-Connection 
wls Weighted Least-Connection 
lblc Locality-Based Least-Connection 
lblcr Locality-Based Least-Connection  

with Replication 
dh Destination Hashing 
sh Source Hashing 
sed Shortest Expected Delay 
nq Never Queue 

Table 3. ipvsadm scheduling-method Algorithm. 

4. Tests 
In this section we describe the tests carried out to 

determine the performance impact of the load-balancer. 
The first test addresses the impact of the load-balancer on 
the transfer of large files and the second concerns the 
overhead the load-balancer places on client interaction with 
the iRODS server. Both tests made use of the client C-
based iRODS utilities (“icommands”) that form part of the 
iRODS suite [8]. 
 
4.1. Large File Transfer 

The “iput” command is used to store a file into an 
iRODS system. By default, if the file size is larger than 32 
MB, iput performs the transfer in parallel [7]. In this case 
the data transfer is carried out directly between the physical 
resource and the client as shown in figure 7:  

1. Client issues iput with a large file. 
2. Server A finds the physical location to store the 

file. 
3. Server A directs the other iRODS Server C with 

the physical storage to open parallel I/O ports. 
4. File transfer starts between Client and Server C. 
Redundancy of iRODS storage servers is provided by 

replicating data over more than one storage server and so 
the load-balancer does not need to be configured to provide 
redundancy for these servers; only for the iRODS iCAT-
enabled server. This greatly simplifies the configuration as 
shown in figure 8 as the ports that the large file transfers 
occur on do not need to be mapped in the Linux Director 
configuration. 
 

 
Figure 7. Large file transfer: Normal case. 

The configuration is almost exactly as in figure 7 
except that the Linux Director forwards the client 
connection to an iRODS server which then forwards the 
request to the target storage system. This setup limits the 
complexity of the configuration of the Linux Director and 
eliminates the impact of the load-balancer on the transfer of 
large files. In our tests files of 1GB in size were 
successfully stored in iRODS with the client. 
 

 
Figure 8. Large file transfer: The case using director. 

4.2. Load-balancer Overhead 
The iRODS suite contains a package for performing 

concurrent tests on an iRODS system. This package was 
used to understand the overhead the load-balancer places 
on an iRODS system. The concurrent test sequentially 
executes several icommands, iput (to store data), imeta (to 
query the metadata catalogue), iget (to retrieve data), and 
imv (to move data from one iRODS resource to another). 
The concurrent tests were performed for 1, 10, 50 and 100-
1000 clients. The network configuration is the same as the 
example in the previous sections (figure 4). Physically, all 
the iRODS servers are Xen virtual machines on the same 
physical machine and the only iRODS client is on the 
different physical machine. This can have a non-trivial and 
noticeable effect on the results of the tests. 



iRODS User Group Meeting 2010 15 

Three series of tests were performed to understand the 
impact of the load-balancer: 

 
case1: Normal case. The iRODS client directly accesses 
one iRODS server. 
case2: Using a director. The iRODS client accesses one 
iRODS server through the Linux Director. 
case3: Load sharing case. The iRODS client accesses 
two iRODS servers through the Linux Director. 
 

In order to get the average values, the concurrent-test 
program is executed three times for each test. The figure 9 
shows the results of the tests. The case 2 is about 10% 
slower than the normal case 1 so the impact of the speed 
performance by using director should be considered. 
However, while considering optimization of Director 
implementation, controlling tradeoff between access speed 
and benefits of high availability becomes practical.  
 

 
Figure 9. Speed Performance Test Results. 

5. Conclusion and Future work 
This paper has described how a highly available 

iRODS system can be implemented with a load-balancer 
with negligible impact to the client. The impact of the load-
balancer on the performance of the iRODS system is 
minimal and should be considered in the case where a 
highly available system is needed. Although the approach 
described was for the Ultra Monkey load-balancer we 
believe the same approach can be used for any other load-
balancer. In addition this approach can also result in a 
highly scalable iRODS system that can grow with 
increasing load. 

One area that we consider to be limiting is the 
restriction of the redundant iRODS servers to be within the 
same domain. A truly high availability system would try to 
eliminate domain-specific problems by having a pool of 
servers that span multiple domains. This is an area we are 
looking at addressing in the future. We are also looking at 
applying the concept of HAIRS to other catalog services 
such as the RNS (Resource Namespace Service) 
application, Gfarm (Grid Data Farm), etc. 

6. Acknowledgment 
The authors would like to thank to Prof.Takashi Sasaki 

and Yoshimi Iida. Prof.Sasaki coordinated the study. 
Ms.Iida gave us valuable support for the iRODS setup in 
KEK. Adil Hasan is also grateful to the KEK institute for 
their kind hospitality and to the KEK Short-term Visiting 
Scientist program financial support during the course of 
this study. 

7. References 
[1] Australian Research Collaboration Service. Online. 
http://projects.arcs.org.au/trac/podd/wiki/iRODS. 
[2] CISCO CATALYST 6500 SERIES CONTENT SWITCHING 
MODULE. Online. 
http://www.cisco.com/en/US/products/hw/modules/ps2706/produ
cts_data_sheet09186a00800887f3.html. 
[3] HAProxy - The Reliable, High Performance TCP/HTTP Load 
Balancer. Online. http://haproxy.1wt.eu/.  
[4] IN2P3 – National Institute of Nuclear Physics and Particle 
Physics. Online. http://cc.in2p3.fr/?lang=en. 
[5] ipvsadm(8) - Linux man page, scheduler option. Online. 
http://linux.die.net/man/8/ipvsadm. 
[6] iRODS – the Integrated Rule-Oriented Data System. Online. 
http://www.irods.org. 
[7] iRODS file transfer. Online. 
https://www.irods.org/index.php/iRods_file_transfer. 
[8] iRODS icommands. Online. 
https://www.irods.org/index.php/icommands. 
[9] iRODS Master/Slave Replication with pgpool. Online. 
https://projects.arcs.org.au/trac/systems/wiki/DataServices/iRODS
_Replication_Pgpool. 
[10] Projects Using and Developing iRODS. Online. 
http://www.diceresearch.org/DICE_Site/iRODS_Uses.html. 
[11] KEK – High Energy Accelerator Research Organization, 
KEK. Online. http://www.kek.jp/intra-e/index.html. 
[12] Load balancing (computing). 
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29 
[13] The Linux Virtual Server. Online. 
http://www.linuxvirtualserver.org/. 
[14] Lyon-KEK. Online. https://www.irods.org/index.php/Lyon-
KEK. 
[15] P. McElroy and M. Pratt. Oracle Database 11g: Oracle 
Streams Replication. Technical report, Oracle, 2007. 
http://www.oracle.com/technology/products/dataint/pdf/twp_strea
ms_replication_11gr1.pdf. 
[16] MySQL Master Master Replication. Online. 
http://www.howtoforge.com/mysql_master_master_replication 
[17] UltraMonkey, Load Balancing and High Availability 
Solution. Online. http://www.ultramonkey.org/. 
[18] Information Technology Services for The University of 
North Carolina at Chapel Hill. Online. 
http://its.unc.edu/its/index.htm. 



16  Proceedings 

iRODS at CC-IN2P3 
 

Jean-Yves Nief, Pascal Calvat, Yonny Cardenas, Pierre-Yves Jallud, Thomas Kachelhoffer 
CC-IN2P3, CNRS USR 6402, Villeurbanne, France 

 
Abstract 

In this paper, we will show how iRODS is being used 
at CC-IN2P3, the future plans, code development, and also 
SRB to iRODS migration.  

1. Introduction 
CC-IN2P3 [1] is a national computing centre located in 

Lyon (France) which is dedicated to high energy physics, 
nuclear physics, astrophysics and now is involved in Arts 
and Humanities projects as well as biology and biomedical 
applications. It provides computing, storage resources and 
other services to the French and international scientific 
community. 

iRODS, like its predecessor SRB, is a key service for 
CC-IN2P3 as it provides the ability to manage large 
amounts of data which can be distributed across other data 
centers. These data, produced by instruments or computing 
simulations, can be accessed and shared from anywhere 
when scientists within the same experiment or project are 
spread around the world. 

In this paper, we will show how iRODS is used in 
production and how its usage will evolve in the near future. 
We will also describe the participation of CC-IN2P3 in the 
iRODS code development as well as a Java explorer. As 
SRB is still heavily used in production for several 
experiments and projects, we will describe plans for the 
SRB to iRODS migration. 

2. iRODS in Production 
1.1 Hardware and software setup 

The iRODS service at CC-IN2P3 is supported by 10 
servers. It includes: 

• 2 servers used to host the iCAT servers: Linux 
boxes running Scientific Linux 4 and 5 operating 
system.  

• 6 servers are used as non-iCAT servers which are 
hosting the data: These are Sun X4540 servers on 
Solaris 10 operating system, ZFS is used for the 
file system storing files in iRODS. There is a total 
of 200 TB of disk space available. 

• 2 Linux boxes are used to host the Oracle 11g 
database cluster which is hosting the iCAT 
databases. 

Each project or experiment has its own iRODS 
instance running on a given port number. Therefore the 
hardware is shared by all the users of the iRODS service. 

The iCAT server is vital to the service. It is a single 
point of failure and therefore redundancy is needed. To 
mitigate this we have duplicated the iRODS iCAT servers 
on two machines which are seen under a unique name DNS 
alias called “ccirods”: this DNS load-balanced alias is 
based on software developed at SLAC. Client applications 
connect to the service through this DNS load-balanced 
alias. 

 

 

Figure 1: Hardware setup. 

We are planning to host more data than can be 
accommodated by the data servers, and part of the files 
registered in iRODS will end up on tapes. Therefore the 
iRODS data servers will be interfaced with HPSS, our 
Mass Storage System, using the universal Mass Storage 
driver developed at CC-IN2P3. The transfer protocol used 
for data migration between iRODS and HPSS is RFIO. 

For some projects, parts of their data are unique and 
must not be lost under any circumstances. We have decided 
to use Tivoli Storage Manager to do the backup of these 
files. Other copies of these files are double copied on tapes 
located in our computing facility as well as another 
building on campus. We could have used iRODS data 
replication functionalities with servers located in the other 
building, but this solution would have been more expensive 
and was not required, as data can be restored quickly with 
our current system. 

Servers’ health is checked every 30 minutes using 
Nagios probes which test whether the iRODS instances are 
responding properly to iRODS connection attempts. In case 



iRODS User Group Meeting 2010 17 

of server reboot or daemons disappearance, the servers are 
restarted automatically by cron tasks. 

A report of iRODS usage (number of files, amount of 
storage space) by users, groups, and experiments is made 
on a daily basis. The results are reported in our MRTG 
system and available to all iRODS authenticated users. 

 
1.2 Usage examples 

iRODS has been in production since 2008 for a few 
large projects that we will describe briefly in this section. 

 
1.2.1 TIDRA 

TIDRA stands for «Traitement Informatique Distribué 
en Rhône-Alpes». This is the Rhône-Alpes area data grid 
which federates computing resources in five laboratories 
spread across Lyon, Grenoble, and Annecy campus, with 
CC-IN2P3 as the main data center. TIDRA provides 
computing resources for the Rhône-Alpes scientific 
community, and iRODS is a key component for the storage 
and data management part.  

It is used in biology applications (phylogeny): jobs are 
submitted on the grid and access data from iRODS and 
store job output back into iRODS at a high rate. The 
number of connections on the iRODS cluster has reached 
60,000 per day, with aggregate network activity up to 2 
Gbits/s: no obvious limitations have been noticed and 
therefore I/O activity can be increased without any 
anticipated problems. 

It is also used in biomedical applications such as 
animal imagery (mice) and human data (heart and lung 
studies). For DICOM files, the extraction of the header 
metadata is being done using DCMTK [2], a DICOM 
toolkit. The metadata are then registered into iRODS in a 
bulk mode. All these steps are included in a Rule that is 
triggered automatically on the iRODS server side every 
time a DICOM file is registered into the system. This 
allows researchers to search for a data subset based on 
some metadata criteria.  

Other users are expected to use iRODS in the near 
future, such as researchers from the synchrotron facility in 
Grenoble (ESRF [3]). There are already 15 users and 3 
million files registered in the catalog and we expect to host 
20 TB of data by the end of 2010. 

 
1.2.2 Adonis 

Adonis [4] is a French national funded project which 
aims to federate and provide a platform of computing 
services for the Arts and Humanities national community. 
Adonis is also connected to European projects like DARIA. 

Various projects within Adonis are already using 
iRODS, which is one of the key services. There are various 
needs: archival of documents from the Middle Age: data 
access from batch processing farms (riverbed studies in 
geography, movie simulations of ancient monuments). 
iRODS will be also used for data access through web sites, 

easing web site code development and avoiding having to 
modify legacy web applications which will be hosted at 
CC-IN2P3. Fuse-iRODS allows mounting iRODS 
collection trees as a regular file system on the servers, 
therefore it is well suited in the present case to adapt web 
applications to data access through iRODS, without having 
to change a single line of code. 

One of the main Adonis project is to provide a 
platform to make long-term preservation of data produced 
by research laboratories spread across France into CINES 
[5], a national computing facility in Montpellier, and then 
provide online data access through Fedora-Commons [6] at 
CC-IN2P3. In the example below (Fig. 2), audio files are 
produced by researchers from CRDO (Paris). The data are 
pushed to CINES where they are archived. The files that 
belong to the same object (i.e. the same family) are pushed 
in tar balls to CC-IN2P3 using iRODS. On the iRODS 
servers in Lyon, the files in the tar ball are extracted and 
registered automatically in Fedora-Commons using an 
iRODS Rule triggered automatically. The Fedora-
Commons storage back end is iRODS: this is achieved 
using a Fuse-iRODS mount point on the Fedora-Commons 
server. It was the most obvious way of interfacing iRODS 
with Fedora-Commons as the present Java interface 
between the two does not have all needed functionalities. In 
a future version of the workflow, it is foreseen to also have 
an iRODS server in CINES, so that once the data produced 
by any research lab is pushed into iRODS, even the second 
step of the workflow, i.e. data preservation, would be 
triggered automatically using iRODS Rules. 

 
Figure 2: Adonis preservation and  

publication workflow. 

There are already 20 TB of data stored in iRODS, 
representing 2 million files. This will increase to more than 
100 TB by the end of 2010. 

 
1.3 Prospects for 2010 

iRODS is being adopted by many projects in various 
fields hosted at CC-IN2P3. They have already started to use 
iRODS or will start soon. Here is a non-exhaustive list: 

 
• Biology: phylogeny. 

• Biomedical applications: animal imagery, cardiology, 
neuroscience using magnetoencephalography, 



18  Proceedings 

positron emission tomography, fMRI, X-ray and 
gamma ray imagery. 

• Astrophysics: LSST [7], JEM-EUSO. 

• High Energy Physics: dChooz [8] (neutrino 
experiment). 

• Arts and Humanities: Adonis. 

We estimate that iRODS services at CC-IN2P3 will 
host at least 300 TB of data by the end of 2010. This does 
not include some projects which are using SRB at the 
moment and that will migrate to iRODS this year. The 
petabyte scale will be reached in the near future. Some 
issues with file names which can potentially contain 
accented letters must be solved in the area of Arts and 
Humanities. 

3. Code Development  
In this section, we describe our participation in iRODS 

code development (author: Jean-Yves Nief) and also a 
Java-based GUI interface called JUX which can be used to 
browse iRODS, among other protocols (author: Pascal 
Calvat). 

 
2.1 Scripts 

A script has been developed to test iCommand 
functionalities and ensure that they are behaving as 
expected: it allows checking that no obvious bug shows up 
before a new iRODS software version is released. 

Another script has been written to do stress tests by 
launching in parallel a certain number of iRODS operations 
and measuring the time response of the system. 

All these scripts need to be updated as the number of 
iRODS features has increased significantly in the recent 
past. 

 
2.2 Micro-services and iCommands 

A set of Micro-services has been written for several 
purposes: 

• Access control: This is a flexible firewall that can be 
tuned using a configuration file located in 
server/config. It prevents iRODS connections from 
any set of machines and for any user or group of 
users that has been specified in the configuration file. 
It can be triggered simply by using the 
acChkHostAccessControl hook in core.irb. 

• Tar file creation and tar file extraction: these 
Micro-services can create a tar file from a given 
output collection and register it automatically into 
iRODS, and they can extract files from a tar ball 
registered into iRODS and put the content of the tar 
archive into a given output collection. 

• Access rights setting: Sets the access rights on a 
given input collection or a file. 

• Resource Monitoring system Micro-services: these 
will be described in more detail in the subsection 
below. 

An iCommand called iscan has been created: it checks 
if a local data object or a local directory content is 
registered in iRODS. This tool is intended for 
administrators to look for orphan objects on iRODS data 
servers (i.e. objects not registered in iRODS). 

 
2.3 Universal Mass Storage System driver 

The goal of this driver is to interface iRODS with any 
kind of Mass Storage System or any other storage system, 
using the communication protocol of the administrator’s 
choice (e.g: pftp, rfio, gridftp, hpss etc.) based on the shell 
commands they are already using. It is an easy way to 
quickly interface an existing storage system with iRODS 
without having to use the storage system APIs. This can 
save time in code development and more importantly users 
can continue to access this Mass Storage System using the 
same tools they have been using for direct access, therefore 
allowing users to maintain a homogeneous way of 
accessing their MSS system.  

This is very flexible and highly configurable on the 
system and can be configured to provide, for example, 
HPSS access in a similar manner as the built-in HPSS 
driver (which uses client libraries to interface). In both 
HPSS cases, files will be cached between iRODS and 
HPSS: using compound resources to handle MSS resources 
is mandatory when using this driver as no direct access to 
the MSS for the iRODS client is allowed. 

 
Resource Monitoring System 

The resource monitoring system has two goals:  
• It provides a monitoring system of the servers’ 

activity for a given federation of iRODS servers: it 
measures the load of each server at a given 
frequency. The measured quantities are the CPU 
load, runq load, memory usage, swap memory usage, 
paging I/O activity, network activity, and disk 
occupancy on the file systems used by the iRODS 
physical resources.  

• It provides a load balancing system: it gives a 
measure of the load of each server based on the 
information extracted above. This information can 
subsequently be used to choose one physical resource 
among others for put/get operations.  

For monitoring server activity (Fig. 3), a Rule is being 
executed at a given frequency (say every 10 minutes) and 
starts a Micro-service called msiServerMonPerf. This 
Micro-service will trigger execution of the script 
irodsServerMonPerf on all (or a subset of) the iRODS 
servers having physical resources declared: the action is 
launched on all the target servers at the same time. The 
irodsServerMonPerf script will measure the quantities 



iRODS User Group Meeting 2010 19 

described above (e.g. CPU load, memory usage etc.): each 
quantity is an integer with a value between 0 and 100 (e.g.: 
CPU load = 0 means that no CPU is used, CPU load = 100 
means that 100% of the CPU is used). Once the script has 
finished, all measurements are stored in a dedicated iCAT 
table and are used subsequently by other Micro-services 
described below. 

 
Figure 3: RMS in action. 

For the load-balancing system, a Rule is executed at a 
given frequency (say every 10 minutes) and starts a Micro-
service called msiDigestMonStat that computes a load 
factor for each server. This load factor has a value between 
0 and 100: a higher number corresponds to a higher server 
load. This load factor is computed based on the measured 
quantities above: 

 

 

€ 

load = (α ×CPUload + β ×MEMload +

γ × RUNQload +δ × SWAPload +

ε × PAGEIOload +θ × NETload +

µ ×DISKused) / 7

 

 
where α , β, γ, δ, ε, θ and µ must be between 0 and 1 and 
must be set by the administrator. For instance, if one wants 
to choose servers based on the CPU load and the network 
load criteria, then α=0.5 and θ =0.5; all the other factors 
have to be set to 0. The load factor is stored into a 
dedicated iCAT table. It can then be used directly by hooks 
like acSetRescSchemeForCreate to pick out the least 
loaded physical resource within a list of resources. 

The remote monitoring system also updates some 
physical resource metadata such as the disk space available 
and the resource status, i.e. if it is up and running, or down 
because it is unreachable. 

 
2.4 JUX 

JUX [9] stands for “Java Universal eXplorer”. The 
main purpose of JUX is to provide a single Graphical User 
Interface written in Java to access data stored on different 

kind of data grids. JUX is intuitive and easy-to-use for non-
expert users. Its uncluttered interface uses contextual 
menus and features like “drag and drop”, and is close to 
widely used explorers such as the Windows Explorer. 
There are similar tools to JUX such as Hermes [10] 
developed by James Cook University (Australia) and 
VBrowser [11] developed by the Virtual Lab for e-Science 
(Netherlands) which are based on Apache Commons VFS.  

JUX is based on the Java implementation of the SAGA 
specifications called JSAGA [12] and developed by 
Sylvain Reynaud at CC-IN2P3. JSAGA provides a data 
management layer as well as security mechanisms. It 
allows JUX to connect with many different protocols such 
as iRODS, SRB, gsiftp, SRM, http, sftp, zip, and local file 
systems using security mechanisms such as login/password 
or X509 certificates. An iRODS plugin to JSAGA had to be 
written using Jargon APIs. Files can be copied from one 
system such as SRB to another such as iRODS in a single 
“drag and drop”. With JUX, it is also possible to display 
the content of a file (ascii, pictures, audio files) as well as 
iRODS metadata attached to it (fig. 4). It will be soon 
possible to search files based on metadata criteria. 

 
Figure 4: Example of JUX display. 

4. SRB to iRODS migration 
The SRB to iRODS migration is an important topic for 

CC-IN2P3 as SRB is still heavily used. 
 

3.1 SRB usage at CC-IN2P3 
Since 2003 the Storage Resource Broker has been used 

by more than 10 projects and experiments, from high 
energy physics and nuclear physics, to astroparticle 
physics, biology and biomedical applications. SRB is a key 
component of these international projects as CC-IN2P3 
plays a major role for them, whether as the central 
repository or mirror site: SRB is the main repository and 
means of data access and management for them. 

SRB handles more than 2 PB of data on both disk and 
tape, hundreds of thousands of connections per day, a daily 
network traffic that can reach 15 to 20 TB. SRB clients 
span from laptops to supercomputers (e.g. IBM BlueGene), 
on a wide range of Operating Systems (Windows, Mac 



20  Proceedings 

OSX, Linux, AIX, Solaris). In order to access the SRB, 
they use either Scommands (equivalent to iCommands), 
Java APIs (Jargon), or web services. Connections to SRB 
come from all over Europe and from as far as Hawaii and 
Australia. SRB is still growing and will reach 3 PB of data 
managed by the end of this year. 

