
iRODS@RENCI

Leesa Brieger, Jason Coposky, Vijay Dantuluri, Kevin Gamiel, Ray Idaszak,
Oleg Kapeljushnik, Nassib Nassar, Jason Reilly, Michael Stealey, Lisa Stillwell, Xiaoshu Wang

 irods@renci.org
Renaissance Computing Institute

University of North Carolina, Chapel Hill
{leesa}@renci.org

Abstract
Development and support of iRODS has expanded,

boosted by the launch of the new irods@renci team at
the Renaissance Computing Institute (RENCI), a
research unit of UNC Chapel Hill. RENCI is a center
for development and deployment of advanced cyber
technologies, and, in close collaboration with the Data
Intensive Cyber Environments (DICE) group, has now
dedicated resources to supporting and expanding iRODS
functionalities. Activities are spinning up and include
code hardening and widening the test coverage,
providing a collaborative development environment to
facilitate testing and community participation, improved
Windows support, additional drivers, support for a Java
rule engine, iDrop development, PHP and other API
support, along with microservice development for
specialized data grid deployment and community
support.

The irods@renci effort also serves to set us on the
path toward a commercial support model, in the style of
RedHat/Fedora, with regular releases of the iRODS
research code from the DICE group at 3-4 month
intervals and less frequent but more highly tested and
stable releases of iRODS-Enterprise (iRODS-E) from
RENCI at roughly 18-month intervals. The release of
the hardened code will allow us to create and customize
service level agreements to the demands of a user
community that reclaims some form of commercial and
sustainable support for this technology. This also puts
iRODS on the path toward very long-term sustainability.

Index Keyword Terms—iRODS, data grid, sustainable
software development, RedHat Fedora model,
community architecture, service level agreement

1. Introduction
The University of North Carolina's investment in

data management technology began when it welcomed
the first members of the DICE group to Chapel Hill in
August 2008, with joint appointments in RENCI, a
research unit of UNC Chapel Hill, and at the School of
Information and Library Science (SILS). This
investment has continued and grown as the DICE data
management technology has transitioned from the
Storage Resource Broker (SRB) to iRODS. In
particular, RENCI, a cyberinfrastructure development
center that is equipped to complement and expand DICE
support for iRODS, has now spun up a group,
irods@renci, with a strongly synergistic relationship to
the DICE group.

As RENCI moves into iRODS support and
development, the RENCI-DICE combination offers a
stronger response to user need. Starting out with
straightforward support for existing DICE initiatives,
irods@renci begins by offloading weighty support tasks
from the DICE group, while bringing iRODS expertise
up to speed in RENCI. As familiarity with the DICE
methods and the iRODS code base grow, the RENCI
development environment is pulled in to facilitate the
cross-group development collaboration and the
integration of community contributions. As
irods@renci takes its place alongside the DICE group,
collaboration between the two groups strengthens, and
ownership of some code components is placed with
RENCI. RENCI sustainable software development
practices are leveraged to bring hardening and
optimization more forcefully into the iRODS code.

Along with its development activities, RENCI is
also working to grow and support iRODS user
communities among its own shareholders. Supporting
those initiatives allows RENCI to move into more

general iRODS user support for other communities with
a better understanding of user issues.

Promoting and achieving long-term sustainability of
the iRODS technology and providing its users with the
assurance that support for the technology is solid and
will continue into the future are the primary goals of the
RENCI/UNC investment in iRODS. This RENCI-DICE
collaboration positions the iRODS community to be able
to expect greater levels of support and creates an
environment that supports funding models beyond the
traditional public funding for research code
development. New models based more on service level
agreements and quality of service requirements can
complement the basic research character of iRODS
development, as it has been funded, and move the
iRODS technology toward a more sustainable future and
its users toward a more solid support base.

2. Software Development at RENCI
2.1. Agile Development

The irods@renci group is organizing its activities
using an Agile development approach [1, 2], which is
incremental and iterative. Development cycles are
short, allowing planning and implementation to be
revisited often, building flexibility into the process and
providing the ability to adapt to changes in the technical
requirements, community requests, staff availability, etc.
Short-cycle collaboration across the cross-functional
irods@renci and DICE teams is the most natural way to
approach the multi-faceted development that goes into a
technology like iRODS.