Among the biggest users are: 
• BaBar [13]: a High Energy Physics experiment based 

at SLAC (Stanford). Data analysis is being performed 
both at the SLAC computing centre and also at CC-
IN2P3. In order to have full data access to end users 
in Lyon, we designed a two zone system, with 
automatic synchronization of data between the two 
sites, allowing receiving newly produced data from 
the BaBar detector and simulation data at CC-IN2P3 
within 24 to 48 hours. Once this system was set up, it 
has been able to transfer up to 5 TB of data per day 
from SLAC tapes to CC-IN2P3 tapes, with a minimal 
amount of manpower and maintenance work. Three 
million files, corresponding to more than 1 PB of 
data have been transferred in this way. 

• Lattice QCD: this field of theoretical physics 
produces vast amounts of data. CC-IN2P3 hosts the 
largest QCD repository in Europe with more than 1 
PB stored. These data are produced and accessed 
from several computing centers in France, Germany, 
and the Netherlands. 

The scalability and reliability of SRB has proven to be 
extremely important in fulfilling the needs of these 
experiments. SRB has been a key point for their success. 

 
3.2 Migration Plan to iRODS 

SRB is a central tool for these experiments, it is 
heavily used on a daily basis. Therefore, the migration from 
SRB to iRODS in this production environment must be 
handled carefully as we need to have minimal disturbances 
in the process. For projects using Jargon APIs for their 
client applications, it will be fairly easy and require a 
minimum amount of work. But the other projects are using 
shell, Perl, or Python scripts using the Scommands. This 
will require more work as these scripts can be spread 
through various parts of the software tools written for the 
project, and also in the code of the end users. In order to 
make this migration less painful we are planning to write a 
small utility that will parse user scripts and detect lines 
where Scommands need to be replaced by iCommands. 

We will begin this migration process this year with 
BioEmergences [14] (60 TB of data by the end of 2010). 
We will continue with other projects in the next two years, 
and hope to finish the migration by the end of 2012. We 
will not do the migration for projects that have already 
finished taking data within the last two years: this is the 
case of BaBar and Supernovae Factory [15]. 

5. Conclusion 
SRB has proven to be a powerful data management 

tool that can be easily adapted to many different needs. It is 
highly scalable and robust. It is an important requirement 
for scientific data management as the amount of data and 
metadata increase at a huge rate. We are now at the scale of 
the Petabyte, and in just a few years will reach the Exabyte 
level. 

iRODS, with its ability to handle complex data 
workflows goes far beyond the functionalities of the SRB 
and any other grid middleware tool. The iRODS Rule 
mechanism offers a wide range of solutions for data 
management and great flexibility to adapt to any needs: it 
can interact in a transparent manner with a large amount of 
third party software and data storage systems. Its unique 
features are very appealing for many users, and their 
feedback so far has been extremely positive. We are also 
confident that iRODS is well-suited for projects handling 
hundreds of petabytes and hundreds of millions of files. 
iRODS is very easy to install on any platform and requires 
very little maintenance as it is a robust tool. This is a major 
requirement for CC-IN2P3: a manpower-consuming tool 
could be an important show stopper for our projects. 

We expect to quickly reach the Petabyte scale for 
iRODS within a year, with an increased number of projects 
using it.  Other developments are envisaged, especially for 
the Resource Monitoring System and in other areas. 

6. Acknowledgment 
We wish to thank the DICE team for their support and 

feedback. We also thank T. Kachelhoffer and P-Y. Jallud 
for their contribution on the Adonis project and Yonny 
Cardenas for his contribution on TIDRA project. 

7. References 
http://cc.in2p3.fr/  
http://dicom.offis.de/dcmtk.php.en  
http://www.esrf.eu/ 
http://www.tge-adonis.fr/  
http://www.cines.fr/  
http://www.fedora-commons.org/  
http://www.lsst.org/lsst 
http://doublechooz.in2p3.fr/Public/public.php   
https://forge.in2p3.fr/wiki/jux  
http://wiki.arcs.org.au/bin/view/Main/HermeS  
http://staff.science.uva.nl/~ptdeboer/vbrowser/  
http://grid.in2p3.fr/jsaga/  
http://www.slac.stanford.edu/BFROOT/  
http://www.bioemergences.eu/  
http://snfactory.lbl.gov/  
 



iRODS User Group Meeting 2010 21 

Using iRODS to Preserve and Publish a Dataverse Archive 
 

Mason Chua*, Antoine de Torcy**, Jewel H. Ward***, Jonathan Crabtree* 
*H.W. Odum Institute for Research in Social Science 

** Data Intensive Cyber Environments Center 
*** School of Information and Library Science 
The University of North Carolina at Chapel Hill 

Abstract  
We developed a method for transferring the contents of 

an archive running Dataverse, a publishing program for 
scientific data, into iRODS [5]. This method respects the 
encapsulation of the Dataverse archive by exporting its 
contents through documented methods using the OAI-PMH 
and HTTP protocols.  Since the metadata exported from 
Dataverse conforms to documented standards (including 
the OAI-PMH and at least one other metadata 
specification), we were able to use an XSL transformation 
to reformat it into a document whose contents can be 
deserialized into the iRODS metadata catalog.  As a result, 
iRODS users can use iRODS metadata to do keyword 
searches on the serialized copy of the Dataverse archive.  
Furthermore, this method lets administrators use iRODS to 
apply data preservation policies, including storage resource 
redundancy, to the contents of a Dataverse archive. 
 

Index Keyword Terms—OAI-PMH, DDI, data 
archive, digital library, descriptive metadata, preservation, 
web publishing, migration, interoperability, XML, XSL 
transformation, serializa–tion, HTTP, search. 

1. Introduction 
The archivists at the H. W. Odum Institute for 

Research in Social Science use an open-source web 
publishing platform called Dataverse to publish their 
extensive collection of files related to social science 
research studies.  As part of the Odum Institute’s effort to 
test interoperability between archive platforms and data 
grid technologies, we developed a method to automatically 
copy the contents of a Dataverse archive into iRODS.  The 
result is an accurate copy of a Dataverse archive inside 
iRODS, which data grid administrators can preserve over 
the long term by, for example, replicating the information 
to many geographically distributed storage resources.  The 
transfer process also automatically populates the iRODS 
metadata catalog with descriptions of the data.  This 
descriptive metadata lets iRODS users search the archive 
much as Dataverse users can do keyword searches using 
the web. 

This paper assumes no knowledge of Dataverse, whose 
relevant features are explained in the following section.  
We do, however, assume a basic understanding of iRODS, 

as explained in chapter 2 of the iRODS Primer [3].  Section 
2.2 explains the relevant differences between Dataverse and 
iRODS, and Section 3 describes how we overcome these 
differences in order to automatically transfer a Dataverse 
archive into iRODS.  Section 4 explains the significance of 
this work. 

 
title World urbanization, 1950-1970 
handle hdl:1902.29/D-488 
distributor Odum Institute Dataverse Network 
citation Davis, Kingsley, 1970, ‘‘World Urbanization, 1950-
1970’’, http://hdl.handle.net/1902.29/D-488, Odum Institute 
[Distributor] 
holdings URI http://arc/study?globalId=hdl:1902.29/D-488 

Figure 1: On the Dataverse website, metadata is 
displayed as human-readable attribute-value pairs, 
hiding the underlying hierarchical structure (as seen in 
figure 2). 

2. Background 
2.1. The source: Dataverse 

Dataverse is a publishing program for data archives.  
From the user’s point of view, it is a web library of files 
associated with metadata.   

 

<record> 
<metadata> 
    <docDscr> 
         <citation> 
            <titlStmt> 
                  <titl>World urbanization, 1950-1970</titl> 
                  <IDNo agency="handle">hdl:1902.29/D-488</IDNo> 
          </titlStmt> 
          <distStmt> 
                  <distrbtr>Odum Institute Dataverse Network</distrbtr> 
                  <distDate date="2007-11-30">2007-11-30</distDate> 
          </distStmt> 
          <biblCit format="DVN"> 
                  Davis, Kingsley, 1970, "World urbanization, 1950-1970", 
          <distStmt> 
                  <distrbtr>Odum Institute Dataverse Network</distrbtr> 
                  <distDate date="2007-11-30">2007-11-30</distDate> 
          </distStmt> 
          <biblCit format="DVN"> 
                  Davis, Kingsley, 1970, "World urbanization, 1950-1970", 
                  http://hdl.handle.net/1902.29/D-488, 
                  Odum Institute [Distributor] 
          </biblCit> 



22  Proceedings 

           <holdingsURI="http://arc/study?globalId=hdl:1902.29/D-488"/> 
        </citation> 
    </docDscr> 
  </metadata> 
</record> 

Figure 2: An excerpt of the serialized version  
of a typical metadata object in Dataverse. 

For example, a file that contains the numerical results 
of a survey would be paired with metadata that contains the 
survey’s location, description, location, sample size, date 
range, keywords, citation requirements, and even the 
contents of the survey questions. Researchers can find files 
on Dataverse by requesting keyword searches of the 
metadata. 

Under the hood, Dataverse stores its information in a 
filesystem directory and a relational database, which are 
both hidden from the users.  It is technically possible to 
back up an entire Dataverse archive by just copying these 
underlying files and database tables.  These raw backups 
are risky, however, because their format might not be 
compatible with future versions of Dataverse.  Although a 
raw backup contains all of the information in the digital 
library, recreating an archive from the backup might 
require inventing an ad hoc conversion process between 
formats.  To prevent this problem, the Dataverse developers 
have provided two standard interfaces for exporting 
information from the library: the metadata can be 
downloaded using the OAI-PMH protocol, and (as 
mentioned above) the files can be downloaded through the 
HTTP protocol.  OAI-PMH is a protocol for metadata 
harvesting that transfers XML over HTTP [2].  Although 
the metadata on a Dataverse website looks like a flat 
association list, such as the one below, its internal structure 
can conform to one of many existing metadata standards, 
including USMARC, Dublin Core, and DDI [1, 4]. 

The methods described in this paper can be applied to 
any of the metadata formats that Dataverse can export, but 
the particular examples are designed for DDI metadata.  
This metadata is a tree structure serialized as an XML 
document, like all metadata transferred through OAI-PMH. 

 
2.2. The destination: iRODS 

In iRODS, each metadata element is a list of three 
strings, called the attribute, value, and unit, together 
called an AVU.  iRODS users can associate any AVU with 
any file in the iRODS data grid (assuming they have 
permission to do so). 

Like Dataverse, iRODS can perform keyword searches 
by generating lists of objects whose metadata match 
arbitrary string expressions.  But unlike Dataverse, iRODS 
does not store any hierarchical structure on the set of 
metadata elements associated with a file.  Compare the 
serialized iRODS metadata in figure 3 to the serialized 
Dataverse metadata in figure 2: in Dataverse, a file’s 
metadata is a hierarchical tree of metadata elements that 

can have arbitrary text fields associated with them, An 
iRODS file’s metadata, in contrast, is an unstructured set of 
AVUs.  The main challenge of this project is finding a way 
to use iRODS to both preserve the hierarchical structure of 
the metadata in a Dataverse archive while exposing its 
contents to iRODS features, such as keyword searching.  

3. Methods 
We split the goal of this project into two parts and 

addressed each one separately. 
 
3.1. Part one: Preservation 

iRODS’s ability to preserve data is a result of its 
abstraction of storage: each data object can be reduntantly 
stored in many geographically separated machines.  
Therefore, for the sake of preservation, it makes sense to 
serialize the contents of a Dataverse archive and then store 
them as data objects in iRODS, exposing them to the 
replication and integrity-checking features of iRODS. 

Our automatic transfer script, called Dataverse-to-
iRODS, takes advantage of Dataverse’s ability to export 
serialized versions of its files and metadata through the 
HTTP and OAI-PMH protocols (respectively).  The 
transfer of data objects depends on the transfer of metadata, 
because each metadata object contains URL references to 
the files it describes.  After Dataverse-to-iRODS has run, 
iRODS has a collection containing each XML metadata 
object and the files it refers to.  Here are the steps of the 
transfer process: 

 
1. Dataverse-to-iRODS uses OAI-PMH to request a list 

of identifiers, which are the unique names of the 
metadata objects in the Dataverse. 

2. The list of identifiers is an XML document.  
Dataverse-to-iRODS uses SAX to extract each 
identifier and use it to request a metadata object 
through OAI-PMH. 

3. Each metadata object is an XML document.  
Dataverse-to-iRODS uploads the XML document into 
an iRODS collection corresponding to its identifier. 

4. For each metadata object, Dataverse-to-iRODS also 
uses SAX again to extract the URL of each data 
object that the metadata refers to.  It then downloads 
each object by HTTP and uploads it into the same 
collection as the metadata that refers to it. 

 
As seen in steps 2 and 4, it is the metadata itself that 

lets Dataverse-to-iRODS discover the URLs of data objects 
and identifiers of other metadata objects. This discovery 
process is only possible because the metadata conforms to 
well-documented standards.  The initial list of metadata 
identifiers conforms to the OAI-PMH protocol, which 
allowed us to write the XML parser that extracts each 
identifier.  Similarly, each metadata object itself conforms 
to the DDI standard, which specifies the contents and 



iRODS User Group Meeting 2010 23 

hierarchy of the metadata precisely enough that we can 
parse out the URL of every file that the metadata refers to. 
 
3.2. Part two: Exposure 

We wanted the contents of Dataverse archives to be as 
accessible to iRODS users as possible.  Dataverse websites 
let users browse for studies categorically and find them by 
keyword searches.  In this project, we used iRODS’s 
metadata catalog to re-implement these keyword search 
capabilities over a Dataverse archive after it has been 
serialized and transferred into iRODS.  For each XML 
document containing Dataverse metadata, we automatically 
use its contents to compute the producer, notes, topic 
classification, explicitly-listed keywords, and about ten 
other fields that pertain to the metadata and its related files.  
We then ingest these fields into the iRODS metadata 
catalog and associate them with both the XML file 
containing the original metadata and the data objects that 
the metadata refers to.  As a result, iRODS users can use 
the iquest program to perform the same keyword searches 
that are available through Dataverse.  For example, the 
following command, when typed on one line, will return a 
list of iRODS collections containing all objects whose 
distributor contains the string “Odum Institute”. 
 

iquest "SELECT DATA NAME, COLL NAME 
where META DATA ATTR NAME like  
 ’%Study Distributor’ 
and META DATA ATTR VALUE like  
 ’%Odum Institute%’ " 
 
Since the iquest program allows arbitrary metadata 

queries, it is not as user-friendly as Dataverse for basic 
keyword searches.  It would be easy, however, to recreate 
Datavere’s ease of searching by writing a web interface that 
translates the contents of an intuitive web form into an 
iquest query. 

This metadata ingest process occurs automatically 
during each Dataverse-to-iRODS transfer, with the 
following steps: 

 
1. After uploading each XML document containing 

metadata, Dataverse-to-iRODS calls an iRODS rule. 
2. The iRODS rule calls the 

msiXSLTransformationApply microservice, which 
applies an XSL Transformation to the XML-encoded 
metadata to extracts the parts of the metadata that we 
think users will want to search for by keyword. 

3. The rule writes the resulting transformed XML to a 
temporary file.  This transformed XML is a list of 
attribute, value and unit triples. 

 
<metadata> 
        <AVU> 
                <Attribute>title</Attribute> 
                <Value>World urbanization, 1950-1970</Value> 
                <Unit></Unit> 

        </AVU> 
        <AVU> 
                <Attribute>handle</Attribute> 
                <Value>hdl:1902.29/D-488</Value> 
                <Unit></Unit> 
        </AVU> 
        <AVU> 
                <Attribute>distributor</Attribute> 
                <Value>Odum Institute Dataverse Network</Value> 
                <Unit></Unit> 
        <AVU> 
</metadata> 

Figure 3:  A serialized set of iRODS metadata objects 
attached to a single file.  The “attribute, value, unit” 
triples are not arranged in any hierarchical structure, 
except for being attached to the same file. 

 

4. The rule calls the msiLoadMetadataFromXml 
microservice, which ingests these AVUs into the 
iRODS metadata catalog. 

5. The rule associates the AVUs with each object that 
they apply to – the XML file containing the metadata 
that the AVUs were derived from, as well as the data 
files that the metadata refers to. 

 
Although each AVU can be attached to many files, the 

iRODS metadata system only stores one copy of it in its 
internal database. 

As in section 3.1, the success of this process relies on 
the fact that Dataverse and iRODS conform to documented 
standards.  Because Dataverse’s exported metadata 
conforms to both OAI-PMH as well as the DDI 
specification, it was possible to write the XSL 
Transformation that extracts the parts of the metadata that 
we wanted iRODS users to be able to search for.  The 
metadata ingest also exploits iRODS’s ability to both 
perform XSL transformations and deserialize an XML list 
of AVUs into the metadata catalog. 

4. Conclusions 

This paper has described how our script, Dataverse-to-
iRODS, automatically creates a copy of a Dataverse 
archive inside iRODS, exposing it to iRODS’s long-term 
preservation mechanisms and metadata-based search 
features.  Dataverse-to-iRODS uses existing standards, 
namely OAI-PMH, XML, and any OAI-PMH-compatible 
metadata specification, to copy the data into iRODS data 
objects for preservation and ingest selected metadata fields 
into the metadata catalog to allow for keyword searching. 



24  Proceedings 

5. References 
[1] Gary King, Merce Crosas, Ellen Kraffmiller, Leonid Andreev, 
Gustavo Durand, Robert Treacy, Kevin Condon, Michael 
Heppler, and Akio Sone. The Dataverse Network 
Project/Features. Retrieved Februrary 26, 2010, from 
http://thedata.org/software/features. 
[2] Carl Lagoze and Herbert Van de Sompel. The open archives 
initiative: building a low-barrier interoperability framework. In 
ACM/IEEE Joint Conference on Digital Libraries, pages 54–62, 
2001. 
[3] Arcot Rajasekar, Michael Wan, Reagan Moore, Wayne 
Schroeder, Sheau-Yen Chen, Lucas Gilbert, Chien-Yi Hou, 
Christopher A. Lee, Richard Marciano, Paul Tooby, Antoine de 
Torcy, and Bing Zhu. iRODS Primer. Synthesis Lectures on 
Information Concepts, Retrieval, and Services. Morgan & 
Claypool Publishers, 2010.   
[4] Mary Vardigan, Pascal Heus, and Wendey Thomas. Data 
Documentation Initiative: Toward a Standard for the Social 
Sciences. The International Journal of Digital Curation, 3(1), 
2008.   
[5] Jewel H. Ward, Antoine de Torcy, Mason Chua, and Jonathan 
Crabtree. Extracting and Ingesting DDI Metadata and Digital 
Objects from a Data Archive into the iRODS extension of the 
NARA TPAP using the OAI-PMH. In the 5th IEEE International 
Conference on e-Science, Oxford, UK, December 2009.   



iRODS User Group Meeting 2010 25 

Conceptualizing Policy-Driven Repository Interoperability (PoDRI)  
Using iRODS and Fedora 

 
David Pcolar  
Carolina Digital Repository (CDR) 
UNC Chapel Hill 
david_pcolar@unc.edu 

Daniel W. Davis 
Cornell Information Sciences (CIS) 
DuraSpace Affiliate 
dwdavis@cs.cornell.edu 

Bing Zhu 
Data Intensive Cyber Environments 
University of California: San Diego 
bizhu@ucsd.edu 

Alexandra Chassanoff 
School of Information & Library 
Science (SILS) 
UNC Chapel Hill 
achass@email.unc.edu 

Chien-Yi Hou 
Sustainable Archives & Leveraging 
Technologies (SALT) 
UNC Chapel Hill 
chienyi@unc.edu  

Richard Marciano 
Sustainable Archives & Leveraging 
Technologies (SALT) 
UNC Chapel Hill 
richard_marciano@unc.edu 
 

 
 

Abstract 
Given the growing need for cross-repository integration 

to enable a trusted, scalable, open and distributed content 
infrastructure, this paper introduces the Policy-Driven 
Repository Interoperability (PoDRI) project investigating 
interoperability mechanisms between repositories at the 
policy level. Simply moving digital content from one 
repository to another may not capture the essential 
management policies needed to ensure its integrity and 
authenticity. This project is focused on integrating policy-
aware object models, including policy expressions, and a 
distributed architecture for policy-driven management, 
demonstrated using iRODS and Fedora as representative 
open source software products. Using iRODS and its Rules 
engine, combined with Fedora’s rich semantic object model 
for digital objects, enables use of the best features of both 
products. 

Index Keyword Terms—iRODS, Fedora, 
Preservation, Policy Management 

1. Introduction 
This paper introduces the Policy-Driven Repository 

Interoperability (PoDRI) project, investigating inter–
operability between repositories at the policy level. PoDRI 
is led by the University of North Carolina at UNC, with 
units ranging from SALT (Sustainable Archives & 
Leveraging Technologies), RENCI (Renaissance 
Computing Institute), SILS (School of Information and 
Library Science), and the Libraries/CDR (Carolina Digital 
Repository). Key partners include Bing Zhu at UCSD 
(DICE, Data Intensive Cyber Environments) and Daniel 
Davis at DuraSpace (combining DSpace and Fedora 
Commons) and Cornell Information Sciences. The project is 
sponsored by an Institute of Museum and Library Services 

(IMLS) National Leadership grant and is motivated by the 
growing need to create a scalable, open, and distributed 
infrastructure that provides durable, trusted access and 
management of our valuable digital content of all kinds (e.g. 
research data sets, documents, video, metadata). 

Simply replicating digital content from one repository, 
with or without any associated metadata, may not capture 
the essential management policies that ensure integrity and 
authenticity, a critical requirement for establishing a trust 
model. “A policy is typically a rule describing the 
interactions of actions that take place within the archive, or 
a constraint determining when and by whom an action may 
be taken.” [1]. A distributed policy management 
architecture is an essential component in realizing a trust 
mechanism for repository interoperability. The PoDRI 
project investigates the requirements for policy-aware 
interoperability and demonstrates key features needed for its 
implementation. The project is focused on integrating object 
models, including interoperable policy expressions, and a 
policy-aware distributed architecture that includes both 
repositories and middleware services. 

The PoDRI project addresses the following research 
problem: What is the feasibility of repository 
interoperability at the policy level? Research questions to 
be addressed are: 

• Can a preservation environment be assembled from two 
existing repositories? 

• Can the policies of the federation be enforced across 
repositories? 

• Can policies be migrated between repositories? 
• What fundamental mechanisms are needed within a 

repository to implement new policies? 

 
iRODS, the Integrated Rule-Oriented Data System [2, 

3] and the Fedora Repository [4, 5] will be used as 



26  Proceedings 

representative open source software to demonstrate the 
PoDRI architecture. Combining iRODS and Fedora enables 
use of the best features of both products for building 
sustainable digital repositories. iRODS provides an 
integrated rule engine, distributed virtual storage, the iCAT 
(iRODS Metadata Catalog)1, and Micro-services2. Fedora 
offers a rich semantic object modeling for digital objects, 
extensible format-neutral metadata and a flexible service 
mediation mechanism.  

2. Rationale for Integrating  
Fedora and iRODS 

Early in 2006, the DART [6] project created an Storage 
Resource Broker (SRB) storage interface for Fedora that 
allows all Fedora digital content, including Fedora Digital 
Objects (FDO) and their Datastreams, to be stored in SRB 
distributed repositories. Similarly, a storage module was 
developed by Aschenbrenner and Zhu [7] for iRODS. Using 
the Fedora-iRODS storage module, iRODS can act as a 
back-end for Fedora, and thus provide opportunities for 
Fedora to use iRODS capabilities such as virtual federated 
storage, micro-services and the rules engine. 

iRODS offers an appealing platform for implementing 
a distributed policy-driven management architecture. The 
integrated rules engine can be used to invoke a range of 
rules including policy expressions and, through the use of 
micro-services, can execute code for those policies in a 
distributed environment. Rules can act as simple workflows, 
performing a sequence of pre-defined actions. iRODS rules 
can be executed explicitly, triggered by external conditions 
or events, and executed at timed intervals. For example, 
iRODS can implement a replication policy, geographically 
disbursing file copies across the network. Micro-services 
can be written for feature extraction, format migration, 
integrity checks and other preservation services. 

While used to efficiently hold and query structured data 
and metadata, the iCAT relational database is not optimal 
for handling the complex, variable metadata needed for 
preservation and curation. Indeed, any relational database 
will require considerable coding to support complex 
metadata schemas, making the use of unstructured data 
(files) possibly in combination with XML databases or 
semantic triplestores a more flexible alternative [8].  

Fedora is file-centric; all Fedora data and metadata is 
stored in files [9]. The Fedora Digital Object (FDO), a kind 
of compound digital object, provides the organizing 
metadata used to “make sense” of itself and other resources. 
It uses the FOXML schema to encapsulate metadata, and to 

                                                
1 iCAT is the iRODS Metadata Catalog that stores metadata about 
all objects in iRODS in a relational database. 
2 Micro-services are function snippets or executables that can be 
used to perform a distinct task using well-defined input 
information structures.  

reference other files or web resources. Since the FDO is a 
file, it can be stored in iRODS like any other file. 

Digital content (or user-defined metadata) managed by 
the FDO is stored in one or more separate files – each 
registered in a FOXML element called a Datastream. 
Datastreams can also capture relationships to other objects 
and external resources. Users may add metadata to the FDO 
or add additional metadata Datastreams (to be stored like 
any other file.  

This means, however, that metadata is stored in an 
unstructured, often XML or RDF way, and requires external 
indices to support queries such as search engines, semantic 
triplestores, XML databases, and now the iCAT. Fedora’s 
approach provides a format-neutral, extensible framework 
for representing data and metadata. 

The rich metadata environment provided by the FDO 
can augment the structured metadata found in the iCAT. 
Metadata can be copied from the iCAT into a more easily 
preserved unstructured file format, as demonstrated by Bing 
Zhu and colleagues [10]. Critical data can be copied from 
the FDO, or as user metadata files (Datastreams), so they 
can be queried from the iCAT. With suitable metadata, both 
the iCAT and Fedora could be entirely rebuilt from files if 
the indices were lost or corrupted. 

Fedora has a set of “front-end” APIs that provide the 
means to ingest and manipulate FDOs (CRUD). iRODS is 
capable of calling these APIs to perform operations from 
micro-services. Fedora also provides an extensible 
mechanism to add custom functionality called “services” 
that are executed within the context of the FDO. Services 
act as extensions to the “front-end” API of the object. 
Fedora mediates the service request calling the appropriate 
“back-end” functionality. The back-end functionality can be 
a Web service, in this case potentially provided by iRODS. 
Custom Fedora services provide another mechanism to 
interact with iRODS. Since iRODS can interact with 
Fedora’s “front-end” APIs, “back-end” services, and the 
Fedora-iRODS storage module one may picture iRODS 
wrapping around Fedora. 

3. First Steps Toward a Policy-driven 
Management Architecture 

To demonstrate distributed policy-driven manage–ment 
architecture, we plan to implement the following 
operational scenarios: 

• Integrate views of content, original arrangement 
(hierarchy) and metadata 

• Create an audit trail of policy execution events and 
related provenance information 

• Manage policies through Fedora  
• Show iRODS invoking policies from Fedora 

Both iRODS and Fedora fully support distributed 
computing installations. In effect, both products can be 



iRODS User Group Meeting 2010 27 

characterized as virtualization middleware for storage, 
access, and service execution. The products, however, have 
very different operational paradigms which must be 
accommodated, but provide complementary strengths that 
can be exploited when used together. 

The virtual file system in iRODS makes it the logical 
choice for all storage (including FDOs). In addition, the 
iRODS rules engine and micro-services provide an effective 
means for policy invocation. Fedora’s capabilities are 
especially powerful for handling variable content and 
metadata formats, to flexibly relate resources, to facilitate 
presentation, and its mediation capabilities make it 
appealing for supporting systems that are “designed for 
change.”  

A policy-driven management architecture requires that 
policy expressions be persistent somewhere. Fedora could 
be used to create FDOs containing policy expressions, 
which are subsequently loaded into actionable form and 
invoked in iRODS. As policies are part of the provenance, 
Fedora can relate the policy FDOs to the content items to 
which they apply. Since policy invocation is performed by 
iRODS, audit records of the execution must be created by 
iRODS; this will likely be done by creating FDOs (and 
relating them to the FDOs containing the content and policy 
expressions).  

iRODS does not currently generate audit data in a 
format compliant with the PREMIS schema. The CDR 
implements auditing of objects via a PREMIS.XML file for 
each iRODS data object. This method may not be 
sustainable for repositories containing millions of objects. 
Preservation activities, such as replication or fixity checks, 
generate large amounts of log entries over time and 
potentially exceed the byte size of the original object. 
Discussions between CDR and iRODS developers suggest 
multiple methods for retaining and aggregating various 
component logs for translation into PREMIS-compliant 
events. Do we continue to store these events with the 
individual objects or as an aggregate? Do we generate 
specific PREMIS information upon request? In the case of 
replicas residing on disparate nodes in a data grid, auditable 
events will occur that differ from those affecting the 
original object. How do we reconcile these events in a 
singular view of the object?  

Users and user applications will still need to interact 
with Fedora or iRODS directly. This is particularly true of 
research (grid) applications having large datasets. Selected 
metadata will need to be duplicated in both products to 
access content, represent arrangements, and preserve 
integrity and authenticity. Direct interaction by users or user 
applications with either Fedora or iRODS might require 
both products to synchronize or update metadata. 

These interactions may trigger policy invocations. For 
example, Fedora may trigger policy invocation indirectly 
when interacting with a file (CRUD) or directly through a 
Fedora custom service. Conversely, iRODS’ micro-services 
can call Fedora services to provide feedback in the system.  

A more comprehensive “Concept of Operations” 
document will be prepared as part of the PoDRI project.  
The following set of questions is drawn from our current 
understanding of the operational scenarios: 

• How will the collection structure be represented in the 
two products? 

• How will Fedora be initialized for existing content in 
iRODS? 

• How will Fedora be informed of content or metadata 
changes initiated directly in iRODS? 

• How can content or metadata from Fedora be accessed 
by iRODS services? 

4. Enabling Use Cases 
Five enabling use cases have been identified for the 

Fedora-iRODS integration. These use cases are: 

1. New content ingest via Fedora 
2. New content ingest via iRODS  
3. Bulk registration from iRODS into Fedora 
4. Update of content or metadata via Fedora 
5. Update of content or metadata via iRODS 

We describe the first two use cases in this paper; a full 
discussion of all the use cases is beyond the scope of this 
paper, and will be developed and documented throughout 
the project’s lifecycle. While these use cases do not, by 
themselves represent policy management operations, they 
are prerequisites for enabling policy-driven operations and 
represent demonstrations of policy interoperability between 
repositories. 

  
4.1 New Content Ingest via Fedora 

Current users of Fedora will want to continue ingesting 
into Fedora. Users are also likely to use Fedora features to 
add and relate rich metadata including policy, provenance 
and authenticity information. As shown in Figure 1, when 
new content is ingested into Fedora, it is able to capture the 
metadata it needs for its operation. Digital content (or user-
defined metadata) is either pulled in by Fedora or pushed to 
Fedora and stored in individual files. The file containing the 
FDO (FOXML) and the content files are subsequently 
stored in iRODS with no storage directly managed by 
Fedora. 



28  Proceedings 

Selected metadata is collected by Fedora during the 
ingest process and stored in an internal system index 
implemented using a relational database. This database is 
used only to remove latency (speed up) access to content or 
bindings to services (formerly called disseminators). 
Optionally, metadata or notifications can be sent to index 
services such as semantic triplestores, search engines and 
OAI-PMH harvesters. 

The Carolina Digital Repository (CDR) is using 
Solr/Lucene as the indexing and search engine for discovery 
of ingested content. Metadata is extracted during the ingest 
process from MODS and FOXML files. 

Objects ingested via Fedora and stored in iRODS do 
not, by default, retain the logical tree structure of the 
original file system. Instead, CDR preserves the hierarchal 
structure of the file system via relations in the RDF triple 
store. 

The arrangement of objects is achieved by created 
FDOs representing the parent and child. The relationship is 
recorded in RDF (within the RELS-EXT Datastream) using 
the “isMemberOf” asserted in the child to the parent. The 
obverse relation “hasMember” is implied but could be 
stated explicitly in the parent. These two relations provide a 
way to build a hierarchical structure for all objects, 
collections and files. In Fedora, these relations form a 
“graph” and objects may participate in any number of 
graphs using other relations and, therefore, are not limited 
to a single hierarchy. Relationship information can be 
accessed by introspecting on the FDO or the relations can 
be indexed into a RDF triplestore [11] and queried by 
applications to extract a graph for navigating from parent to 
children as people usually do for a tree structure. Similar 
methods can be used to navigate any relationship graph. 

How will the metadata in iRODS be updated in this use 
case? Two alternatives being considered are: (1) call a 

 
Figure 5: New Content Ingest via Fedora 

 



iRODS User Group Meeting 2010 29 

Fedora custom service to update the iCAT; (2) when the 
FOXML file is ingested, a monitoring rule can trigger an 
iRODS micro-service to introspect on the FDO to extract 
the metadata. 

 
4.2 New Content Ingest via iRODS 

Current iRODS users will likely want to continue to 
use iRODS directly to store data objects, particularly in 
research settings where direct access to storage is desired. 
The digital content (data object) is typically ingested into 
iRODS as a file operation. In iRODS, the hierarchical 
relation of a data object and its ancestors are encoded and 
described explicitly in its global object name.  Two 
questions arise from this scenario.  First, how will Fedora 
be notified of arrival of the new data object? Second, how 

will an analog to its iRODS hierarchy be represented in 
Fedora?  

A utility is needed to register iRODS files into Fedora. 
A micro-service could call this utility when triggered by a 
monitoring rule on the storage operation which would 
create the FDO for the data object and ingest it into Fedora.  
The micro-service can be deployed as a rule under the 
iRODS rule event, ‘acPostProcForPut’. Once this rule is 
activated in an iRODS server, the micro-service can be 
triggered after each new iRODS data object is created in a 
specified collection in the iRODS Content Store (see 
iRODS Storage Module), as depicted in Figure 2. It will 
create pre-ingest FOXML for the new data object, querying 
the iCAT for additional metadata as needed. Within the 
FOXML, it will create a Datastream containing a reference 

 
Figure 6: New Content Ingest via iRODS 



30  Proceedings 

to the location of the data object within iRODS. It will then 
ingest the FOXML using Fedora’s API-M to create the 
FDO. This rule is activated once placed in the rule 
configuration file of an iRODS server. It monitors all file 
activities in the iCAT catalog and creates an FDO for any 
newly created iRODS file. 

When using iRODS for back-end storage, all FDOs and 
Datastreams are stored in iRODS as files in one of two 
collections: FOXML Object Store and iRODS Content 
Store. Therefore, users can directly access the files 
containing Fedora metadata through the iRODS interface. 
On the other hand, files stored in iRODS, whether for an 
FDO or a Datastream, have both an independent set of 
iRODS system metadata as well as a set of user-defined 
metadata. The system metadata contains important 
information for each replica of an iRODS file, including the 
file’s location, storage type, audit trail, and associated 
iRODS rules. The two sets of metadata can be represented 
as external Datastreams in FOXML and generated 
dynamically when accessed using the Fedora-iRODS 
storage module. 

As described above, Fedora uses RDF relations to 
describe the arrangement of objects. This requires the 
creation of FDOs representing each hierarchical level which 
has the advantage of enabling the participation of iRODS in 
the semantic network functionality provided by Fedora. 
Since iRODS can create a virtual hierarchy, it may not be 
desirable to instantiate corresponding FDOs. Users can 
create custom Datastreams as “finding aids”; the virtual 
hierarchy can be encoded using RDF or any other desired 
format. Similar to iRODS, parent-child relationships can be 
modeled as path metadata and stored in the custom 
Datastream. An application or a Fedora custom service can 
be used to interpret the format of the Datastream to display 
the hierarchy [12]. 

Many of the CDR’s core constituencies are the special 
collections in our libraries. These collections tend to have 
rich metadata associated with them and have usually 
undergone preliminary curation. The longer term goal of the 
repository is to harvest content directly from research- 
based iRODS data grids. Metadata quality and quantity is 
typically limited in these collections.  Repository outreach 
and development is concerned not only with identifying and 
preserving “at risk” collections, but cultivating metadata 
collection and data curation proactively throughout the 
research lifecycle. 

5. Additional Utilities 
We plan to implement two utilities in addition to the 

functionality described above. First is an updated storage 
module as an iRODS-specific plug-in to replace Fedora’s 
Low-level Store. Second is a harvester utility which can be 
used in both bulk registration and for disaster recovery. 

 

5.1 iRODS Storage Module 
We plan to store all files in iRODS. This will require an 

update of the existing iRODS-Fedora Storage Module or 
build a new module potentially using the Fedora Commons 
Akubra interface. If a new module is built, using Jargon is 
being considered. Building a new module would permit 
research on using it as a feedback path for policy operations 
including security policies. 

When iRODS serves as a storage module for Fedora, 
current thought is to use two iRODS collections: (1) Fedora 
Digital Objects (FOXML) in the FOXML Object Store, and 
(2) content objects (Datastreams) in the iRODS Content 
Store. They are accessed through a single curator user 
account in iRODS. This makes it easier to distinguish 
between policies related to FDOs from those operating on 
content objects (Datastreams). 

This approach, however, differs from the Fedora/Jargon 
default of storing objects in folders based on timestamp. For 
the CDR and other existing implementations, a restructuring 
of objects into the segregated object store will be required. 
This will alter iRODS based failure recovery mechanisms 
and integrity audits. 

 
5.2 iRODS Data Harvester for Fedora 

The iRODS Data Harvester is an adaptive version of 
the Data Rebuilder in Fedora. It is used to re-build the 
object indices from the FOXML Object Store and iRODS 
Content Store. It does not create any new FOXML objects; 
rather, it surveys all the objects stored within the FOXML 
Object Store, verifies the Datastreams inside the iRODS 
Content Store, and creates the indices in the database used 
by the Fedora server. The iRODS Data Harvester also 
builds the necessary RDF data to be stored in the RDF 
triplestore for the navigation of hierarchical structure. 

6. Policy Federation and Migration 
The iRODS rule engine provides the capability to apply 

rules on the data grid side to implement the policies. The 
Distributed Custodial Archival Preservation Environments 
(DCAPE) project [13] aims to work with a group of 
archivists to develop a set of rules to automate many of the 
administrative tasks associated with the management of 
archival repositories and validation of their trustworthiness. 
These DCAPE rules could be applied to different 
repositories based on the institution’s policies. We plan to 
provide the functionality for users to manage the policies 
through the Fedora interface and be able to check what rules 
are in action. 

Current implementations, even in data grid 
environments, depend on local enforcement of policies and 
typically do not consider the larger framework of uniform 
policy implementation across heterogeneous repositories. If 
policies are expressed in the language of ISO-MOIMS or 
DCAPE criteria, we have a clear model for identification of 
machine-actionable rules. 



iRODS User Group Meeting 2010 31 

Stored as Fedora Service Definitions, the policies will 
have unique service deployment bindings for each data 
storage system. Our demonstration storage implementation 
is iRODS, but other storage environments may be supported 
by changing deployment mechanisms. 

The CDR is developing a policy management 
framework based on a machine interpretable series of 
actions across repositories in a data grid. Implementation of 
new policy requires identification of machine- actionable 
components and mapping to specific, testable deployment 
mechanisms. 

7. Summary 
In this paper, we introduced the Policy-Driven 

Repository Interoperability (PoDRI) project investigating 
interoperability mechanisms between repositories at the 
policy level. The rationale for using iRODS and Fedora to 
demonstrate key features of a distributed policy-driven 
management architecture was described. Four scenarios that 
will be demonstrated as part of the project were 
enumerated. We have identified five enabling use cases and 
described two that are needed for the demonstration 
scenarios along with two key utilities planned for 
development. We also introduced work on policy federation 
and migration. PoDRI is an applied research project and its 
details will change as we develop a greater understanding of 
the methods for policy-driven interoperability. 

8. Acknowledgements 
This project is funded by IMLS grant LG-06-09-0184-

09 as part of the 2009 National Leadership Grants NLG 
Library-Research and Demonstration, awarded to the 
University of North Carolina at Chapel Hill. Project 
Director is Richard Marciano. Collaborators at UNC / SILS 
include: Alex Chassanoff, Chien-Yi Hou, Reagan Moore, 
and Helen Tibbo. At UNC / Libraries: Steve Barr, Greg 
Jansen, Will Owen, and Dave Pcolar. At UNC / RENCI: 
Leesa Brieger. At UCSD: Bing Zhu. At DuraSpace and 
Cornell Information Sciences: Daniel Davis and Sandy 
Payette. Finally, at the University of Maryland iSchool: 
Bruce Ambacher. 

9. References 
[1] DuraSpace, “PLEDGE Project,” http://fedora-
commons.org/confluence/x/WSDS 
[2] iRODS: Data Grids, Digital Libraries, Persistent Archives, and 
Real-time Data Systems. http://www.irods.org  
[3] R. Moore, A. Rajasekar, M. Wan, and W. Schroeder, “Policy-
Based Distributed Data Management Systems,” The 4th 
International Conference on Open Repositories, Atlanta, Georgia, 
May 19, 2009. 
[4] Fedora Commons, http://www.fedora-commons.org 
[5] Fedora Commons, “Fedora Repository Documentation,” 
http://fedora-commons.org/confluence/x/AgAU 
[6] DART, University of Queensland, “Fedora-SRB Database 
integration module,” 
http://www.itee.uq.edu.au/~eresearch/projects/dart/outcomes/Fedo
raDB.php 
[7] A. Aschenbrenner, B. Zhu,  iRODS, “iRODS-Fedora 
Integration,” http://www.irods.org/index.php/Fedora 
[8] M. Hedges, A. Hazan, and T. Blanke, “Management and 
Preservation of Research Data with iRODS,” Proceedings of the 
ACM first workshop on CyberInfrastructure: information 
management in eScience, Lisbon, Portugal, pp. 17-22, 2007 doi: 
http://doi.acm.org/10.1145/1317353.1317358 
[9] DuraSpace, “The Fedora Digital Object Model,” http://fedora-
commons.org/confluence/x/dgBI 
[10] B. Zhu, R. Marciano, and R. Moore, “Enabling Inter-
repository Access Management between iRODS and Fedora,” The 
4th International Conference on Open Repositories, Atlanta, 
Georgia, May 19, 2009. 
[11] Wikipedia, “Triplestore,” 
http://en.wikipedia.org/wiki/Triplestore 
[12] DuraSpace, “The Content Model Architecture,” http://fedora-
commons.org/confluence/x/gABI 
[13] DCAPE, “Distributed Custodial Archival Preservation 
Environments”, an NHPRC-funded project, http://dcape.org  
 



32  Proceedings 

Community-Driven Development of Preservation Services 
 

Funded Project Staff listed in Red and Blue 

INTEGRATION & BUS DEV 
 
UNC 
   SALT 

Richard Marciano 
Chien-Yi Hou 

   CDR 
Dave Pcolar ++ 

 
 
POLICY / RULE DEV 
 
West Virginia University 

Donald Adjeroh 
Frances Van Scoy 

 
RENCI 

Leesa Brieger ++ 
 
DICE 

Michael Conway ++ 
Reagan Moore 
Antoine de Torcy ++ 

 
UNC Libraries 

Steve Barr ++ 
Greg Jansen ++ 

 
UNC Res. Comp. Svcs 

Bill Schulz ++ 
 
SILS Grad. Student team 

Heather Bowden ++ 
Alex Chassanoff ++ 
Christine Cheng ++ 
William Miao ++ 
Terrell Russell ++ 
Jewel Ward ++ 

 
UNC CS Grad. Student team 

Tao Yu ++ 
Hao Xu ++ 

STATE ARCHIVES & LIB 
 
Michigan 

Caryn Wojcik 
Mark Harvey 

 
North Carolina 

Kelly Eubank 
Jennifer Ricker ++ 
Amy Rudersdorf ++ 
Lisa Gregory ++ 
Ed Southern -- 
Megan Durden -- 
IT  
Dean Farrell ++ 
Druscie Simpson 
David Minor 
Chris Black -- 

 
Kentucky 

Glen McAninch 
Mark Myers ++ 

 
Kansas 

Scott Leonard 
 
New York 

Bonnie Weddle 
Michael Martin ++ 
Ann Marie Przybyla 

 
California 

Chris Garmire 
Nancy Lenoil-Zimmelman 
Linda Johnson -- 
Laren Metzer 
Renee Vincent-Finch -- 

 
 

UNIVERSITY ARCHIVES 
 
Tufts University 

Eliot Wilczek 
Veronica Martzahl ++ 
Anne Sauer 

 
UNC Chapel Hill 

Will Owen ++ 
Rich Szary ++ 

 
 
CULTURAL INSTITUTIONS 
 
Getty Research Institute 

Joseph Shubitowski 
David Farneth 
Leah Prescott 
Sally Hubbard -- 
Mahnaz Ghaznavi -- 
Karim Boughida -- 

 
Smithsonian Institution Archives 

Riccardo Ferrante ++ 
 
 
SCHOOLS OF LIB & IS 
 
UNC Chapel Hill 

Cal Lee ++ 
 
University of Wisconsin-Madison 

Kristin Eschenfelder ++ 
 
 
 
 
 
 
 

    

Legend Collaborator Roles 
Red Funded 
Blue Cost-sharing 
Brown “Observer” 
Black None of the above 
++ Added after project funded 
-- At new institution 



iRODS User Group Meeting 2010 33 

Abstract 
This paper describes the first phase of the DCAPE 

project and the lessons learned in articulating a community-
based development approach for preserva–tion services. 
The “Distributed Custodial Archival Preservation 
Environments” project, DCAPE, was funded by the 
National Historical Publications and Records Commission 
(NHPRC) in 2007, in a call for proposals for “cooperative 
networks and service providers’ projects.” The NHPRC’s 
goal was to encourage the creation of e-records storage, 
preservation, and access services, and to promote 
sustainable business models. DCAPE’s approach proposed 
to develop a framework to support institution-specific 
preservation policies (including business models) while 
providing the economy of scale needed for a cost-effective 
service. The focus of this paper is on the community-driven 
nature of the preservation services development process. 