 Figure 1. Agile Development [3]

In fact, the iRODS technology does not lend itself

to a waterfall model of planning, design,
implementation, and maintenance according to initial,
fixed specifications that do not change as development
progresses. iRODS has evolved according to a de facto

Agile methodology, driven as it is by the incoming
needs of community stakeholders. RENCI plans are to
somewhat formalize the DICE group's approach in order
to expand and reinforce procedures for code hardening,
collecting community input, prioritizing feature
requests, etc, all to support long-term sustainability.

2.2. Collaborative Development Environment

The collaborative development environment (CDE)
at RENCI provides a centralized virtual environment
that allows the trusted administrators and developers of
the iRODS project, as well as community contributors,
to collaborate on code development. It supports
activities such as committing and testing new
contributions in a coordinated fashion, tracking bugs
and feature requests throughout their life cycle,
documentation and reporting, and managing
dependencies and artifact support.

RENCI's software development approach is being
integrated into the DICE/iRODS support effort in a
manner that does not interrupt current development. Git
[4] repositories at RENCI now house the Jargon core,
iDrop, and Fedora projects, along with the PHP client
library. The Git version control system allows
decentralized revision tracking, facilitates branching and
merging, and is particularly suited to distributed, non-
linear development environment. In preparation for
future migration into Git, the iRODS trunk SVN
repository at UCSD is now automatically mirrored in
Git at RENCI. See Figure 2.

GForge [5], a web-based project management and
collaboration software suite, forms the basis for
RENCI's CDE. It provides a community-based
environment for source code management, project
hosting, access controls, messaging, reporting services,
and trackers that can link code changes to tasks or bugs.
RENCI is also using GForge for reporting and tracking
tasks in the iRODS support areas. RENCI's GForge
area is accessible at https://code.renci.org/gf/; projects
are at https://code.renci.org/gf/project/. Anonymous
checkouts are selectively enabled; it is recommended
that interested users request user accounts and project
access.

Hudson [6] provides the continuous integration (CI)
environment that RENCI has adopted to automate the
continuous builds and tests for iRODS server and
clients. Continuous integration allows new or modified
code to be integrated with an existing code repository
with quality control testing via automated builds for
integration error detection. Distributed builds are also
supported; jobs can be farmed out to slave build
machines. The GForge reporting plug-in couples
RENCI's GForge installation to the Hudson installation
using SOAP.

Hudson can be set to trigger builds based on new
code commits to a repository as well as on a periodic

build schedule. This means integration problems can be
better targeted, leading to incremental quality control
and to a more cohesive and rapid software development
process. This approach allows developers more easily
(and confidently) to integrate changes to the project and
users more easily to obtain a fresh build.

Figure 2. RENCI's Git mirror of the UCSD
 SVN iRODS repository.

Sonatype Nexus [7] is the Maven repository that

RENCI uses for managing software artifacts required for
development, deployment, and provisioning of Java
code. Jargon is now a Maven multi-project project with
reports (Cobertura test coverage, javadocs, etc.) and
project information (issue tracking, dependency
convergence, etc.): https://ci-dev.renci.org/site/jargon.
Dependency management has been added for
dependency convergence across sub-projects, and
repository mappings point to a new Nexus instance;
future releases & snapshots will be found at https://ci-
dev.renci.org/nexus. For a look at the Maven-generated
Jargon project information page, see https://ci-
dev.renci.org/site/jargon/jargon-core/project-info.html.

The GForge/Hudson/Nexus combination provides
an infrastructure that supports community-based
software development. Moving this development
environment infrastructure into the iRODS development
process facilitates the interactions between DICE and
RENCI, the coordination of the complementary efforts,
and the incorporation of contributions from the
communities of users.

3. irods@renci Activities
3.1. CI, Testing, and Code Hardening

The RENCI contribution to iRODS will enhance
the quality and reliability of the software and facilitate
more automated testing of the code. CI techniques are
used to align users and developers alike into a structured
release cycle such that they know exactly when to
expect a new or updated release to their product.