Index Keyword Terms—Preservation Services, 
Trusted Digital Repositories, Policy Management, DCAPE, 
iRODS, SALT 

1. Introduction 
The goal of the DCAPE project is to build a distributed 

production preservation environment that meets the needs 
of mid-to-large-sized archival reposi–tories, libraries, and 
cultural institutions for trusted archival preservation 
services. The preservation environment builds upon the 
technologies developed at the University of North 
Carolina–Chapel Hill (UNC) Renaissance Computing 
Institute (RENCI) and the data storage infrastructure being 
installed there. The environment includes a trusted digital 
repository infrastructure that is assembled from a rule-based 
data management system, commodity storage systems, and 
sustainable preservation services. The software 
infrastructure automates many of the administrative tasks 
associated with management of archival repositories, 
including validation and trustworthiness. 

Our proposal involves the collaboration of multiple 
“medium-scaled” preservation communities with the 
explicit goal of defining the common set of services needed 
by all participating institutions (state archives and libraries, 
university archives, cultural institutions, etc.), and the 
unique set of services that must be tuned to specific 
mandated policies at each site. 

The original NHPRC grant called for the develop–ment 
of cooperative institutions to provide electronic records 
preservation services to repositories. A single award of up 
to $400K was to be made but in the end two awards were 
granted, one to the Emory-based MetaArchive project for 

$300K and another to the UNC-based DCAPE project for 
$258K. 

• MetaArchive aims to develop a sustainable digital 
preservation service for cultural and historical records 
and a cost-model for providing preservation services 
based on the Lots of Copies Keep Stuff Safe 
(LOCKSS) model. In addition, the goal is to integrate 
LOCKSS with the Storage Resource Broker (SRB) and 
the Integrated Rule-Oriented Data System (iRODS) 
data grid technologies, developed by members of the 
DICE group at UNC Chapel Hill. 

• DCAPE aims to develop a sustainable digital 
preservation service for state and university archives 
and other repositories, and a cost model for providing 
distributed and customized preservation services based 
on the iRODS model. The approach allows for the 
customization of services based on the profile of the 
archives or collections. 

The innovative DCAPE approach intends to develop sets of 
machine-actionable preservation policies, but allow 
individual communities to customize the behaviors of these 
policies. Given the limited level of project funding, a 
collaborative and community-development approach has 
emerged, as demonstrated by the impressive list of 
participants and contributors in the project so far. The focus 
of this paper is on the community-driven nature of the 
preservation services development process. 

2. A Sustainable Development Approach 
Beyond the funded project staff, others have 

participated in conversations and meetings around the 
project., accounting for some 60 people! This is a reflection 
of DCAPE’s development philosophy of establishing a 
systematic and sustainable development partnership. We 
wish to reflect on several aspects of sustainability: (1) 
NHPRC’s sustained investments in building collaborations, 
as demonstrated by the agency’s funding agenda over the 
last twelve years, (2) the leveraging of community 
development when funds are limited, and (3) the 
sustainability of projects beyond the initial funding. 

 
2.1 NHPRC’s Sustained Funding in e-Records 

NHPRC funded projects have been seminal in initiating 
and sustaining conversations between technologists and 
archivists over the last decade. Richard Marciano, principal 
investigator on DCAPE, has been privileged to participate 
in a series of NHPRC-funded projects starting in 2000 with 
the Archivists’ Workbench. 
 



34  Proceedings 

 

20
00

 

20
01

 

20
02

 

20
03

 

20
04

 

20
05

 

20
06

 

20
07

 

20
08

 

20
09

 

20
10

 

20
11

 

a. Archivists’ Workbench             
b. PERM             
c. ICAP             
d. PAT             
e. e-Legacy             
f. DCAPE             

Figure 1: NHPRC-funded projects leading to DCAPE at SDSC and UNC (Richard Marciano, PI) 

DCAPE participants involved in these earlier projects include: Chien-Yi Hou (ICAP, PAT, e-Legacy), Reagan Moore (PAT, e-
Legacy), Caryn Wojcik (Archivists’ Workbench, PERM, PAT), Glen McAninch (PAT), Chris Garmire (e-Legacy), Nancy Lenoil-
Zimmelman (e-Legacy), Linda Johnson (e-Legacy), Laren Metzer (e-Legacy), Renee Vincent-Finch (e-Legacy), Mahnaz 
Ghaznavi (PAT), and Karim Boughida (PAT). 

 
The Archivists’ Workbench (2000-02) was a three-year 

project conducted at the San Diego Supercomputer Center 
at the University of California, San Diego that focused on 
long-term preservation of and access to software-dependent 
electronic records. This project featured an archival 
advisory board consisting of many luminaries in the field: 
Ken Thibodeau (NARA), Theodore Hull (NARA), Bruce 
Ambacher (NARA), Phil Bantin (Indiana University), 
Charles Dollar (UBC), Pat Galloway (UT Austin), Anne 
Gilliland (UCLA), Peter Hirtle (Cornell), Heather MacNeil 
(UBC), Tom Ruller (NY State Archives), Lee Stout (Penn 
State), and Caryn Wojcik (State Archives of Michigan), 
with technical coordination by Mark Conrad (NARA) and 
Peter Bloniarz (SUNY at Albany). The input from these 
experts was significant and had a lasting impact. 

Subsequently, the Preserving the Electronic Records 
Stored in an RMA (PERM) project (2002-04), with the 
State of Michigan, developed and tested a model for 
preserving electronic records stored in a records 
management application that complies with the Department 
of Defense (DoD) Standard 5015.2. The project evaluated 
the DoD Standard 5015.2 to determine which features of 
the RMA standard needed to be retained in any future 
preservation model. 

The Incorporating Change Management into Archival 
Processes (ICAP) project with UCLA (2003-05), examined 
the issues involved in access to and long-term preservation 
of active electronic records that are being changed over 
time by their creators. Prototypes to study the versioning of 
records were developed. 

The Persistent Archives Testbed (PAT) project (2004-
07), was a precursor of DCAPE. PAT brought together four 
State Archives: the Michigan Historical Center, Minnesota 
Historical Society, Kentucky Department for Libraries and 
Archives, and Ohio Historical Society. The project explored 
data grid systems to handle large archival data sets and 
persistent archives technologies. The project made a case 

for distributed custody – where records remain in the 
system which created them while simultaneously being in 
archival custody. 

Finally, the e-Legacy project (2007-10), which is still 
active, is developing hardware and software infrastructure 
to preserve the state's geospatial records created by the 
California Spatial Information Library and managed by the 
California State Archives. 

In addition to these undertakings, Caryn Wojcik 
proposed development of commercial preservation service 
models (Preservation-as-a-Service). This idea and the 
earlier NHPRC-funded projects led to the collaborative 
network of technologists and archivists in DCAPE. These 
projects as well as many other previous NHPRC-funded 
projects of DCAPE participants, have helped bridge 
archival concepts and new technological advances. The 
DCAPE project builds on and contributes to this legacy of 
NHPRC supported conversations between archivists and 
technologists.  

 

2.2 DCAPE’s Community Development Approach 
The goals of the DCAPE project are ambitious: (1) 

develop a set of policy and service definitions, driven by 
the requirements of the underlying partners; (2) implement 
these services; (3) test them with partner collections; and 
(4) develop business models for sustaining this effort. Also 
important – the DCAPE com–munity development of rule 
sets using iRODS is a first and sets the standard for other 
communities. Moreover, DCAPE must meet these 
challenges with limited resources. The NHPRC funding 
covers only 15% of one programmer. A subcontract with 
West Virginia University also allows summer time for a 
graduate student. Given these lofty goals and limited 
resources, a community-supported development model is 
key. 

This community-driven development model accounts 
for the nearly 60 participants since the start of the project. 



iRODS User Group Meeting 2010 35 

Some of the leveraging measures taken include (1) creating 
a new group called Sustainable Archives & Leveraging 
Technologies (SALT); (2) partnering with Dave Pcolar at 
UNC Libraries where the Carolina Digital Repository, 
UNC’s institutional repository, is being developed; (3) 
establishing a policy/rule development discussion team that 
includes programmers from the Renaissance Computing 
Institute (RENCI), the Data Intensive Cyber Environments 
(DICE) group, UNC Libraries, UNC Research Computing 
Services, and graduate students from the School of 
Information and Library Science (SILS) and Computer 
Science (CS); and (4) assembling additional archivists, 
librarians, and IT staff from all six state archives and 
libraries; (5) new university archives – UNC Chapel Hill 
Libraries; (6) new cultural institutions – Smithsonian 
Institution’s Archives; and (7) experts from two schools of 
information and library science. 

This approach is fraught with challenges. Beyond the 
limitations of funding described above, there are 
management challenges associated with a virtual 
organization where input from individuals and groups is 
necessary, even as they are not accountable to the grant 
project. For example, collaborators have come and gone 
over the course of the project, as indicated by the 
“Collaborator Roles legend” on the first page. Collaboration 
with students and staff funded by other grants, but 
producing open-source software or other services for the 
DCAPE project, raises questions about grant time 
accounting and ownership of cooperatively created 
services. The cooperative model also complicates 
development of DCAPE service models and planning of 
actual management of the services. 

2.3 Developing Sustainable Services 
A number of business models are possible under the 

DCAPE approach, from hosting services, subscription 
mechanisms, membership fees, packaging rule sets as 
business intelligence, etc. We have partnered with UNC’s 
Business School to explore a range of approaches. 
“Preservation-as-a-Service (PaaS) is a potential business 
model that may prove viable for DCAPE, as the 
technologies involved become commodities and the costs 
for significant amounts of storage fall.” [1]. 

3. Development Methodology 
Two core teams have been assembled: (1) a User 

Community Team, made up of the archivist and librarian 
partners; and (2) a Policy and Rule Development Team, 
made up of the NHPRC-funded staff developers, and also 
observers and teams of students from SILS and CS. 

In the first six months of the project a Wiki was 
established. A working group from the User Community 
Team conducted an assessment of capabilities from the 
Reference Model for an Open Archival Information (OAIS) 
that are relevant to the project, based on requirements from 
their own institutions. This led to a specification with close 
to 100 policies. A working subset of 26 rules was extracted 
for pilot work. The team developed a research testbed SLA 
(service-level agreement) to facilitate loading of records 
from the partner institutions into a testbed. An assessment 
of the 26 pilot rules was conducted and related to CCSDS 
MOIMS-RAC Working Group’s “Audit and Certification 
of Trustworthy Digital Repositories” draft standard that is 
currently being developed for submission to the 
International Organization for Standardization (ISO) [3]. 
The 26 rules were then expanded to 52, and these rules 
were mapped back to RAC rules (see Appendix 1). 

In the second six months of the project, the Policy and 
Rule Development Team met weekly to interpret and map 
the 52 policies and map them into machine-actionable 
iRODS rules [2]. This team has implemented the rules 
using two instances of iRODS, a development testbed and a 
community testbed. Records from community members can 
be loaded according to the established SLA in the 
community testbed. 

In the current phase of the project, both teams have 
come together face-to-face, and an integration team has 
been put together. The integration team will move to the 
next step of all the iRODS rules into the DCAPE 
implementations. 

4. Summary 

In this paper, we introduced the community-driven 
development methodology we are using to establish 
DCAPE preservation services. While community-
development helps to overcome the deficiency of funding 
available for preservation projects, it also introduces 
complications in project management. As of early March 
2010, we are at the half-way point. While much has been 
accomplished, much work remains. One significant 
accomplishment is the development of a set of community 
preservation rules – rules that are being created for the first 
time in the context of the project. The business models we 
aim to provide are predicated on the creation and 
implementation of these rules. Our experience so far points 
to the potential for overcoming technical barriers through 
persistence, flexibility, and cultivation of mutually 
beneficial collaborations. 



36  Proceedings 

 
5. Acknowledgements 

This project is funded by NHPRC Records Projects 
grant NAR08-RE-10010-08, “Distributed Custodial 
Archival Preservation Environments”, 2008-2011. 

6. References 
[1] J. Ward, T. Russell, A. Chassanoff, “Building a Trusted 
Distributed Archival Preservation with iRODS,”, poster 
submission to the iRODS User meeting in Chapel Hill, March 24-
26, 2010. 
[2] iRODS: Data Grids, Digital Libraries, Persistent Archives, and 
Real-time Data Systems. http://www.irods.org  
[3] Draft Recommendation for Space Data System Practices, 
CCSDS 652.0-R-1, “Audit and Certification of Trustworthy 
Digital Repositories”., October 2009. 
 
 

Appendix 

Initial ISO MOIMS-RAC Capabilities and Mapping to DCAPE Rules 
RAC Numbers are from the “Combined Annotated document” Wiki page 

http://wiki.digitalrepositoryauditandcertification.org/bin/view/Main/CombinedMetricsDocumentsFollowingFaceToFace 
Accessed Sept. 2009 

 
ISO 
Item RAC No.  DCAPE Item  ISO Criteria  DCAPE Machine-Actionable Rule  

1 

A3.2.2 
A5.1.3 
A.5.1.4 
A5.2 

 Address liability and challenges to 
ownership/rights.  

Map from submission template to access 
and distribution controls  

2 B1.1 DCAPE 4  
Identify the content information and the 
information properties that the 
repository will preserve.  

Define templates that specify required 
metadata and parameters for rules that 
are required to enforce properties  

3 B1.1.2  
Maintain a record of the Content 
Information and the Information 
Properties that it will preserve.  

Link submission and policy templates to 
the preserved collection  

4 B1.3  DCAPE 3  Specify Submission Information 
Package format (SIP)  

Define templates that specify structure of 
a SIP and required content of a SIP.  

5 B1.4 DCAPE 1  Verify the depositor of all materials.  
Ingest data through a staging area that 
has a separate account for each 
depositor.  

6 B1.5 DCAPE 6  Verify each SIP for completeness and 
correctness  

Compare content of each SIP against 
template.  

7 B1.6 DCAPE 8  Maintain the chain of custody during 
preservation.  

Manage audit trails that document the 
identity of the archivist initiating the task  

8 B1.7 DCAPE 22  Document the ingestion process and 
report to the producer  

Send e-mail message to producer when 
process flags are set.  

9 B1.8 DCAPE 10  Document administration processes that 
are relevant to content acquisition.  

Maintain list of rules that govern 
management of the archives  

10 B2.1 
B2.1.1 DCAPE 13  Specify Archival Information Package 

format (AIP)  
Define templates that specify structure of 
an AIP and required content of an AIP.  

11 B2.1.2   Label the types of AIPs.  Store AIP type with each collection.  



iRODS User Group Meeting 2010 37 

ISO 
Item RAC No.  DCAPE Item  ISO Criteria  DCAPE Machine-Actionable Rule  

12 B2.2 DCAPE 13  Specify how AIPs are constructed from 
SIPs.  

Define transformation rule based on 
parsing of SIP template and AIP 
template  

13 B2.3 
B2.3.1  DCAPE 14  Document the final disposition of all 

SIPs  Maintain an audit trail for all SIPs  

14 

B2.4 
B2.4.1 
B2.4.1.1 
B2.4.1.2 
B2.4.1.3  

 Generate persistent, unique identifiers 
for all AIPs.  

Define unique persistent logical name 
for each AIP  

15 B2.4.1.4 
B2.4.1.5  Verify uniqueness of identifiers.  Identifier uniqueness enforced by 

algorithm that assigns identifiers  

16 B2.4.2   Manage mapping from unique 
identifier to physical storage location.  

Storage location mapping enforced by 
iRODS data grid framework  

17 B2.5 DCAPE 19  Provide authoritative representation 
information for all digital objects.  

Define template specifying required 
representation information.  

18 B2.5 
B2.5.1 DCAPE 7  Identify the file type of all submitted 

Data Objects.  
Apply type identification routine to each 
object on ingestion.  

19 B2.6 
B2.6.1  

Document processes for acquiring 
preservation description information 
(PDI)  

Define rule set that will be applied to 
extract PDI.  

20 B2.6.2  Execute the documented processes for 
acquiring PDI.  Apply PDI rules specific to a collection.  

21 

B2.6.3 
B2.7 
B2.7.1 
B2.7.2 
B2.7.3 

 Ensure link between the PDI and 
relevant Content Information.  

Set PDI extraction flag as part of PDI 
extraction rules.  

22 B2.8 DCAPE 14  Verify completeness and correctness of 
each AIP.  

Compare AIP against template for 
required content.  

23 B2.9 DCAPE 17  Verify the integrity of the repository 
collections/content.  

Periodically evaluate checksums and 
compare with original checksum value.  

24 
B2.10 
B3.1 
B3.2 

DCAPE 21  
Record actions and administration 
processes that are relevant to AIP 
creation.  

Maintain an audit trail of processing 
steps applied during AIP creation.  

25 B4.1   Specify storage of AIPs down to the bit 
level.  

Identify form of container used to 
implement an AIP.  

26 B4.1.1   Preserve the Content Information of 
AIPs.  Manage replicas of each AIP  

27 B4.1.2  Actively monitor the integrity of AIPs.  Periodically evaluate checksums.  

28 B4.2 
B4.2.1 DCAPE 21  

Record actions and administration 
processes that are relevant to AIP 
storage.  

Maintain an audit trail of processing 
steps applied during AIP storage.  

29 B4.2.2 DCAPE 18  Prove compliance of operations on 
AIPs to submission agreement.  

Parse audit trails to show all operations 
comply with submission rule template  

30 B5.1 DCAPE 24  
Specify minimum descriptive 
information requirements to enable 
discovery.  

Define submission template for required 
descriptive metadata.  



38  Proceedings 

ISO 
Item RAC No.  DCAPE Item  ISO Criteria  DCAPE Machine-Actionable Rule  

31 B5.2 DCAPE 11  Generate minimum descriptive 
metadata and associate with the AIP.  

Apply rule to extract metadata specified 
within submission agreement.  

32 B5.3 
B5.3.1  Maintain link between each AIP and its 

descriptive information.  
Package descriptive metadata within the 
AIP as an XML file  

33 B6.1  DCAPE 9  Enforce access policies.  Authenticate all users, authorize all 
operations  

34 B6.1.1 DCAPE 23  Log and review all access failures and 
anomalies.  

Periodically parse audit trails and 
summarize access failures  

35 B6.2 DCAPE 26  Disseminate authentic copies of records  
Define template to specify creation of a 
Dissemination Information Package 
(DIP)  

36 C1.1.2  DCAPE 15  Maintain replicas of all records, both 
content and representation information  

Periodically snapshot metadata catalog, 
and maintain at least two replicas  

37 C1.1.3 DCAPE 12  Detect bit corruption or loss.  Periodically validate checksums  

38 C1.1.3.1  DCAPE 16  Report all incidents of data corruption 
or loss and repair/replace lost data  

Periodically synchronize replicas, and 
generate and store report  

39 C1.1.5  DCAPE 19  Manage migration to new hardware and 
media  Replicate AIPs to new storage system  

40 C1.1.6  Document processes that enforce 
management policies  

Maintain copy of the rule base and 
micro-services used for each collection  

41 C1.1.6.1   Document changes to policies and 
processes  Version policies and micro-services  

42 C1.1.6.1.1   Test and evaluate the effect of changes 
to the repository's critical processes.  Version state information attributes.  

43 C1.2.1   Synchronize replicas  Periodically synchronize replicas  

44 C2.3   
Delineate roles, responsibilities, and 
authorization for archivist initiated 
changes  

Define archivist roles and limit 
execution of preservation procedures to 
the archivist role  

45 C2.4 
B2.5.2   Maintain an off-site backup of all 

preserved information  
Federate two independent iRODS data 
grids and replicate digital holdings  

46 B2.5.3   Maintain access to the requisite 
Representation Information.  

Manage Representation Information as 
metadata attributes on each record  

47 

B6.2.1 
C1.1.1 
C1.1.1.1  
C1.1.1.2 
C1.1.1.3 
C1.1.1.4 
C1.1.1.5 
C1.1.1.6 

 
Maintain and correct problem reports 
about errors in data or responses from 
users.  

Parse audit trails for unsuccessful 
operations and design appropriate micro-
service recovery mechanisms  

48  DCAPE 24  Provide a search interface.   

49  DCAPE 5  Perform a virus check.   
50  DCAPE 2  Implement a loading dock.   
51  DCAPE 20  Migrate records to new formats.   

52  DCAPE 25  Create and certify Dissemination 
Information Packages.   



iRODS User Group Meeting 2010 39 

 

iRODS User Applications – Posters 
 

Distributed Data Sharing with PetaShare for Collaborative Research 
PetaShare Team, LSU  

 

1. Introduction 
The NSF-funded PetaShare project started in August 

2006 with the goal of enabling transparent handling of 
underlying data sharing, archival, and retrieval 
mechanisms, and making data available to scientists 
across the state of Louisiana for analysis and visualization 
on demand. The goal has been to enable scientists to focus 
on their primary research problems, assured that the 
underlying infrastructure will manage the low-level data 
handling issues. The key technologies that are developed as 
a part of PetaShare include data-aware storage systems and 
data-aware schedulers, which take the responsibility of 
managing data resources and scheduling data tasks from the 
user and performing these tasks transparently. Petashare 
has two major components – an enhanced version of 
iRODS to provide a global name space and efficient data 
access among geographically distributed storage resources, 
and the Stork data placement scheduler which takes the 
responsibility of managing data resources and scheduling 
data tasks from the user and performing these tasks 
transparently.  

PetaShare has been deployed across five state 
universities and two health sciences centers in Louisiana. 
These institutions include Louisiana State University 
(LSU), Tulane University, University of New Orleans, 
University of Louisiana at Lafayette, Louisiana Tech 
University, and LSU Health Sciences Centers in New 
Orleans and Shreveport. PetaShare manages approximately 
300 Terabytes of disk storage distributed across these sites 
as well as 400 Terabytes of tape storage centrally located 
nearby LSU campus. For connecting all of the participating 
sites together, PetaShare leverages LONI, which is a 
statewide 40 Gbps fiber-optic network in Louisiana. It links 
all major research institutes in Louisiana. 

2. iRODS in PetaShare 
iRODS has been the backbone of Petashare, providing 

a global name space across all participating institutions. 
Since its initial implementation, PetaShare has gone 
through major changes such as integration of MASREP (A 
Multi-master ASynchronous REPlication) tool, which 
asynchronously replicates metadata to all other sites to 
eliminate single point of failure and to provide high 

availability without sacrificing performance. MASREP 
even increases the performance because all incoming 
metadata requests from a respective server are processed 
within that site. At the front-end, PetaShare provides very 
light weight interfaces called PetaFs, Petashell, and 
Pcommands, based on FUSE, Parrot, and icommands 
technologies respectively. PetaFs is based on FUSE, and 
the client has recently been ported to Mac OSX which uses 
MacFUSE. The novel PetaFs and Petashell interfaces 
enable users to access their remote and distributed data the 
same way as they access the data on their local disk. While 
doing so, users need not make any changes to their 
application, including re-compiling or re-linking, and they 
also do not need any special privileges on the system to use 
these interfaces. 

PetaShare provides scientists with simple uniform 
interfaces to store, access, and process heterogeneous 
distributed data sources. The archived data is well 
cataloged to enable easy access to the desired files or 
segments of files, which can then be returned to the 
requester in a chosen format or resolution. Multiple copies 
of high priority information can be stored at different 
physical locations to increase reliability and also enable 
easier retrieval by scientists in different geographical 
locations. The data is also indexed to enable easy and 
efficient access to desired data. The requested data is 
moved from the source or archival sites to the computation 
sites for processing as required, and the results are then sent 
back to the interested parties for further analysis or back to 
the long-term storage sites for archival. 

As of July 2009, PetaShare has been actively used for 
25 different research projects by more than 70 senior 
researchers from 11 different institutions. The supported 
application areas include: coastal hazard prediction (LSU 
and SURA), reservoir uncertainty analysis (LSU, ULL, and 
SUBR), DNA sequencing (Tulane and UNO), high energy 
physics (LSU, Latech, and DOSAR), X-ray tomography 
(LSU), numerical relativity (LSU), high speed visualization 
(LSU and ULL), biomedical data mining (LSUHSC, LSU 
and Latech), and computational fluid dynamics (LSU). 
PetaShare has also been an important component in several 
other state-wide cyberinfrastructure projects in Louisiana 
such as the NSF-funded CyberTools and HPCOPS, the 



40  Proceedings 

Louisiana BoR funded LONI Institute, and the DOE-
funded UCoMS projects. 

A Note on PetaFs 
A virtual filesystem that allows users to access 

PetaShare resources as a local filesystem after being 
mounted on their machines. By using PetaFs, PetaShare 
resources can be seen in the directory hierarchy of an 
existing filesystem and accessed in the same way as local 
storage. PetaFs is based on FUSE (Filesystem in 
Userspace), a simple interface to export a virtual filesystem 
to the Linux kernel in userspace. PetaFs translates local I/O 
calls into remote iRODS calls through intermediate FUSE 
library calls. In the kernel, FUSE incorporates with the real 
filesystem and maps these FUSE calls to the actual 
filesystem calls at one end, and to the remote iRODS calls 
at the other end. Communication between kernel module 
and FUSE library is established by specifying a file 
descriptor obtained from /dev/fuse device file. This file 
descriptor is passed to the mount system call to match up 
the file descriptor with the mounted PetaFs virtual 
filesystem. The advantage of PetaFs is that it makes it 
possible to work on the data stored in Petashare resources 
by using standard UNIX commands (ls, cp, etc) and system 
calls (open, read, write, etc.) as in the real filesystem. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



iRODS User Group Meeting 2010 41 

UNC Information Technology Services  

William Schulz 
UNC Information Technology Services (ITS)  

 
 

The Research Computing unit at UNC Chapel Hill, a 
division of Information Technology Services (ITS), has 
been hosting several production iRODS servers for more 
than one year.  These instances provide different sets of 
functionality and storage capabilities to a variety of groups 
both at UNC and collaborating institutions.   

The Research Computing group in ITS is uniquely 
positioned to assist a large existing user base among many 
departments at UNC, as it provides the University with 
most of its HPC infrastructure.  In addition to the 
computational capability provided by several large clusters, 
Research Computing hosts high performance storage and 
archiving systems. 

A request to provide tape storage for an iRODS grid 
hosted by the Renaissance Computing Institute (RENCI) 
led to the first RECO iRODS server.  This instance became 
part of the DICE Center’s NARA prototype grid at RENCI, 
and continues to provide several collections with tape 
storage. 

UNC’s Institute for the Environment, long a user of 
RECO’s services, looked to iRODS as a way of managing, 
storing, and distributing a large collection of federally 
generated data.  This collection is made freely available to 
researchers worldwide through a browser front end.  
Leveraging the iRODS Java API, a web application allows 
users to search the collection’s rich set of object-level 
metadata. 

The Carolina Digital Repository, developed by the 
UNC University Library, is an institutional digital 
repository that leverages iRODS for its data store.  ITS 
Research Computing is providing iRODS configuration 
assistance and hosts the iRODS server responsible for 
archival storage.   

This presentation will provide an overview of how the 
Research Computing iRODS servers are configured 
differently for their varied collections, with an explanation 
of basic simple policy and maintenance rules.   

 



42  Proceedings 

The ARCS Data Fabric 
 

Shunde Zhang (shunde.zhang@arcs.org.au), Florian Goessmann, Pauline Mak 
The Australian Research Collaboration Service (ARCS) 

 
Overview 

The Australian Research Collaboration Service 
(ARCS) Data Fabric was developed as a solution for the 
growing need by researchers to easily store their research 
data, and to share that data across institutional boundaries. 
As such, it is a generic service that is not tied to any 
specific kinds of data or research disciplines and is 
available to every Australian researcher and their 
international collaborators. 

Access to the ARCS webDrive is possible through 
either a WebDAV client such as Windows Explorer and 
Mac OS Finder, and any modern web browser. Dedicated 
areas of the ARCS webDrive can be accessed using the 
OPeNDAP protocol through the ARCS OPeNDAP 
Network and Digital Library. The authentication 
mechanism of the ARCS webDrive has been designed to be 
use methods and technologies supported by the Australian 
Access Federation (AAF). 

1. Architecture 
The ARCS Data Fabric consists of two modules: the 

ARCS webDrive and the ARCS OPeNDAP Network and 
Digital Library. They are both based on iRODS, the 
Integrated Rule-Oriented Data System, where data is 
stored. 
 
1.1. ARCS webDrive 

The ARCS webDrive as two distinct layers, a back-end 
and a front-end. The back-end interfaces with the physical 
storage, whereas the front-end provides the different 
interfaces to the user.  

The back-end of the ARCS webDrive is iRODS, which 
sits on top of physical, large-scale storage infrastructure 
hosted by and provided through the Members of ARCS 
(MARCS). This setup allows the ARCS webDrive to be 
expandable and fault tolerant, as it does not have to rely 
solely on one physical storage system. 

The front-end, Davis, of the ARCS webDrive is a 
development by ARCS Data Services. It provides two easy-
to-use interfaces: a WebDAV server and web browser 
access. The WebDAV server allows researchers to access 
and store data in the ARCS webDrive with any WebDAV 
client including those built into operating systems such as 
Windows XP and Mac OS X. The web access is available 
through most modern web browsers. In addition to 

uploading and downloading data, the web interface also 
offers access control mechanisms, metadata for files and 
collections, as well as the ‘trash can’. 
 

1.2. Data Sharing and Access Control 
Giving researchers the ability to share data was the 

main drive for the development of the ARCS webDrive. As 
a result, the ARCS webDrive puts sophisticated access 
control mechanisms at the disposal of the researcher. It is 
possible to assign access of different levels (read, write, 
own) to single files or whole collections and to individuals 
or groups. 

If a group of researchers frequently shares files, they 
can request for a group to be created for them. This further 
simplifies sharing of data as each group owns a group 
collection, which makes all data stored in it immediately 
available to all group members. 
 

1.3. ARCS OPeNDAP Network and Digital Library 
The system consists of two distinct parts: a network of 

data servers, and a portal which harvests and catalogues 
information on all datasets handled by all data servers in 
the network. 

The data servers run THREDDS Data Server (TDS), 
an implementation of the DAP protocol. This protocol was 
designed for the delivery of scientific data over the web and 
is well established in the ocean, climate, and remote 
sensing sciences communities. At this stage, ARCS hosts 
five TDS servers, based at Members of ARCS (MARCS), 
closest to the Integrated Marine Observing System (IMOS) 
facilities. 

The TDS servers are co-located with the servers for the 
ARCS webDrive and have access the underlying storage 
system. This setup makes data stored in the ARCS 
webDrive available through the ARCS OPeNDAP 
Network. 

The digital library component is provided by an 
instance of the Tasmanian Partnership for Advanced 
Computing (TPAC) Digital Library. The digital library 
provides a single front-end to all datasets available through 
any of the data servers, and hence enables researchers to 
discover datasets without prior knowledge of their physical 
location. 



iRODS User Group Meeting 2010 43 

2. Current setup 
Currently, seven iRODS nodes have been set up in 

each capital city of Australia. They are all in one iRODS 
zone, with one being the master zone and iRODS Metadata 
Catalog (iCAT), and others being slaves. Most sites have 
hierarchical storage, such as tape device, in the back-end. 
To date there are more than 18 TB of data stored and 280 
users registered in the Data Fabric. Users and storage have 
nearly tripled in the last year. 

 

3. Use Cases 
While the ARCS Data Fabric is being used every day 

by individuals to store and share data, it is also integrated 
with eResearch service providers external to ARCS. For 
example, the Australian Synchrotron’s Virtual Beam Line 
data portal was developed to give users of the synchrotron 
an easy way to transport the results of experiments off the 
facilities to storage that provides access to data from their 
home institution. ARCS Data Services and the developers 
at the synchrotron have successfully worked together to 
integrate the ARCS Data Fabric as a storage selectable 
target for the data transport mechanism. 

Another function has also been developed and will be 
deployed soon to enable Data Fabric users to create 
Persistent IDs for Data Fabric objects in the persistent 
Identifier Service (PIDS) of the Australian National Data 
Service (ANDS). This is achieved by invoking predefined 
rules from the Davis web interface. 



44  Proceedings 

Building a Trusted Distributed Archival Preservation Service with iRODS 
 

Jewel H. Ward, Terrell G. Russell, and Alexandra Chassanoff 
School of Information and Library Science, University of North Carolina at Chapel Hill 

 
Abstract 

The Distributed Custodial Archival Preservation 
Environments (DCAPE) [1] project is a proof-of-concept of 
the viability of a distributed custodial preservation 
approach as a production service using iRODS [2]. The 
DCAPE partnership is comprised of 32 people across 10 
institutions, as well as doctoral and graduate students. 
These partners include technologists, librarians, and 
archivists from computer science research, state libraries, 
and state, university, and cultural archives. In the first 
phase of this project, the project team created an initial set 
of 26 iRODS rules for use by the DCAPE archivists and 
administrators. We based these rules on the stated needs of 
the partner organizations and the standards developed to 
determine trustworthiness by the ISO Mission Operations 
Information Management System repository assessment 
criteria (ISO MOIMS-RAC) group [3,4]. Within the 
DCAPE project, the iRODS infrastructure serves two 
critical functions: (1) it validates the trustworthiness of the 
repository through the enactment of ISO-MOIMS-
compliant policies; and, (2) it enables the distributed 
auditable administration of the repository through the 
invocation of iRODS rules.  

 
Index Keyword Terms—Distributed Systems, 

Document/file management, Data Sharing, Online 
Information Services 

1. Introduction 
iRODS is extensible; rules may be added or deleted as 

needed by archivists and administrators. These rules are 
machine-actionable policies; that is, a repository 
administrator may enforce written policies at the machine 
level by re-writing the policies as code that can be read by 
the iRODS rule engine. These policies may also be 
enforced across a distributed environment, which provides 
a method for archivists in disparate locations to manage 
their records. The rule engine is dynamic; the rules may be 
installed or removed as the needs of the repository 
administrators change. 

In the first phase of the 2-½ year DCAPE project, the 
team developed an initial set of 26 capabilities, based on 
the standards developed by the ISO MOIMS-RAC group. 
These capabilities include rules that manage Open Archival 
Information Systems (OAIS) compatible SIPs, AIPs, DIPs, 

identifiers, audit and security information, and enforce 
policies and service level agreements (SLAs), among 
others. The goal is to converge towards a set of 
fundamental building blocks necessary to create a 
distributed, trustworthy archival production system. 

Preservation-as-a-Service (PaaS) is a potential business 
model that may prove viable as the technologies involved 
have become commodities and the availability of 
significant amounts of storage is common.  Alongside 
bandwidth costs, the overhead associated with the 
management of preservation policy has become a limiting 
factor when dealing with large datasets.  DCAPE aims to 
reduce this overhead and provide an archivist-level 
interface into a very powerful system. 

In this poster, we describe the rationale for creating the 
DCAPE project, what we have accomplished so far, what 
we have learned, and what our future work on the project 
will entail. 

2. Acknowledgements 
This work is funded by the NHPRC Records Projects 

grant NHPRC RE10010-08, “Distributed  Custodial 
Archival Preservation Environments” (2008-2011). We 
would like to think Richard Marciano for his comments on 
this poster.  

3. References 
[1] DCAPE project (Distributed Custodial Archival Preservation 
Environments), http://dcape.org. 
[2] DICE, "Overview: Data Management & iRODS", iRODS 
Publications, San Diego, CA, March 19-20, 2009. 
[3] MOIMS-RAC: Repository Audit and Certification working 
group, http://wiki.digitalrepositoryauditandcertification.org. 
[4] M. Day. "Toward Distributed Infrastructures for Digital 
Preservation: The Roles of Collaboration and Trust", Journal of 
Digital Information, 1(3), College Station, TX, 2008.



iRODS User Group Meeting 2010 45 

 
 
 
 
 

 
 
 

 
 

2. Clients for iRODS  



46  Proceedings 

 
 



iRODS User Group Meeting 2010 47 

A Service-Oriented Interface to the iRODS Data Grid 
 

Nicola Venuti*, Francesco Locunto*, Michael Conway**, Leesa Brieger◊ 
*Nice S.r.l., **Data Intensive Cyber Environments Center, UNC, ◊RENCI, UNC  

 
Abstract 

iRODS microservices and rules can be used to build a 
data grid that implements a community's own data policy. 
However, often the data administrators are not the 
developers who customize the services or deploy the data 
grid. A tool that gives the data administrator intuitive 
access to the rules and special-purpose services of their 
data grid is important in separating the IT tasks from the 
data administration tasks.  

The EnginFrame (EF) cloud interface framework from 
Nice S.r.l. was used to build a service-oriented iRODS 
interface. This interface demonstrates how data grid access 
can be customized for community use; one view of the data 
grid, determined by data usage scenarios, is provided for 
the community user, and another view, determined by data 
management criteria, is provided for the administrative 
user. 
 

Index Keyword Terms—iRODS data grid, data grid 
interface, data grid access, web interface, EnginFrame, EF, 
Grid Portal, cloud interface, administrative interface. 

1. Introduction 
Development of special-purpose microservices and 

rules will equip an iRODS data grid to implement 
specialized data access and preservation policy as required 
by a target community.  The developers who would 
customize a data grid in this way may not, however, be the 
data administrators who determine and/or enforce data 
policy for that community.  

Therefore, along with a customized data grid, it is 
imperative to offer a user-friendly interface that provides 
not only user access to community data, but also 
administrative access to the services that support and 
implement data policy.  The data grid, with special-purpose 
services and with an administrative interface, then provides 
the data administrator with the necessary tools to curate and 
preserve his community's electronic data - without being an 
iRODS programmer to do it. 

The user-friendly interface provides a separation 
between the data administrator and the systems 
administrator. It can offer intuitive access to the specialized 
data services, freeing up the data admin to concentrate on 
applying, enforcing, and verifying data policy for his 
community. 

The authors used the EnginFrame (EF) cloud interface 
framework to develop a prototype of such an interface; this 
was used for a live demonstration of iRODS services at an 
NSF/NARA/NITRD iRODS presentation in August 2009. 
The interface was used to showcase important iRODS 
archival services in a real-time demo. It serves to illustrate 
how an interface can be customized to offer specialized 
views of the services implemented in a given data grid. 
Further, the interface presents one view of data and services 
for community users and another view, which includes 
more administrative functionalities, for the data 
administrator. 

Several basic iRODS services were selected for the 
demonstration; we briefly mention implementation 
considerations for some of these special services, followed 
by a description of the EnginFrame interface and then the 
blending of the two technologies. 

2. Specialized iRODS Services  
While iRODS can be viewed as a framework for 

implementing data policy for the curation of electronic 
assets, it is also a tool kit that comes with many pre-defined 
rules, microservices, and capabilities. Some of these enable 
functionalities such as audit tracking and quota checking, in 
support of verification of policy; others enable capabilities 
such as searching on user-defined metadata.  

These were the sorts of functionalities, based on out-
of-the-box iRODS services, that were showcased at the 
NSF demo; thus these were the services exposed in the EF 
interface to the data grid.  

 
2.1. Audit Tracking 

Audit tracking is enabled in iRODS by changing the 
setting of the parameter auditEnabled from "0" to "2" in 
iRODS_root/server/icat/src/icatMidLevelRoutines.c, then 
recompiling, and restarting the iRODS server. Once audit 
tracking is enabled, any operation that calls upon the iCAT 
metadata catalogue is logged - in the iCAT. Any requests, 
such as downloading a data object, changing permissions 
on a collection, deleting or creating an object, etc., are all 
logged in the iCAT's audit table, along with record of the 
change that was made if authorization for the operation was 
granted. Audit information can then be tracked by querying 
this table and presenting the results in a user-friendly 
format. The queries can be implemented with the iquest 



48  Proceedings 

icommand or with microservices by using 
msiMakeGenQuery and msiExecGenQuery. 

There is a need to be careful, however, with these 
queries. The microservice queries use an iRODS-specific 
syntax to approximate SQL but does not repli–cate it 
perfectly. Iquest allows a reduced form of SQL querying. 
Neither approach yet gives full SQL functionality. For 
audit table querying, there is a further complication that can 
result in spurious results. Consider that the audit table in 
the iCAT database contains the following fields: 

 
AUDIT_OBJ_ID 
AUDIT_USER_ID 
AUDIT_ACTION_ID 
AUDIT_COMMENT 
AUDIT_CREATE_TIME 
AUDIT_MODIFY_TIME 
 
The audit table, in AUDIT_OBJ_ID, contains 

information about the entity (data object, collection, 
resource, user, etc.,) that is the object of an action that was 
performed and logged. It contains the ID of the target 
entity; however, there is no built-in mechanism to 
determine which it is - object, collection, user, resource, 
etc. Thus, at any one time, the AUDIT_OBJ_ID field of the 
audit table can refer to any of a number of tables containing 
detailed information on either a data object, a collection, a 
user, or a resource. The joins of the standard iRODS query 
services then have the effect of joining all the tables 
referred to by the ID, with the result that much spurious 
information is retrieved with the query. 

By breaking down the joins into a series of simpler 
iquest queries, it is possible to separately query on each 
type of entity in the audit table, thereby avoiding the joins 
that cause spurious results to be generated. The following 
example for an audit procedure for an administrative user 
illustrates this; the iquest commands are run in a script so 
that output can be saved from one step to the next. 

 
1.To see an audit trail for a given user, save an iRODS user 
name into a script variable and run the iquest command to 
query the audit table: 
 

iquest "SELECT AUDIT_OBJ_ID, 
 AUDIT_ACTION_ID, AUDIT_COMMENT, 
 AUDIT_CREATE_TIME, 
 AUDIT_MODIFY_TIME WHERE 
 USER_NAME = '${_irods_username}' 

2. Save the AUDIT_OBJ_ID into a script variable and use 
it to get query and get separate results from each entity 
table: 

 
iquest "SELECT COLL_NAME, DATA_NAME 
 WHERE DATA_ID = '${_objId}'” 
 
iquest "SELECT COLL_NAME WHERE 
 COLL_ID = '${_objId}'” 
 
iquest "SELECT USER_NAME WHERE 
 USER_ID = '${_objId}'" 
 
For the NSF/NARA demo, the results of these queries 

were arranged into xml files to allow for formatted 
presentation. Additional Java filters provide an easy way to 
further manipulate the results and were applied in order to 
sort and refine the search results.  

 
2.2. Other Services 

iRODS allows users to add their own AVU triplets 
(attribute, value, units) to the iCAT metadata catalogue. 
Metadata searching of user-defined metadata was 
implemented for the demo using the iquest icommand to 
query the iCAT.  

The implementation of quotas is awaited in iRODS 
and should be coming out in version 2.3. In the meantime, 
it is possible to use iquest to return and display usage 
information for each user, handling it similarly to the way 
quota information will be handled. This was implemented 
in the demo prototype. 

The irule icommand allows users to run any iRODS 
rules on a command line. The interface also provided a 
means of pointing and clicking to edit and run selected 
rules. 

3. EnginFrame     
EnginFrame is proprietary software developed by Nice 

S.r.l. It is typically used as a computational grid portal or a 
cloud interface and serves as a framework for logically 
collecting applications, services and resources and 
presenting them in a web 2.0 interface that provides user-
friendly access to the distributed resources. It is not a 
portlet container but instead delivers services that are 
JSR168-compliant; EnginFrame allows organizations to 
provide application-oriented computing and data services to 
both users (via Web browsers) and in-house or ISV 
applications (via SOAP/WSDL based Web services) so EF 
services could be used as portlets in another portal. 

The main goal of EF is to hide the details and the 
complexity of the underlying infrastructure in order to 
improve usability and utilization. Usability goes up when 
end-user requirements for accessing the  

 



iRODS User Group Meeting 2010 49 

 
Figure 1. Metadata and ACL settings can be viewed and 

modified through the browser. 

infrastructure go down, and utilization is improved by 
making  the evolution of the underlying systems trans–
parent to the end-user and enforcing the utilization policies 
even as infrastructure evolves. 

EF provides a flexible authentication framework with 
built-in support for a wide set of well-known authentication 
mechanisms like OS/NIS/PAM, LDAP, and Microsoft 
Active Directory. It has been integrated with the iRODS 
challenge-response authentication mechanism. The EF 
authorization framework allows the definition of groups of 
users and access control lists, thus providing a means for 
tailoring the Web interface to  
the specific users’ roles or access rights. This was used in 
the demo interface to distinguish between community users 
and administrative users of the data grid.  Community users 
were presented, in the interface, a reduced set of services 
compared to administrative users. 

4. The iRODS EF Interface 
The merging of the EnginFrame and iRODS 

technologies required development of an iRODS plug-in 
for EF and the wrapping of the iRODS services as EF 
services. The EF file manager for data browsing was also 
outfitted with iRODS functionalities so that some of the 
basic iRODS characteristics are present in the data browser. 

User-defined metadata can be added, modified, 
queried, and deleted as part of basic iRODS functionalities. 
Setting and modifying ACL permissions are also included 
among the basic iRODS capabilities.  Both these 
functionalities are available with the browser through the 
EF interface. See Figure 1. 

Disk usage is queried using iquest and displayed. 

 
Figure 2. Usage data 

The same sort of display is planned for quotas when 
that functionality becomes operational.  See Figure 2. 

Figure 3 shows the unfiltered results of an audit table 
query on all entries, and Figure 4 is a snapshot of the rule 
editor. 