Development cycles are supported with the Hudson
extensible CI environment that automates the running of
unit tests and allows on-the-fly testing of new commits.
IRODS unit tests are now being built into the RENCI
Hudson environment. The community code release
cycles are already extensively tested by the DICE group
using tinderbox and NMI, but code coverage can be
greatly widened and testing can be largely automated by
relying more heavily on the Hudson environment for the
wider code testing. This will reduce time spent in test
mode and yet will allow much greater coverage of the
code. The enterprise code will undergo exhaustive
testing, supported by the CI environment.

Code hardening and refactoring currently go into
the community code releases as possible, based on time
and funding constraints. However, these constraints are
severe, since iRODS funding is largely for development
rather than for hardening and optimization. Releases of
the iRODS-Enterprise code will require more extensive
software engineering practices; RENCI is gearing up to
contribute extensively to this hardening of the iRODS
code.

The iRODS code will exist at three distinct levels,
each with its own degree of hardening: the development
level, the standard release level, and the enterprise
release level.

3.1.1. Development Level

Development level code is based upon the most
recent code releases but without any guarantee of
stability or backwards compatibility. This is the day-to-
day code on which developers work out the integration
for the latest patches, features and fixes. The
development level code serves as the testbed for the next
version of standard release and enterprise level codes.

3.1.2. Community Release Level

Community code release is based on the previous
code release, incorporating the bug fixes and features of
the development level that have been subsequently
developed and sufficiently tested for release in the
research code.

3.1.3. Enterprise Release Level

Enterprise level is hardened, production-ready code
that has demonstrated itself to be stable on a wide set of
recognized platforms. Code at this release level can be

assured to be backwards compatible for a specific range
of previous releases; this is well documented and
defined ahead of release. This code will not be
incorporated into the daily development cycle, and
would only see specific, well documented patches for
anomalies as they arise.

3.2. Toward a Unified Cross-Platform Code

One immediate RENCI contribution is to migrate
platform-specific APIs and system calls away from
server-level code, thereby providing a strategy for
facilitated code support on a wide range of platforms.
The first step in this cross-platform approach is to
compile the code with g++ so that libraries such as
Boost C++ [8] can be incorporated. These libraries
allow the streamlining of cross-platform
implementations and the abstracting out of many
platform-specific operations, such as threading, regular
expressions, character encoding, signals, forking, etc.

The initial g++ port has been done, and
synchronization with the iRODS trunk code and
distribution of the converted code is expected to be
completed for iRODS release 2.6 or 3.0.

3.3. Windows Support

The first beneficiary of the cross-platform support
is the iRODS server for Windows platforms. Due to
scarcity of resources, the Windows iRODS non-iCAT-
enabled server has not kept pace with the iRODS
releases since 2.0; further, there never has been, until
now, iRODS support for an iCAT-enabled server on
Windows. The first thing RENCI's cross-platform
unification of the code will allow is the upgrade of the
non-iCAT-enabled server to the current iRODS release.
Following closely is the planned release of an iCAT-
enabled Windows server.

The Windows iExplorer iRODS client will now
also benefit from enhanced support from the
irods@renci group, which is developing a .NET
implementation of the iRODS client to provide native
integration with the .NET framework. The iRODS.NET
client will connect to the iRODS server from the .NET
platform, performing required iRODS client operations
and providing access to administrative and standard user
tasks. It will support .NET 3.5 and up.

This native Windows client will enable .NET web
and windows application development for interaction
with iRODS. It will also enable a variety of other
functionalities that are being explored now at RENCI:

• Windows PowerShell commands to simulate
the icommands unix client

• a local Windows drive or folder mounted to a
(remote) iRODS collections

• LinqToIRODS development to query an
iRODS server

• Excel ribbon toolbar to interact with iRODS.

3.4. Database Activities
As part of the RENCI effort to bring up and support

iRODS iCAT-enabled servers on Windows platforms,
the databases that iRODS currently supports-
PostgreSQL, Oracle, and MySQL- are being
incorporated into the iRODS build for the Windows
platform. Additionally, Microsoft SQL Server support
is also being provided in iRODS so that on Windows the
iCAT metadata catalogue can be implemented with this
database.