5. Deploying Data Grids  
The customization of a data grid for a user community 

is an important step in deploying this technology for a 
given user group. Beyond simply installing the data grid, 
data management policy must be unambiguously defined 
and then translated into the  microservices and rules of this 
technology. 

Another very important step in the deployment is the 
development of a user-friendly interface for accessing the 
data grid. A custom interface can provide intuitive access to 
the custom services of the data grid and a user-friendly way 
of invoking the rules that implement and enforce data 
policy.  

Further, the interface can be customized to various user 
groups that access the data and data services. As mentioned 
above, the EF interface was developed to show different 
views of the services to community and administrative 
users, thereby distinguishing between the different classes 
of services offered to the two groups. It would also be 
possible to adjust the view of the data grid to other user 
groups, so that the presentation of data and services fits 
with a group's own use cases.  

6. The Future  
A new domain of expertise will likely grow up around 

this technology, embodied in those who deploy iRODS 
data grids. They will likely become increasingly separate 
from the DICE developers of iRODS as well as user 
communities who make use of iRODS technology. There is 
a need for a third group that bridges the gap between these 
two. The developers know all that this 



50  Proceedings 

 
 

Figure 3. Data dump of the audit table 

technology can offer, but are often not aware of the 
intricate details of the needs of the user groups. Users know 
some rudimentary aspects of the data grids but often define 
their needs in terms of the constraints they have learned to 
live with rather than exploiting the full potential of iRODS. 
There is increasingly a  need for a group that straddles 
those two perspectives and brings rich iRODS capabilities 
to user groups with complex data needs. 

 These deployment groups must work closely with data 
specialists from the user communities in order to 
understand the required policy to implement in the  data 
grids and how the administrative interfaces should operate. 
They will also have to understand how the users must view 
the data and services presented in order to meet their use 
cases. Policy should become easy to apply using the custom 
interface, and the full functionality of rich iRODS services 
should be delivered.  

Deployment groups will promote the adoption of 
iRODS data grids, supporting communities who want to 
explore the technology, and allowing its adoption even by 
groups who may not be well-supported with in-house IT 
specialists. The deployment groups will do the 
programming of the services and the development of the 
interfaces so that users and data administrators will be freed 
from these tasks. The upshot is that many more 
communities will have access to this technology. 

 
 
 
 

 
Figure 4. The rule editor 

7. References 
[1] Reagan W. Moore, Richard Marciano, Arcot Rajasekar, 
Antoine de Torcy, Chien-Yi Hou, Leesa Brieger, Jon Crabtree, 
Jewel Ward, Mason Chua, UNC Chapel Hill; Wayne Schroeder, 
Michael Wan, Sheau-Yen Chen, UCSD, "NITRD iRODS 
Demonstration", sponsored by NARA at NSF, 2009. Can be 
linked from https://www.irods.org/index.php/Publications. 
"Technical Demonstration of Integrated Preservation 
Infrastructure Prototype", National Coordination Office for 
Information Technology Research and Development (NITRD) / 
NSF / NARA, National Science Foundation, Washington, D.C., 
August 4, 2009 Powerpoint Version. Combined Video and 
Powerpoint Slides of NITRD Demo. Can be linked from 
https://www.irods.org/index.php/Publications. 
[2] iRODS and Data Preservation 2nd Workshop on Data 
Preservation and Long Term Analysis in HEP, Wayne Schroeder, 
SLAC National Accelerator Laboratory, Menlo Park, CA, May 
26, 2009. Can be linked from 
https://www.irods.org/index.php/Publications. 
[3] Policy-Based Distributed Data Management Systems, Open 
Repositories 09, Reagan Moore, Arcot Rajasekar, Mike Wan, 
May, 2009. Can be linked from 
https://www.irods.org/index.php/Publications. 
[4] http://www.nice-software.com 
[5] http://www.enginframe.com 
[6] http://code.google.com/p/ef-irods-plugin/ 



iRODS User Group Meeting 2010 51 

iExplore for iRODS Distributed Data Management 
Bing Zhu 

Data Intensive Cyber Environments Group,  Institute for Neural Computation  
University of California, San Diego, bizhu@ucsd.edu 

 
Abstract 

iExplore is a graphical user interface client tool for 
navigation and manipulation of data within the iRODS 
distributed data system. Designed and implemented in the 
Windows platform, it offers a rich set of functions with 
excellent performance for iRODS users.    

 
Index Keyword Terms—Graphical User Interface, 

iRODS Client Tool, Data Manipulation, Windows 
Platform. 

1. Introduction 
iExplorer is a graphic user interface tool that runs on 

the Windows platform for browsing distributed data and 
related digital information managed by iRODS, the 
Integrated Rule-Oriented Data System [1, 2]. iExplore 
supports a rich set of iRODS client functions through its 
main browser window, which comprises a tree display and 
a list box showing the hierarchical collection structure and 
the content of the selected collection that is stored in a 
distributed iRODS environment, federated data grid, or 
heterogeneous storage systems, etc.  

iExplore is developed using the Microsoft Foundation 
Class (MFC) with enabled .net GUI features.  iExplore 
interacts with iRODS through the iRODS client library, 
which issues the iRODS communication protocol [3], an 
RPC-based client-server software package developed by 
iRODS team. Fig. 1 shows a snapshot of the main screen.  

iExplore software can be downloaded from the iRODS 
web site at: https://www.irods.org/index.php/windows. 
Since it is developed using the original iRODS C library 
and Microsoft C++ within the user interface, iExplore 
demonstrates superb performance for all data manipulation 
operations. 

2. Functions and Dialogs 
iExplore provides many client functions through its 

GUI implementation, such as iRODS file system browsing, 
file/collection downloading, file/collection uploading, 
searching, and metadata editing. Below are detailed 
descriptions of the functions and dialogs implemented in 
the current version of iExplore. Some new features 
introduced in the latest release will be described in a 
separate section. 
 

 
Fig 1. The main screen of iExplore 

 
1. Navigation of hierarchical structure: Navigation 

within an iRODS collection and datasets is 
through either a tree view or a list in the main 
screen. 

2. Uploading files/folders: Users can use the menu 
to launch a file or folder selection dialog to upload 
files or folders into iRODS. The storage resource 
is determined by the resource combo box above 
the tree. 

3. Downloading datasets: iRODS files can be 
downloaded to a local disk through the download 
menu. Users will be asked to select a local folder 
for downloading files. 

4. Data Replication: Users can make replicas of 
selected files or a collection through “Replicate” 
menu.  

5. Data Access Control: A user can set data access 
permissions on files for other users. 

6. Manipulation of metadata: A metadata dialog 
allows users to enter, edit, and view metadata.  

7. Change Password: The change password dialog 
allows a user to change their password.  

8. iRODS Rules: The ”Rule” menu supports three 
submenus for submitting rules, checking rule 
status, and deleting a submitted rule.  

9. Online help: iExplore has a link in its About 
dialog that directs users to iRODS on-line 
documents for full descriptions of the iRODS 
system and various operations. 



52  Proceedings 

3. New Features in Latest Release 
The following new features were introduced in the 

latest release of iExplore. 
1. Job Progress Indicator: A job progress indicator 

has been implemented to show the progress of 
tasks in uploading and downloading files or 
collections. Usually the GUI progress indicator is 
hidden in the main window next to the resource 
selection field. It will automatically appear when a 
job starts.  

2. HTML information display: An HTML display 
was introduced in the latest release to display 
information about distributed stores, user, and 
metadata in tabular form, a more user-friendly 
representation of the information. 

3. Search Dialog: A new search dialog allows user 
to search on patterns in file and user-defined 
metadata. Although the search criteria is like a 
database query language, a simple query such as 
the “contain” operation is quite intuitive, and users 
will find this search very useful. 

4. Proposed Future Development 

As Microsoft technologies evolve, and based on user 
requests, iExplore will continue to evolve to provide 
additional iRODS functions and interfaces for new 
technologies. 
 

1. New main screen: This has an extra pane to show 
rich information: thumbnail, system metadata, 
user metadata, as shown in Fig 2. 

 

 

Fig 2. A Proposed iExplore Main Screen. A third pane 
will be added in the right panel to display thumbnails, 
metadata, properties, etc. 

 
2. Multi-Language Support: New development will 

provide multi-language support through Microsoft 
UNICODE implementation. 

 
3. Generic Interface for integration with other 

software applications: New development of 
iExplore will look into incorporation of the 
Windows Presentation Foundation so that it can be 
easily integrated with other applications, map 
applications, data cube displays, multi-media 
software, numerous web applications, etc.  

4. A generic interface for iRODS Plug-play 
modules such as automatic metadata extraction, 
thumbnail creation, etc.  

5. New Rule Editor: A new user-friendly iRODS 
rule editor will allow users to navigate through the 
list of available iRODS micro-services in a server 
to construct new iRODS rules. There will be a 
check that verifies iRODS rule syntax. 

6. Advanced Search: The Advanced Search will 
allow experienced users to conduct more complex 
searches against iRODS distributed stores. The 
advanced search will also keep track of user 
search patterns and provide intelligent assistance 
for users. 

 

5. Summary 
iExplore is an efficient client tool for navigating the 

iRODS distributed data system. It offers a rich set of 
functions and user dialogs that are convenient and easy to 
use for iRODS users. Future development will include rich 
data representations such as auto-display of thumbnail 
images, movie proxies, and metadata by combining the 
latest Microsoft technologies such as Windows 
Presentation Foundation.  

7. References 
[1] iRODS: Data Grids, Digital Libraries, Persistent Archives, and 
Real-time Data Systems. www.irods.org.  
[2] R. Moore, A. Rajasekar, M. Wan, and W Schroeder. Policy-
Based Distributed Data Management Systems. The 4th 
International Conference on Open Repositories. Atlanta, Georgia. 
May 19, 2009. 
[3] Michael Wan, Reagan Moore, Arcot Rajasekar. Distributed 
Shared Collection Communication Protocol. 
https://www.irods.org/pubs/DICE_irodsProtPaper.pdf. 
[4] Introduction to Windows Presentation Foundation. 
http://msdn.microsoft.com/en-us/library/aa970268.aspx. 



iRODS User Group Meeting 2010 53 

The Development of Digital Archives Management Tools for iRODS 
Tsung-Tai Yeh a, Hsin-Wen Wei a, Shin-Hao Liu a, Pei-Chi Huang b, Tsan-sheng Hsu a, Yen-Chiu Chen b 

a Institute of Information Science, Academia Sinica Taipei, Taiwan  
bDepartment of Computer Science, Tsing Hua University, Taiwan 

E-mail: {b8875,hwwei, kofman, peggy1105, tshsu, yenchiu}@iis.sinica.edu.tw 

 
Abstract  

The amount of digital data in today’s society is both 
enormous and constantly growing. Unfortunately, existing 
digital archives are often fragile and susceptible to data 
loss. Thus, as the amount of digital information continues 
to grow almost exponentially, it is increasingly important to 
develop new ways to manipulate this data and minimize the 
risk of data loss after hardware failures. In this paper, we 
create an improved data preservation system by working 
with iRODS, a distributed data management system 
suitable for data grids, digital libraries, and persistent 
archives. We develop a user interface, called UrSpace, 
provide a corresponding Sync Package, and also create a 
monitoring system (call SIMS) that can check iRODS for 
errors and monitor the system independently. These tools 
and system are currently used for the TELDAP program in 
Taiwan. 

 
Index Keyword Terms—TELDAP, Data 

Preservation. 

1. Introduction 
In the digital age, all forms of data such as text, 

pictures, music and video are available in digital format, 
and thus the need for storage capacity is constantly 
growing. When organizations such as the IDC 
(International Data Corporation) report that the digital 
universe doubles every 18 months [2], it is certain that data 
users will face unimaginably large amounts of data in the 
near future. In order to keep pace with this immense 
increase in information, it is necessary to create an 
extensive but manageable data preservation framework that 
enables people to agilely handle colossal amounts of data.3 

One of the greatest challenges with existing data 
management is that these archives are fragile, and they are 
often prone to crash in unexpected ways. Generally, digital 
archives are stored in some type of electronic storage 
device, but due to inevitable malfunctions and wear, no 
existing digital archives can remain operational forever. As 
a result, there is a continuous need to  
develop increasingly reliable preservation mechanisms in 

                                                
3 Supported in part by National Science Council (Taiwan) Grants NSC99-
2631-H-001-024. 

order to ensure that data is consistently accessible and 
robust.  

In 2002, a “National Digital Archive Project” (NDAP) 
was initiated and worked to collect and integrate different 
kinds of digital archives from institutes, museums and 
research groups from across Taiwan. Created in 2008, the 
“Taiwan e-Learning and Digital Archives Program” 
(TELDAP) [3] continues the work of NDAP. In order to 
reliably manage all of this data, the Digital Archives 
Remote-Backup (DARB) project was proposed. Its primary 
responsibilities include data preservation system 
development and research. The DARB project also created 
the Sinica Data Preservation System (SIDPS), which stores 
digital archives and content from such diverse field as 
history, biology, ethnology, education and language.  

SIDPS follows a distributed framework and 
manipulates data in multi-level collections. The 
characteristics of this design are to meet the performance of 
data preservation in the distributed environment and 
alleviate the cost of external network deployment. In 
maintaining SIDPS, DARB works closely with another data 
management system, specifically designed for working 
with data grids, called the Integrated Rule-Oriented Data 
System (iRODS) [4]. Taking advantage of rule-based 
policy mechanisms, iRODS provides several optimized 
data transfer functions, and it enables users to more flexibly 
coordinate data stored within distributed environments. 
This feature allows the DARB project to use iRODS to 
manage digital archives stored in different institutes across 
Taiwan.  

Generally, the iRODS team provides several APIs for 
developers to create their applications. It is true that there 
are some iRODS user interfaces such as Davis WebDAV 
[9] and iRODS Explorer for Windows. However, users who 
aim to preserve digital data need a good interface that is 
multilingual, a convenient process to make data 
preservation easier and safer, and a fast data transfer 
mechanism. Hence, the DARB team takes advantage of 
iRODS’ APIs to develop a user interface called the 
UrSpace tool, and a corresponding data preservation utility, 
called the Sync Package. The system status of iRODS is 
tracked through the Sinica iRODS monitoring System 
(SIMS), which detects errors that occur within the iRODS 
system and quickly alerts system administrators of any 
problems.  



54  Proceedings 

The remainder of this paper is organized as follows. 
We first describe the SIDPS framework, and then outline 
the designs of the UrSpace interface and the Sync Package 
utility. Next we introduce SIMS, the monitoring system for 
iRODS. Lastly, in the final section we present our 
conclusions. 

2. Digital Archives Preservation 
Cyberinfrastrature  

Recently, the number of digital archives stored within 
SIDPS has grown rapidly. In order to handle this increased 
data flow, we propose a digital archives support framework 
that is based on the iRODS system and designed to 
coordinate the aggregation and preservation of archival 
data. Its key roles include handling distributed data 
acquisition, data storage, integration, transformation, and 
management.  

2.1 The Multi-level Digital Archive Collection 
The architecture for a multi-level digital archive 

collection like SIDPS requires a fast data transfer speed, 
low power consumption, and a disaster recovery 
mechanism. In regards to data transfer rates, we employ a 
framework designed to overcome issues related to limited 
network bandwidth while also improving the cost-
effectiveness of data preservation. As Figure 1 
demonstrates, this framework can be broadly divided into 
three levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Multi-level Digital Archive Collection 

First, the local cloud tier provides a storage buffer. 
Users are able to upload digital archives to their local 
storage devices at high speed. Second, the SIDPS located 
within the remote cloud tier moves digital archives that 
have not been modified or have been left idle over a period 
of time to the SIDPS. Lastly, tape servers regularly 
replicate digital archives from the SIDPS. Overall this 
multi-level digital archive collection framework shortens 
data uploading time, because users only need to upload 
their data through their internal network, rather than 
through the much slower external network. This framework 

also helps reduce power consumption, because backup 
copies of the data are stored within the internal network on 
tape, compared to more power-intensive online models 
such as Hadoop [8] or the google file system [7]. Most of 
the time, the tape storage system is kept off-line, and is 
only used during periodic backup sessions or when original 
data needs to be recovered due to errors within the SIDPS. 
Throughout this process, the SIMS monitoring system acts 
as a gatekeeper, serving to monitor each data transaction at 
each of the different institutes, and to then immediately 
notify system administrators of errors via e-mail or instant 
message.  

3. The UrSpace Tool 
A good user interface ought to match system 

operations to the real world. Generally speaking, users that 
join TELDAP program would like to have a good user tool 
that supports multilingual interface, provides  a view of the 
system status, and provides flexible and efficient 
functionalities. UrSpace is a Graphical User Interface 
(GUI) tool based on the iRODS Jargon APIs. The objective 
of the UrSpace tool is to provide users with a friendly and 
multilingual interface to manage metadata and upload and 
download digital archives to and from the iRODS system. 
The tool itself is compatible with multiple operating 
systems (unlike the  iRODS Explorer for Windows), and 
performs the following functions: multiple data transfers, 
resume transfers, export log files to PDF format, edit 
metadata, and basic searches. UrSpace is also free and can 
be downloaded from the DARB website [5]. The Davis 
WebDAV interface [9] is also based on Jargon APIs and 
includes several convenient functions that help users 
manipulate data easily. The UrSpace tool is focused on 
developing useful data manipulation mechanisms and 
efficient data transfer methods in a multilingual interface. 
Overall, the UrSpace tool offers users who are not familiar 
with command-line operations a more approachable 
alternative. 

3.1 UrSpace Features 
The UrSpace tool is a multi-function user interface. It 

is mainly composed of several Java packages and Jargon 
APIs. The Java Jargon APIs released by the iRODS team 
contain several data manipulation functions such as file I/O 
access, GSI authentication modules and metadata 
operations. This interface itself was designed using the Java 
Swing Library. As Figure 2 shows, the DARB team uses 
the Jargon APIs to complete basic data manipulation tasks, 
such as data uploading, downloading, metadata editing, and 
MD5 check sum verification. The Java multi-thread library 
is also used to design the “multiple tasks” processing 
function, and the Java security module is used to develop a 
file encryption mechanism. 

UrSpace is dynamicly updated software with a steady 
flow of frequent updates. In order to ensure users have 
access to the latest version, UrSpace comes equipped with 



iRODS User Group Meeting 2010 55 

on-line software renew option. This function downloads 
and installs the latest UrSpace updates from the DARB 
website. 

Figure 2: UrSpace Tool Layout 

The Scheduler depicted in Figure 3 lets users set their 
own update schedule, in order to ensure updates do not 
interfere with personal workload. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: UrSpace Scheduler 

3.2 UrSpace Components 
In addition to providing some common data 

management functions, the UrSpace tool also contains 
various user-friendly features. These designs are made up 
of several different data manipulation components that are 
able to help users manage their digital archives more easily. 
As Figure 4 shows, the UrSpace tool has the following 
components: 
‧Data manipulation – The UrSpace tool supports 

several basic data manipulation functions, including adding 
common folders, deleting recursive files, and a data viewer 
function. Users are able to rename their files or directories 
with multilingual words. UrSpace can also display basic 
file information such as file size and the number of files in 
a folder.  

 

 

Figure 4: UrSpace Components 

‧Data transferring –The UrSpace tool supports 
multiple simultaneous data transfers. Users are able to 
execute several different tasks to upload and download data 
simultaneously. Moreover, the DARB team designed a 
mechanism to pause and resume data transfers. This 
mechanism permits users to suspend their data transfers 
temporarily. 
‧Data encryption – UrSpace supports the Data 

Encryption Standard (DES) file encryption. Users can 
encrypt their digital archives and upload them to the 
iRODS system. Currently, users are able to download files 
and decrypt them to a local disk with the UrSpace tool.  
‧Data search – Since the UrSpace tool has a built-in 

search assistant, users can use file names to search digital 
archives stored in the iRODS system. The search assistant 
gives users exact search results including file names, file 
routes, and file size.  
‧Metadata editing – The iRODS system allows 

users to register digital archive metadata in an iCAT 
(iRODS Catalog). Thus, UrSpace provides users with a 
metadata editing assistant. This assistant lets users browse, 
add and modify metadata on-line.  

4. The Sync Package 
The Sync Package provides users with another option 

for managing their digital archives. It is true that the 
UrSpace tool includes many data manipulation functions 
that help users preserve their data more conveniently. 
However, the Sync Package utility is focused more on 
developing the automatic data synchronization and efficient 
data preservation methods. According to user surveys, 
many users have several very specific needs. For example, 
some users need to mass upload large digital archives all at 
one time, while others would like their archives to upload 
and backup data automatically. Furthermore, some users 
need detailed data transfer logs.  

In order to meet these needs, the Sync Package was 
developed. In order to help with mass uploading large 



56  Proceedings 

digital archives, the package uses parallel I/O techniques to 
improve data transfer speeds. Moreover, users can operate 
the Sync Package in coordination with the OS scheduler to 
synchronize data automatically. The package also makes 
use of an e-mail dispatcher program that is able to send 
data synchronization records to users via e-mail. Lastly, the 
sync package includes file encryption and UTF8 encoding 
conversion. As a result, the Sync Package gives users 
another way to manage digital archives more efficiently.  

 
4.1 Sync Package Workflows 

Figure 5 below demonstrates how the Sync Package 
implements the helpful features mentioned above. Overall, 
the process is fairly straightforward. After first setting the 
iRODS user environment, users should open the main batch 
file and enter in the data route for the local and remote 
sites, and then their e-mail address. Now, users may 
execute the main batch file, and the digital archives will 
either be uploaded to the iRODS system or downloaded to 
a local disk space. Users may also integrate this package 
into an OS scheduling tool so that data backup is handled 
automatically. 

 After executing the batch file, the International 
Language Transform Service will convert the digital 
archive file names into UTF8 encoding. Depending on the 
user’s needs, the package will either encrypt or decrypt 
archives, and then upload or download the assigned task. A 
data record generator records this process as a log file, 
which is then sent to the user’s mailbox.  

 
 
 
 
 
 
 

 
 

 
 
 

Figure 5 Workflows of the Sync Package 

4.2 International Language Support 
In order to assist multilingual users, the Sync Package 

comes equipped with an international language encoding 
converter. While Taiwan uses traditional Chinese 
characters, users sometimes label files with Japanese or 
simplified Chinese characters. In general, multilingual 
applications convert language text that originated from 
different sources into UTF8 encoding. However, the Sync 
Package operates using a command-line, which does not 
support UTF8 encoding on the Windows operating system. 
Furthermore, iRODS i-Commands do not provide UTF8 

encoding conversion. Thus, an international language 
encoding converter is needed.  

Because iRODS i-Commands are at the core of the 
Sync Package, the international language encoding 
converter was embedded within the iRODS i-Command 
code. The converter contains several different encoding 
mapping tables, including “Big5”, “GBK” and “Shift-JIS”. 
Also, the Big5 table was extended to support Japanese and 
simplified Chinese characters, so that users can manipulate 
different language on the traditional Chinese Windows 
operating system. As Figure 6 shows, when users upload 
data to the iRODS system, the converter first detects the 
OS language setting automatically, and selects a suitable 
encoding mode. It then converts the files into UTF8, and 
records the value of the file name into the database 
management system. In the case where users download 
data to their local sites, the converter inverts the value of 
the file names with UTF8 encoding from the database to 
the encoding format of their local OS language setting. 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
Figure 6 The Workflows of the UTF8 Converter 
 
 

4.3 Parallel File Encryption 
In regards to encryption, the iRODS system uses a GSI 

security mechanism and constructs a secure data-
transferring tunnel. However, the iRODS system does not 
have a file encryption mechanism, and thus important 
information from digital archives is vulnerable to theft. In 
order to protect user data, file encryption was incorporated 
into the Sync Package. In the beginning, we used a simple 
symmetric encryption method, called the Data Encryption 
Standard (DES).  

The Sync Package’s DES model is the same as the one 
used within the UrSpace tool, and the DES algorithm is 
suitable for working in parallel. We implement the DES 
algorithm in Electronic Codebook (ECB) mode and use the 
OpenMP API to upgrade the encryption’s performance on 
multi-core CPUs.  



iRODS User Group Meeting 2010 57 

 
 
 
 
 
 
 
 
 
 
 

Figure 7 Parallel DES Encryption 

 
As Figure 7 shows, initially, a file is composed of 

several 8 bytes blocks, and each block is encrypted in 
parallel. Then, we follow RFC 1423 padding method to 
affix padding to the encrypted file. Users simply need to fill 
in their file-encryption password in the main batch file, and 
then the package encrypts or decrypts their data.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Performance of the Parallel DES encryption 

 
Figure 8 demonstrates that, compared with sequen–tial 

DES, parallel DES performs on average up to 30% faster 
on an Intel Duo-Core 3.0GHz CPU.  

5. The Monitoring System 
The SIMS monitoring system is critical for detecting 

system problems within iRODS instantly, in order to ensure 
data loss from disasters is minimal. Developed by the 
DARB team, SIMS is designed to monitor iRODS as well 
as the database management system and server operations. 
After surveying several options, the DARB team settled on 
Nagios [6] for monitoring distributed environments, largely 
because it offers several kinds of distributed data 
management mechanisms. Unfortunately, Nagios does not 
inherently support the iRODS system, and only provides 
notification via e-mail. Consequently, the team extended 
the use of the Nagios monitoring service to monitor the 
iRODS system. Here, it is important to note that the SIMS 
monitoring system works independently of the iRODS 

system. SIMS records the activities of the server, database, 
and storage system and then notifies system administrators 
when an error occurs in the following ways.   

 
5.1 The SIMS Parser 

Each iRODS system records its activities in a log file, 
which keeps track of system processes and error messages. 
These messages help system administrators troubleshoot 
and trace problems when errors occur. However, these 
messages are not always necessary, and thus a parser tool is 
used to parse messages and identify important 
communications. For archival purposes, a MySQL database 
was selected to store records. Overall, the parser helps 
system administrators receive important messages from a 
large number of system activities.  

 
5.2 SIMS Notification System 

In addition to observing system activities, the 
monitoring system is supposed to notify system 
administrators as soon as possible when a system gets into 
trouble. As mentioned previously, SIMS generally notifies 
system administrators via e-mail or instant message when 
receiving an error message. However, for different urgent 
levels of error messages, the notification mechanisms 
should not be the same. SIMS utilizes a heartbeat mode to 
detect if the iRODS system is up and running. In the event 
that the system is down, SIMS dispatches an urgent 
message to the system administrators’ cell phone. In 
addition to serious error messages, system administrators 
are still able to receive error messages from e-mail or 
instant message.  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 9 SIMS Notification System 

 

6. Conclusions 
Our everyday lives are surrounded by digital data – 

nearly everything we watch, hear, or read is digital. As the 
sheer volume of this data continues to grow, users will 
increasingly encounter problems with storage capacity, data 
authentication, data integrity, and metadata management. 
The iRODS system contains several optimized data 
management mechanisms that address these issues and help 



58  Proceedings 

users manage digital archives flexibly. While iRODS has 
its disadvantages, namely the lack of support for UTF8 
encoding and file encryption in i-Commands and the 
absence of a good Jargon API-based multi-function user 
interface for Chinese, these problems are ameliorated by 
the inclusion of the UrSpace tool and Sync Package 
developed by the DARB team. Furthermore, the DARB 
team will continue to develop these tools, with an emphasis 
on data management, stability and security.  

7. References 
[1] Berman, F. “Got data? A guide to data preservation in the 
information age”, Communications of ACM, Vol. 5112 pp.50-6, 
2008.  
[2] Gantz, J., Chute, C., Mafrediz, Al., Minton, S., Reinsel, D., 
Schlichting, W., Toncheva, A., “The Diverse and Exploding 
Digital Universe: An Updated Forecast of Worldwide Information 
Growth through 2011”, white paper, International Data 
Cooperation, Framingham, MA,2008.  
[3] TELDAP Website: http://www.teldap.tw/en/ 
[4] The iRODS Website: http://www.irods.org  
[5] DARB Website: http://rempte-backup.teldap.tw 
[6] Nagios Website: http://www.nagios.org 
[7] Anjay Ghemawat, Howard Gobioff, and Shun-Tak Leung , 
“The google file system”, 19th ACM Symposium on Operating 
Systems Principles, 2003.  
[8] The Hadoop website: http:// hadoop.apache.org/  
[9] Davis WebDAV:https://projects.arcs.org.au/trac/davis/wiki 
 



iRODS User Group Meeting 2010 59 

A GridFTP Interface for iRODS 
Shunde Zhang (shunde.zhang@arcs.org.au) 

The Australian Research Collaboration Service (ARCS) 
 

Abstract 
This paper describes the design and implementation of 

a GridFTP interface for iRODS, the Integrated Rule-
Oriented Data System. Users of the previous Data Intensive 
Cyber Environments Center (DICE Center) Storage 
Resource Broker (SRB) may know that there is a GridFTP 
interface for SRB, written in C as a DSI plugin for the 
Globus GridFTP server. However, there is no such plugin 
on Globus GridFTP for iRODS yet. The implementation of 
this GridFTP interface for iRODS is to provide an OS-
independent and standalone solution that doesn’t rely on 
Globus but is compatible with existing Globus clients. 

1. Introduction 
GridFTP is the de facto standard protocol for data 

transfer in the grid world. It is based on the traditional FTP 
protocol with enhanced features for better performance and 
reliable transfer. Our implementation is a standalone Java-
based GridFTP server with Jargon to connect to iRODS. It 
is self-contained and doesn’t require the installation of 
Globus, which makes it easier to install and run. 

2. Features 
The current version of this interface mainly follows the 

specification of GridFTP version 1, and 51 GridFTP 
commands have been implemented. The main features are 
listed below. 
2.1. Parallel Transfer 

In GridFTP version 1, data always flows from the 
source to the destination. When uploading a file (STOR), it 
has to be in passive mode (PASV followed by STOR), 
where the server listens on a port waiting for the client to 
open multiple connections to it; then the client starts 
sending data. While doing a download (RETR), it has to be 
in active mode (PORT, OPTS parallelism, then RETR). In 
this mode, the client listens on a port and the server opens a 
number of connections to the client, where the number is 
specified in the OPTS parallelism command. Then data 
flows from the server to the client. 

The scenario we face is data going from a GridFTP 
client to a GridFTP server, and then to an iRODS server, or 
vise versa. We assume that the GridFTP server and the 
iRODS server are on the same VM/machine, or in the same 
local network with a fast network connection, while the 
GridFTP client and the GridFTP server are in different 
cities with a WAN connection, which is much slower than 
the GridFTP server to iRODS server connection. Therefore, 

the bottleneck is the lag between the GridFTP client and the 
GridFTP server. In this implementation, we use one 
connection between the GridFTP server and the iRODS 
server, and allow multiple connections between the 
GridFTP client and the GridFTP server. The iRODS 
protocol does support parallel transfers, but Jargon 
currently lacks support for that. However, our experiments 
show that the single connection doesn’t affect the whole 
transfer, based on our assumptions. 

2.2. File Operations 
Most basic file operations are implemented, including: 

creating a new folder (MKD), deleting a folder (RMD), file 
listing (LIST), listing only names (NLST), listing for 
machine process (MLST and MLSD), renaming a file 
(RNFR and RNTO), deleting a file (DELE), changing 
working directory (CWD), printing current directory 
(PWD), etc. 

2.3. Other Transfer Features 
Data channel authentication is supported to protect file 

contents during the transfer. In particular, DCAU A (self 
authentication) is used by default. It can be turned off by 
sending a “DCAU N” command. Disabling DCAU can 
produce better performance. 

Performance markers are sent back from the server in 
extended block mode to monitor the performance. They are 
also useful for keeping the control channel socket alive as 
they are sent every 5 seconds, so that the control channel 
socket will never timeout, even during large file transfers. 

2.4. Work in Progress 
UDT support is currently under development. UDT has 

been added to the latest GridFTP 5.0, and has proved to be 
faster than TCP transfer.  

3. Experiments 
A simple test of transferring twenty-one 320 Mb files 

(6.7G in total) from Hobart to Melbourne (using a 310 
Mbps connection) shows it performing well. 

 
Test Time 

Globus GridFTP 5 on disk (UDT, 2 FTP 
connections, 2 threads each) 

10.5 mins 

Globus GridFTP 5 on disk (TCP, 2 FTP 
connections, 2 threads each) 

15 mins 

Griffin to iRODS (TCP, 2 FTP 
connections, 2 threads each) 

14 mins 

iput 13 mins 



60  Proceedings 



iRODS User Group Meeting 2010 61 

 
 
 
 

 
 
 

 
 

3. iRODS Integration 
 



62  Proceedings 

 
Enhancing iRODS Integration:  Jargon and an Evolving iRODS Service Model  

 
Mike Conway 

Data Intensive Cyber Environments Center (DICE Center), University of North Carolina at Chapel Hill 
 

 
Abstract  

Jargon is a pure-Java API that encapsulates an XML 
protocol defined by the iRODS Data Grid.  Jargon allows 
integration with iRODS [1], and is evolving to provide new 
integration possibilities.  This paper describes planned 
enhancements to the Jargon API developed by Lucas 
Gilbert. 
 

Index Keyword Terms—Jargon, Java 

1. Introduction 
iRODS is described by its creators as a type of 

“adaptive middleware that provides a flexible, extensible, 
and customizable data management architecture [2].”  The 
iRODS system facilitates the creation of a distributed data 
grid across heterogeneous storage platforms.  iRODS 
manages communication, metadata, security, auditing, 
federation, and other vital aspects of a distributed data grid 
with a unique policy-based approach.  The iRODS system 
expresses data management policies as rules, which are 
high-level work-flows.  These rules are composed of 
micro-services, which are small modules that perform data 
grid operations of various types [3]. 

Jargon, originally developed by Lucas Gilbert, is a 
pure Java API that allows thin-client connectivity to the 
iRODS Data Grid.  Jargon handles low-level 
communication with iRODS using a native XML protocol.  
This protocol describes the sending of commands and data 
from a network client, as well as the receiving of status and 
data from the iRODS system [4].  Currently, Jargon is used 
to integrate a diverse set of custom applications and 
frameworks with iRODS. 

As the number of grid-enabled applications grows, and 
as distributed systems evolve, so should the Jargon API.   
Web services using SOAP and REST are now common [5]. 
Messaging middleware, workflow tools, custom Java 
applications written on top of the Jargon API, and custom 
applications written using dynamic scripting languages are 
anticipated patterns of Jargon usage.  By adhering to open 
standards and development practices, Jargon will become a 
useful tool, extending iRODS functionality to a wide array 
of audiences. 

2. Recent Jargon Developments  
Jargon is receiving new attention as community 

demand has grown.  Jargon is actively used, therefore, 
efforts to update Jargon are proceeding carefully.  Recent 
efforts include updating the code base to current standards, 
introducing unit testing, a large number of bug fixes, and 
refactoring activities.   

3. Assessing Jargon 
The most recent Jargon development has been done 

from the perspective of a developer who had an 
intermediate knowledge of iRODS, and no prior experience 
with the Jargon Java API.  The experience provided 
valuable insights that have influenced Jargon development 
plans. These insights, and the resulting design choices, are 
the subject of this paper. 

First, it must be said that the current Jargon does a very 
good job of navigating the iRODS XML Protocol. There 
are a myriad number of details that must be handled, and 
many of the difficult problems with low-level iRODS 
communication were solved by Lucas Gilbert in the initial 
versions of Jargon.   The utility of the existing Jargon code 
is an asset that will enable the future evolution. 

A primary issue is that Jargon is difficult to use 
without in-depth prior knowledge.  Much of this is due to 
the complexity of the problems that iRODS addresses.  
Even so, Jargon exposes too many of the low-level details 
of iRODS in the public API. 

Over time, Jargon has lost track of current best 
practices.  Examples include the 'hand-rolled' nature of 
logging in Jargon, the lack of unit testing and measured 
code coverage, and the lack of a build and dependency 
management system such as Maven [7].  Many Jargon 
functions are now better supported in mature open-source 
libraries. One example is the Jargon support for HTTP file 
systems, which is significantly less capable than the 
Apache HTTP Client library [8]. 

Jargon has evolved to a point where refactoring is 
necessary.  Small steps have already been taken, and will 
increase as releases proceed. This refactoring and 
enhancement will produce a set of libraries and capabilities 
to achieve Jargon's goals. 



iRODS User Group Meeting 2010 63 

4. Jargon goals 
4.1. Higher Level API 

A primary goal in designing a follow-on version of 
Jargon will be to more effectively hide low-level details 
from API users.  Only a few packages for domain objects 
and services should be presented to users as the public API, 
and there should only be one route to accomplish a task.  
This means that any reference to the iRODS XML protocol, 
or any semantics about connections or thread-safety should 
be hidden.  The ideal would be a service level API, and 
interaction using familiar POJO's to represent domain data 
and actions.  The strategy should be to leverage the existing 
Jargon code as much as possible, as there is a significant 
accumulation of real-world experience reflected in the 
code.   

 
4.2. Enabling Familiar Development Practices 

One important 'target audience' for Jargon will be a 
developer in another domain who is not intimately familiar 
with iRODS.  This will likely be a developer who is used to 
developing web-facing or web service applications using 
existing best practices.  

These practices should be reflected in the code, 
including: 

 
• An “inversion of control” [8] pattern and 

development using the de-facto standard Spring 
container [9].   

• The use of “POJO's” (Plain-Old-Java-Objects) 
[10]. 

• Facilities to enable test-driven development. 
• Use of common build management practices, 

familiar libraries for logging, and other common 
practices. 

 
4.3. Providing an Out-of-the-box Administrative and 
Archivist' Interface 

iRODS has a large suite of tools, and a well-defined 
low-level interface.  Like the Unix shell, icommands 
provide a knowledgeable user with a quick path to desired 
functionality [11], but can present some difficulty to 
occasional users.  As the user base grows in size and 
diversity, it cannot be assumed that all users of iRODS will 
want to work with their data grid in this manner.  It has 
become a common expectation that there will be web-based 
tools to interact with middleware platforms, including 
iRODS.  A new, out-of-the-box administrative and 
archivist's interface is being developed on top of Jargon.  
The working name of this facility is “Jargon-Lingo”.  At 
the time of this writing, a full-stack working prototype has 
been developed.  

Figure 1 - Jargon web administrative interface 

 
4.4 Enabling iRODS Integration 

iRODS itself has many facilities for integration, 
including a driver architecture that allows many different 
storage types, and the ability to integrate databases and data 
streams into the grid. Jargon will provide an even richer 
integration environment at multiple levels:  

 
• Java API level integration utilizing Jargon core 

libraries directly in custom applications.  An 
example is the PoDRI project at UNC, which is 
integrating iRODS with DuraSpace using the 
Akubra API [12]. 

• Integration with dynamic scripting languages 
leveraging JVM dynamic language capabilities 
[13]. 

• Service integration with REST and SOAP 
interfaces on top of Jargon.  An example is the 
integration of iRODS functionality with the 
Islandora project [14], where PHP scripts could 
act on the iRODS Data Grid using a service API. 

• Integration of iRODS services in emerging cloud 
computing frameworks, such as jclouds [15]. 

 
In addition to the proposed Administrative and 

Archivist's interface, there will be a large number of custom 
interfaces for specific purposes.  An example of this is an 
ongoing project to integrate the Islandora [11] Drupal 
module with iRODS, providing a simple, clean interface for 
many audiences. 

5. Proposed Jargon Architecture 
The following diagram illustrates the current Jargon design 
model, and reflects the above stated observations and goals.  
The remainder of this paper will discuss the properties of 
the proposed technology stack.  



64  Proceedings 

Figure 2 -Proposed Jargon Architecture 

Jargon will evolve into a layered architecture, providing a 
clean separation of concerns, easier extension, and more 
effective testing through small, mockable units.  Jargon will 
also move forward with the goal of effective test coverage 
at each level, providing a dependable toolkit as iRODS 
versions progress. 
 
5.1. jargon.core.* 

At the base of the API are the jargon.core libraries.  
Jargon, as it currently exists, will be transformed over time 
to become part of the low-level facilities in jargon.core, and 
this API will be made invisible to public users.  Jargon 
refactoring activities have already begun, and will continue 
with the jargon.core model in mind. 

Networking and low-level protocol handling will be 
encapsulated at this level, and this should enable easier 
optimization and tuning while shielding users from API 
changes.    The development of a test suite dedicated to 
exercising the full iRODS XML at this level protocol will 
be of great assistance in validating Jargon-based 
applications as successive iRODS versions are developed. 

The primary entry point into the jargon.core 
functionality will be an iRODSProtocol object that 
encapsulates the raw network connection to iRODS, as well 
as the passing to and receiving of messages from the 
iRODS agent.  Also, at this API level, the Jargon prototype 
includes new facilities for creating and keeping connections 
such that pooling and caching strategies can be plugged in.  
No code above the base jargon.core library will access the 
network connections to iRODS, and will only deal with 
XML messages. 

 
5.2. jargon.core Mid-level Services 

Above the infrastructure that handles connections to 
iRODS will be a set of mid level services.  This 
intermediate layer will represent the major types of 

interactions that a client may have with iRODS.  The 
jargon.core mid-level services are not a part of the public 
API, but do define common capabilities that can be 
combined by higher level services.  Service will include: 

 
• General Query Service – Provides a JDBC like 

interface to submit SQL-like queries and receive 
results resembling a JDBC ResultSet. The requests 
are for pre-defined columns using pre-defined 
relationships, and mirror the capabilities of the 
“iquest” icommand. 

• Simple Query Service – Executes specific SQL 
statements permitted by iRODS and receives 
results resembling a JDBC ResultSet.  This is 
somewhat like General Query, however, it can be 
used for more complex queries.  Simple Query 
requires permitted SQL to be defined on the 
iRODS Server. Simple Query services can be used 
to optimize certain Jargon operations as the need 
arises. 

• Rule Service – Executes rules on iRODS and 
return results.  A philosophy in Jargon 
development is to use native iRODS functionality, 
as close to the data as possible, to deliver services 
to clients. 

• Execution Service – Executes arbitrary scripts on 
an iRODS server from a known location. 

• XML Protocol Actions – Executes actions, such as 
updates, and file operations using specific 
methods in the iRODS XML Protocol. 

 
5.3. Connection Handling 

The current Jargon code base attempts to share a 
connection between multiple threads, but since those 
threads access one common socket, the communications 
occur in a serialized fashion.    One side effect of the 
current connection scheme in Jargon is that the 
“Command” class is forced to contain all the Jargon 
functionality in one place, with various levels of 
synchronization. Testing with the current arrangement, 
using VisualVM [16], reveals the following pattern for 
multiple threads sharing a connection in the current Jargon: 
 

 

Figure 3 – Multiple threads sharing a connection 



iRODS User Group Meeting 2010 65 

As you can see, even though multiple threads are 
accessing the connection, the actual communication with 
iRODS is single-threaded.  The complications this multi-
threaded connection access causes are clear, and the 
benefits of such sharing is doubtful.  The relative efficiency 
of a connection per thread versus attempting to share a 
connection between multiple threads is an important area 
for study and testing, especially with connection pooling 
capability added to Jargon. 
 
5.4. Access Objects 

Jargon development should provide a familiar 
experience to Java mid-tier developers.  One way to 
achieve that goal will be to utilize familiar design patterns.  
An added benefit will be that such design patterns have 
been battle-tested in many application deployments. 

A primary design pattern for data enabled applications 
is the DAO Pattern [17].   As Sun describes this pattern in 
the J2EE Patterns Catalog: 

“Use a Data Access Object (DAO) to abstract and 
encapsulate all access to the data source. The DAO 
manages the connection with the data source to obtain and 
store data.” 

The Jargon prototype uses an adaptation of the DAO 
pattern that is defined as a Jargon “Access Object”.  The 
Access Object framework will: 

 
• Allow creation of Access Objects from a factory. 
• Manage connection sharing such that multiple 

Access Objects in one thread may automatically 
utilize the same connection. 

• Utilize jargon.core mid-tier services to accomplish 
tasks, and shield API users from details of each 
Access Object method. 

• Use POJO domain objects for parameters and 
return values. 

 
The concept of an “Access Object” in Jargon is 

inspired by a very common pattern of development using 
DAO objects and POJO domain objects with Hibernate 
[18].  The handling of session in Hibernate DAO's via a 
ThreadLocal Session object provides an attractive model 
for a cleaner codebase, treating an iRODS connection in a 
manner similar to a familiar JDBC connection to a 
database.  

Jargon Access Objects are the lowest level of publicly 
usable API.  Access Objects can be combined into higher 
level services, both within the Jargon API, and externally, 
by developers wishing to create new functionality.  The 
following code snippet shows a User access object that 
utilizes a mid-level General Query service, and returns a 
User domain object. 

 
public User findById(final String userId) throws   
JargonException,DataNotFoundException { 
 
  iRODSGenQueryExecutorImpl iRODSGenQueryExecutorImpl 
        = new iRODSGenQueryExecutorImpl( 
 
  this.getiRODSProtocol()); 
  StringBuilder userQuery = new StringBuilder(); 
 
  userQuery.append(buildUserSelects()); 
  userQuery.append(" where "); 
        
  userQuery.append(RodsGenQueryEnum.COL_USER_ID 
       .getName); 
  userQuery.append(" = '"); 
  userQuery.append(userId); 
  userQuery.append("'"); 
 
  ... 
 
  iRODSQuery iRODSQuery 
  iRODSQuery.instance(userQueryString, 500, 0); 
  iRODSQueryResultSet resultSet; 
  resultSet = iRODSGenQueryExecutorImpl 
         .executeiRODSQuery(iRODSQuery,0); 
   
  ... 
 
   List<String> row = resultSet.getResults().get(0); 
   User user = buildUserFromResultSet(row); 
 
  return user; 
 
} 
 

This example Access Object illustrates a clean, higher-
level object upon which services may be built.  It is 
important to note that connection handling in this example 
is transparent, that no low-level protocol operations are 
visible at this layer, and that the operations of this method 
are easily tested with mock objects.  This example also 
illustrates how Access Objects like this User Access Object 
make use of mid-level services, in this case a General 
Query Service.  That General Query Service, in turn, relies 
on low-level jargon.core packages to turn the query into an 
XML protocol request, communicate the request to iRODS, 
and turn the XML protocol response from iRODS into a 
manageable object that resembles a familiar JDBC 
ResultSet for processing by the Access Object.  
Importantly, the caller of this Access Object does not see 
the underlying ResultSet, rather, the findUserById() 
method returns a POJO User object.   

 
5.5 A Jargon Service Model 

High-level Jargon services can be easily exposed as 
SOAP and REST using commodity open-source 
middleware such as Spring Web Services [19], Apache 
Axis [20], and Metro [21].  As lower level services are 



66  Proceedings 

 developed and tested, consideration will need to be given 
to the design of a REST/SOAP service model.  This service 
model will allow iRODS to interact with a large number of 
external systems, and will be developed in the jargon.lingo 
libraries.  The development of a service model is beyond 
the scope of this document, however, the Spring framework 
that is powering the web administrative GUI prototype 
would be a potential provider of REST-ful services, and 
would likely will not present a high technical hurdle.  The 
Fedora Repository service model provides an excellent 
model for similar iRODS services [22]. 

Prototypes under development validate the basic 
approach outlined in this document, and it can be said with 
a level of confidence that a Jargon-based service layer 
providing both SOAP and REST-ful access to iRODS is 
quite feasible.  Beyond the remaining technical hurdles, 
much consideration needs to be given to the use-cases, 
security model, and implications of such a facility. 

6. Conclusion 
This paper outlines some of the high-level design 

goals, and a proposed architecture for future Jargon 
development.  At the writing of this paper, a working 
prototype does exist, and is being used for validation and 
experimentation.  While still a work in progress, the 
prototype does provide valuable guidance for near-term 
Jargon refactoring.  Jargon development will be guided by 
careful testing, community input, and current best practices. 

Jargon, and the integration possibilities that it will 
enable, has the goal of making the iRODS Data Grid as 
familiar to developers as a database or messaging 
middleware platform, and a dependable tool to help 
manage the expanding need for secure sharing and 
preservation of data. 

7. References 
1. Jargon, A Java client API for the DataGrid, 
https://www.iRODS.org/index.php/Jargon 
2. iRODS: integrated Rule Oriented Data System White Paper 
Data Intensive Cyber Environments Group University of North 
Carolina at Chapel Hill University of California at San Diego 
September 2008 Rajasekar, A., M. Wan, R. Moore, W. Schroeder  
3. iRODS: integrated Rule-based Data System Rajasekar, A., M. 
Wan, R. Moore, W. Schroeder  
4. Packing/Unpacking Scheme Used in iRODS Mike Wan, DICE 
5. Restful web services vs." big"'web services: making the right 
architectural decision http://www2008.org/papers/pdf/p805-
pautassoA.pdf [PDF] 
C Pautasso, O Zimmermann, F Leymann - 2008 – portal.acm.org 
6. Apache Maven, http://maven.apache.org/ 
7. Apache HTTP Client , http://hc.apache.org/httpclient-3.x 
8. Inversion of control containers and the dependency injection 
pattern,  http://www.itu.dk/courses/VOP/E2006/8_injection.pdf 
[PDF], M Fowler - Actualizado el – itu.dk 
9. Spring Framework, http://www.springsource.org/ 
10. Christopher Richardson, “What is POJO Programming?”, Java 
Developer's Journal,  http://java.sys-con.com/node/180374 
11. iRODS icommands, 
https://www.iRODS.org/index.php/icommands 
12. Akubra Project, http://www.fedora-
commons.org/confluence/display/AKUBRA/Akubra+Project 
13. New JDK 7 Feature: Support for Dynamically Typed Languages 
in the Java Virtual Machine, 
http://java.sun.com/developer/technicalArticles/DynTypeLang/ 
14. Islandora Project, http://islandora.ca/ 
15. jclouds framework, http://code.google.com/p/jclouds/ 
16. VisualVM, 
http://java.sun.com/javase/6/docs/technotes/guides/visualvm/ 
17. DAO Pattern, 
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAcce
ssObject.html 
18. Generic Data Access Objects, 
https://www.hibernate.org/328.html 
19. Spring Web Services, http://static.springsource.org/spring-
ws/sites/1.5/ 
20. Apache Axis, http://ws.apache.org/axis/ 
21. Metro Web Services Framework, https://metro.dev.java.net/ 
22. Fedora Service Framework, http://fedora-
commons.org/confluence/display/FCR30/Service+Framework



iRODS User Group Meeting 2010 67 

 
 
 
 

 
 
 

 
 

Appendices 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



68  Proceedings 

 



iRODS User Group Meeting 2010 69 

Appendix 1: Agenda of the iRODS User Group Meeting 2010 
 

iRODS User Meeting Agenda 
March 24 – 26, 2010 at Renaissance Computing Institute, UNC, Chapel Hill NC 

Wednesday, March 24 
Session I (9:00- 10:30) 

• Introduction to iRODS (30 min) Moore 
• iRODS Version 2.3 (30 min) Schroeder  
• Introduction to Micro-services (30 min) Moore 

Break (30 min) 
 
Session II (11:00-12:30) 

• Intro to Policies  (30 min) Moore 
• Policy session, how to build a set of policies for your collection (1 hour) Rajasekar 

Lunch (12:30 – 1:30) 
 
Session III (1:30- 3:00) 

• Micro-service session, how to write a micro-service (1 hour) Wan 
• Advanced iCommands (30 min) Wan 

Break (30 min) 
 
Session IV (3:30-5:00) 

• iCAT interactions (1 hour) Schroeder / Rajasekar 
• Questions (30 min) 

Thursday, March 25 
Session V (9:00-10:30) 

• User Application Sessions, How Communities Have Applied iRODS  
o High Availability iRODS System (HAIRS) Yutaka Kawai (KEK, Japan), Adil Hasan 

(University of Liverpool) (teleconference) 
o iRODS at CC-IN2P3 Jean-Yves Nief, Pascal Calvat, Yonny Cardenas, Pierre-Yves 

Jallud, Thomas Kachelhoffer (CC-IN2P3, Lyon, France)  
o Using iRODS to Preserve and Publish a Dataverse Archive, Mason Chua (Odum 

Institute, UNC), Antoine de Torcy (DICE, UNC), Jewel H. Ward (SILS, UNC), 
Jonathan Crabtree (Odum Institute, UNC) 

o Distributed Data Sharing with PetaShare for Collaborative Research, PetaShare 
Team @LSU (poster) 

o University of North Carolina Information Technology Services, William Schultz 
(UNC) (poster) 

Break (30 Min) 



70  Proceedings 

Thursday (cont.) 
Session VI (11:00-12:30) 

o The ARCS Data Fabric, Shunde Zhang, Florian Goessmann, Pauline Mak (ARCS) 
(poster) 

o A Service-Oriented Interface to the iRODS Data Grid, Nicola Venuti, Francesco 
Locunto (NICE), Michael Conway, Leesa Brieger (DICE RENCI UNC) 

o iExplore for iRODS Distributed Data Management, Bing Zhu (DICE UCSD) 
o A GridFTP Interface for iRODS, Shunde Zhang (ARCS)  

Lunch (12:30-1:30) 

Session VII (1:30-3:00) 
• Clients for iRODS 

o The Development of Digital Archives Management Tools for iRODS, Tsung-Tai Yeh, 
Hsin-Wen Wei, Shin-Hao Liu (Academia Sinica, Taiwan), Pei-Chi Huang (Tsing Hua 
University, Taiwan), Tsan-sheng Hsu (Academia Sinica, Taiwan), Yen-Chiu Chen 
(Tsing Hua University, Taiwan)  

o Building a Trusted Distributed Archival Preservation Service with iRODS, Jewel H. 
Ward, Terrell G. Russell, and Alexandra Chassanoff (SILS, UNC)  (poster) 

o Conceptualizing Policy-Driven Repository Interoperability (PoDRI) Using iRODS and 
Fedora, David Pcolar (CDR, UNC), Daniel W. Davis (Cornell, DuraSpace), Bing Zhu 
(DICE UCSD), Alexandra Chassanoff (SILS, UNC), Chien-Yi Hou, Richard Marciano 
(SALT, UNC)  

o Community-Driven Development of Preservation Services, Richard Marciano (SALT, 
UNC), Chien-Yi Hou (SALT, UNC), Jennifer Ricker (NC State Library), Glen McAninch 
(KY Dept. Lib. & Archives), David Pcolar (CDR, UNC) et al. 

Break (30 min) 
Session VIII (3:30-5:00) 

o Enhancing iRODS Integration: Jargon and an Evolving iRODS Service Model Mike 
Conway (DICE, UNC)  

o Questions on user porting of clients 

Friday, March 26 
Session IX (9:00-10:30) 

• Prioritization of tasks (1 1/2 hour) Moore 
Break (30 min) 
 
Session X (11:00-12:30) 

• Question and Answers (1 1/2 hours) Moore 
Lunch (12:30 – 1:30) 

Session XI (1:30 – 3:00) 
• Integration Session, how to integrate your favorite workflow/client with iRODS (60 min) 

Conway 
• Data Intensive Cyberinfrastructure Foundation session, coordinating development across 

interested communities.  (30 minutes) Tooby



iRODS User Group Meeting 2010 71 

Appendix 2: iRODS Requested Features 
 

iRODS Requested Features  
Key: B = Bug  A = Completed    Number = No. of user group requests  

(0 indicates requests by users not present, etc.)    
B Add a Doxygen indexed version of iRODS source on the wiki for micro-services and helper functions. 

B Add object type to audit trail 
B Allow GSI authentication to non-ICAT-Enabled-Server without irodsUserName being set. 
 Automate Dicom metadata extraction from binary files. Find misextractdicom 

B Fix UDP on Solaris. 
B Implement FITS header parsing and metadata loading. Find msiextractfits 
B Issues with symbolic links on FUSE mounted directory - copy symbolic links when directory structure is 

ignored 
B Post link to VBrowser, links to Taverna and EGEE grid 
B Post on Wiki a list of the planned developments for Jargon. 
B Publish the complete iRODS network protocol.  
18 Admin interface to list all current connections and the associated irods users.  (keep with record of IP 

addresses) 
16 Set access controls on rules and micro-services. Currently on users, collections, resources, metadata. 
15 Editorial review of documentation 
15 Document all APIs 
15 icommand for checking ports (health check).  Jargon admin will do this 
15 icommands with tab completion 
15 Installation - check for firewall interaction (notification of presence, like a ping on each port). 
15 Links to Petashare, Urspace, Jux, 43 clients 
15 Script for checking/updating IP address (5 locations). 
15 Support transfer of multiple files using multiple I/O streams. Virtual ibun 
12 Add regular expressions to i-commands (wild cards).  
12 Use external identity management and external authentication 
11 Management of rules within iCAT to enable versioning. Distribution of rules to core.irb file at each server. 
11 Request for Shibboleth based authentication for new users (UNC) credential mapping / assign privilege 

according to Shibboleth role - TUCASI 
10 A more general mechanism to access external databases. Admin will define location and specify SQL, client 

will be able to provide arguments. Independent of ICAT. Need a way for the information provided, or saved, 
to be integrated into the iRODS framework.  

10 Add -P to irsync 
10 Support for accented letters (metadata and filenames) - Taiwan 
10 Support for dynamic IP address. 
9 Export audit trails from iCAT and truncate 
9 Have second notification list about upgrades that address vulnerabilities.  Set up an iRODS admin mailing list. 
9 irsync across physical resources to repair corruption - similar to irepl 
9 Support for Java-based micro-services. 
8 Multi-thread connection.   
8 Policy consensus development 



72  Proceedings 

iRODS Requested Features  
Key: B = Bug  A = Completed    Number = No. of user group requests  

(0 indicates requests by users not present, etc.)    
8 SHA-256 checksum, CRC checksum 
8 Support checksums in Jargon (before transfer),     iput -k 
7 Add ability for a project PI to create rodsuser accounts for project members.  Create accounts under 

groupadmin 
7 Control number of connections on servers (batch jobs) - connection pool 
7 Provide transaction based interaction with external workflow 
7 Restrict ability of ASSIGN to change user name, user role, user permissions.  
7 Support read-only view on selected columns in database 
7 Use defined SQL commands that can be invoked through a micro-service. 
7 Virtual ibun that concatenates files for transmission 
7 Automatic failover to a secondary iCAT 
6 Document the scheduling of rules in parallel, and use of delayed rules 
6 Restart rule engine 
6 Reload option for irodsctl script to behave like Apache reload 
6 Active directory integration with Kerberos, documentation - Chris Jordan 
6 Add ways to handle the comment fields for data, resources, users, metadata (icommand and micro-service) 

6 Collaborator analysis tool for iRODS community 
6 Create script for automating module creation. Provide default template for creating new Micro-service. 

Documentation  
6 iDisk for iRODS - iDrop. The iDisk area is on your computer, and reliably synchs to a remote storage system 

periodically.  
6 Implement queuing/client-backoff within Jargon 
6 Manage list of connecting IP addresses to track denial of service 
6 Manage queue of requests.  Want to control maximum number of executing requests. 
6 Metadata analysis tools for federated data grids 
6 National dropbox. This is similar to iDisk, and provides a way to back up or share your files through a drag 

and drop interface.  
6 Project analysis tools for domains using iRODS 
5 Add AVU metadata to resource groups.  
5 Create a Windows only environment, using SqlServer  
5 Integration of logging into Jargon 
5 Want to disable triggering of rules from a client by selected users 
4 Ensure end-to-end audit of data sharing policy for pulling data into a secure environment 
4 Federation of independent databases:  NC B-prepared / EPA / structured information resource drivers 

4 Integration with local metadata (schema), for remote database access 
4 Integration with VCL policies - policy engine controlled by metadata, which constructs environment 

4 Need drivers for a wide variety of databases for resources 
4 Provide mechanism to synchronize rule bases across servers within a data grid. 
4 Provide versioning support for rules. 
4 Support a session shell in iRODS for iRODS comands, isession. Authenticate once. 
4 Support adaptable security policies (change level of access based on situation).   



iRODS User Group Meeting 2010 73 

iRODS Requested Features  
Key: B = Bug  A = Completed    Number = No. of user group requests  

(0 indicates requests by users not present, etc.)    
4 Support local policy enforcement on database access (de-identification) 
4 Support Perl-based Micro-services by including Perl interpreter in the Micro-service. 
3 Create a Windows only environment, using Postgres and GSI (both now run on Windows) 
3 List system generated metadata in iEXP 
2 Admin interface to rename a resource.  
2 Configure port numbers for data transfer.  Support alternate IP address. 
2 Driver for other types of databases for use by iCAT (DB2, SQLServer) 
2 Native encryption of files, probably through remote execution. Transforms on data. 
1 Add core.irb rule to check policy on iget. May want to return alternate version (redacted copy) of file.  

1 Are there CIM common information models for accessing databases? 
1 Automate creation of an account for new users.  Example is GSI based access.  Extend to LDAP/Kerberos 

1 Create a VM build for use of iRODS in tutorials. 
1 Decompress on the fly. 
1 iRODS server for memory cache, RAM disk 
1 Mechanism to test whether a community's client is compatible with iRODS protocol and version numbers 

1 Modify icommands to use the zoneID:internal ID instead of the file name or add GUID 
1 Provide a library of script-based micro-services 
1 Support compressed files on disk to minimize space. Could be done through a preProcForPut core.irb hook. 
1 Support ticket-based access to iRODS. 
1 When fail over to an alternate server, verify that the Rule engine will not have a conflict for a queued Micro-

service. Related to versioning of rules and micro-services. 
0 Create a VDT (Virtual Data Toolkit) version of iRODS. 
0 Create digital signing registration to be able to track origin of files. Given signature, find original copy. 

Related to definition of an AIP 
0 Create RDA interface to Sybase. 
0 Develop Fortran API. 
0 Develop Perl API. 
0 Extensions to Jargon for UDP transport. 
0 Improve webDAV caching of a working copy of a file correctly  
0 Improve webDAV caching of a working copy of a file correctly (external) 
0 Manage locks for collaborative editing (either on storage system, in metadata, or portal) - expensive 
0 Port iCAT to Sybase. 
0 Port SRB APIs on top of iRODS, will avoid having to rewrite many application scripts.  
0 Port SRB scommands onto iRODS (remap options) 
0 Support logical registration into iRODS. Ability to associate metadata with a name without requiring a file. 

Add an info file. 
0 Support token-based identification such as SecureID.  One-time passwords - offload to external authentication 

management 
0 Which types of databases need to be supported? 
  

 



74  Proceedings 

iRODS Requested Features  
Key: B = Bug  A = Completed    Number = No. of user group requests  

(0 indicates requests by users not present, etc.)    
 Completed Tasks 

A Add links to WebDav environment on iRODS wiki, provides drag and drop access to files across windows. 

A Command to force execution on another server. msiremoteexec 
A Consider use of Google Code repository and other shareware sites. Automate.  GitHub (Russell)  

A Create a collaboration environment for promoting development of iRODS. (done through DICF) 

A Create a Condor interface / port for iRODS (Stork) 
A For SRB to iRODS metadata migration, handle migration of SRB zones. How can multiple SRB zones be re-

federated within iRODS easily?  Limited scripts. 
A Hook for preProcForPut for medical applications. 
A icp between data grids (bug fixed) 
A Jargon parallel I/O 
A Mount a flash drive.  Treat as a mounted collection. 
A Option to restrict irods admin access to specific hostnames/IP addresses.  
A Provide mechanism to add rule base extensions to a remote rule base.  
A Recursive upload of directories - icommands  
A Save RDA request results for use in a session, want to pass result list to another Micro-service.  Put in a file. 
A Support mounting of a Webdav directory into iRODS. (done through DAVIS) 
A Support Python-based Micro-services by including Python interpreter in the Micro-service. Documentation 

A Support sequential transfers as one-hop, similar to parallel.  Done for iput. 
A Support Soft Links in iRODS (supported in 2.3) 
A When compile, verify that only changed files are recompiled. 

 
 
 



iRODS User Group Meeting 2010 75 

Appendix 3: iRODS Clients 
 

iRODS Clients 
Extending Interoperabililty  

 Client Developer Language 

1.  Akubra/iRODS DICE Jargon 
2.  Archive tools-NOAO Eric – NOAO  
3.  Big Board visualization / FUSE RENCI  
4.  C API Mike Wan DICE  C 
5.  C I/O library Wayne Schroeder DICE  C 
6.  Davis - WebDAV  ARCS Australia Jargon 
7.  DCAPE UNC  
8.  Dropbox / iDisk / iDrop Mike Conway Jargon 
9.  EnginFrame - Jargon NICE / RENCI Jargon 
10.  Fedora on Fuse IN2P3 France FUSE 
11.  Fedora/iRODS module ITS - UNC-CH, DICE Jargon 
12.  File-format-identifier GA Tech  
13.  FUSE IN2P3, DICE FUSE 
14.  FUSE optimization PetaShare LSU FUSE 
15.  GridFTP - Griffin ARCS Australia  
16.  iExplore Bing Zhu DICE  C++ 
17.  Islandora DICE Jargon 
18.  Jargon DICE Jargon 
19.  Jsaga IN2P3 France Jargon 
20.  JUX IN2P3 France Jargon 
21.  Kepler DICE Jargon 
22.  OpenDAP ARCS, Australia  
23.  Parrot Doug Thain  
24.  Pcommands PetaShare LSU  
25.  Peta Web browser PetaShare LSU  
26.  PetaFS (Fuse) PetaShare team  LSU  
27.  Petashell (Parrot) PetaShare LSU  
28.  PHP - DICE Bing Zhu, DICE   
29.  Pyrods - Python Jerome Fusillier Python 
30.  Resource Monitoring IN2P3  
31.  Saga KEK  
32.  Shibboleth King's College, London UK  
33.  Sync-package Academica Sinica, Taiwan  
34.  Taverna RENCI  
35.  URSpace  Teldap - Academica Sinica  
36.  VOSpace IVOA  

 



76  Proceedings 

 
iRODS Client Requests   
Admin interface  Jargon 
Chronopolis status interface NCAR  
Earth System Grid publisher NCAR  
icommands with tab completion  C 
iRULE designer Jerome Fusillier  
Perl load library   
Ruby   
WSDL web service  Jargon 
   
iRODS Micro-services    
Cheshire3 SHAMAN EU Python 
GridFTP Dresden  
Kepler   
MakeFlow  C 
 
 



iRODS User Group Meeting 2010 77 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 



78  Proceedings 

 
 
 
 
 
 

Information on iRODS 
 

iRODS Integrated Rule-Oriented Data System wiki irods.org  
Data Intensive Cyber Environments Center at UNC dice.unc.edu  
Data Intensive Cyberinfrastructure Foundation diceresearch.org  

 
 
 

Books on iRODS  
iRODS Primer: Integrated Rule-Oriented Data System 

Synthesis Lectures on Information Concepts, Retrieval, and Services 

Morgan & Claypool, 2010, 143 pages 
doi:10.2200/S00233ED1V01Y200912ICR012 

ISBN-10: 1608453332 
ISBN-13: 978-1608453337 

 
Abstract 

Policy-based data management enables the creation of community-specific collections. Every collection 
is created for a purpose. The purpose defines the set of properties that will be associated with the 
collection. The properties are enforced by management policies that control the execution of procedures 
that are applied whenever data are ingested or accessed. The procedures generate state information that 
defines the outcome of enforcing the management policy. The state information can be queried to validate 
assessment criteria and verify that the required collection properties have been conserved. The integrated 
Rule-Oriented Data System implements the data management framework required to support policy-
based data management. Policies are turned into computer actionable Rules. Procedures are composed 
from a Micro-service-oriented architecture. The result is a highly extensible and tunable system that can 
enforce management policies, automate administrative tasks, and periodically validate assessment 
criteria. 

 
Table of Contents: Introduction / Integrated Rule-Oriented Data System / iRODS Architecture / Rule-
Oriented Programming / The iRODS Rule System / iRODS Micro-services / Example Rules / Extending 
iRODS / Appendix A: iRODS Shell Commands / Appendix B: Rulegen Grammar / Appendix C: 
Exercises / Author Biographies 

 
 
 
 

Proceedings iRODS User Group Meeting 2010 
Data Intensive Cyberinfrastructure Foundation 

For a PDF of this Proceedings see diceresearch.org 
 


	iRODS_Proceedings_2010_COVER-4a-8X10-c
	Blank_Page_after_cover-8X10
	PROCEEDINGS_iRODS_2010-4a