Even as irods@renci spins up its iRODS
development activities, the group's contributions extend
to other database activities taking place in collaboration
with the DICE group. Recent DataBase Resource
(DBR) development allows iRODS to access and query
external databases, managing them as resources.
RENCI managed the DBR testing with Postgres, Oracle,
and MySQL database instances, both local and remote
to an iRODS server. Recent iCAT special query
development allows a data grid administrator to
implement SQL strings that enable authorized queries of
the iCAT DB. RENCI contributed to the effort with
usage and applicability examples and testing.

As irods@renci database activities progress,
attention will turn toward questions of iCAT data
redundancy and failover mechanisms. Additionally,
improvements in database performance will be
investigated and recommendations made; if need be,
these will be implemented as part of planned
development activities using standard performance
tuning and optimization techniques.

3.5. Java Rule Engine

The rule engine component of iRODS is currently
being redesigned and improved within the DICE group,
to come out within the next couple of iRODS releases.
RENCI is building on that activity with an investigation
of a Java-based rule engine that will leverage existing
Jargon services to implement a streamlined version of
the rule engine. Design and resource requirements are
being analyzed to determine the best inter-process
communication method between the (next-gen) C-based
rule engine and Java, semantic synchronization with the
based rule engine, and integration with Jargon.

3.6. iRODS Clients

In addition to the Windows client, RENCI is
moving to support other client libraries in use by the
user community. The approach is to begin with user
support, monitoring the iRODS chat discussion and
assisting with troubleshooting and bug fixes, then
assume ownership of the client support. The client
libraries are then migrated over to the RENCI Git
repository in GForge, where unit testing is incorporated
into the Hudson continuous integration environment. In
the longer term, new feature sets will be explored, based

on community request, and code hardening and
standardization among client APIs will be pursued.

RENCI is currently supporting the PHP client that
underpins the generic iRODS web client. The first steps
are to consolidate the code and complete unit testing on
this API, which has not been supported in DICE for a
couple of years. PHPUnit will be used to develop a set
of unit tests for the core PHP API. The likely approach
for future development of the PHP API is that a minimal
API library of pure PHP will continue to be supported,
with more support going into PHP on JVM. This would
allow PHP to call Java objects, so that the elaborate
library of Jargon services would be accessible from
PHP.

As funding allows and/or user demand requires,
RENCI will move into support for other client APIs.

3.7. Special Projects
3.7.1. Shibboleth Authentication

The request for a Shibboleth authentication
mechanism into iRODS surfaces regularly from the user
community. RENCI will be using its participation in the
TUCASI data-Infrastructure Project (TIP) to motivate
its work with UNC ITS infrastructure providers to
implement Shibboleth authentication for the Triangle-
wide TIP federated environment. TUCASI is the
Triangle Universities Center for Advanced Studies Inc.,
funded by the Research Triangle Foundation and located
in Research Triangle Park. It funds scholarly
collaboration among the three Triangle universities; its
funding of the TIP project is dedicated to establishing a
federated data environment among these universities.

3.7.2. Climate Modeling with NCDC

The National Climate Data Center (NCDC) is the
world's largest active archive of climate data. As
climate studies become increasingly important in
understanding the future of our planet, NCDC is playing
a central role in supplying data and services to the
climate community as well as to the public. RENCI is
working with NCDC to customize iRODS services in
response to the demands of this center. The current
collaboration, in preparation of NCDC's engagement in
large-scale climate modeling, is a pilot project to
prototype data flow and workflow management for data-
intensive climate computations.

3.7.3. Sequencing and Genomics

Genomics and bioinformatics are areas in which
data generation is outpacing the biologists' capacity to
manage the data. RENCI is moving to bring iRODS
technology in to support the burgeoning demands of
these data-intensive fields. In particular, the first
approach to this is to establish a bridge between iRODS
and Hadoop by developing a Hadoop file system driver
for iRODS. This will allow Hadoop files to be shared,

in an easy and controlled way, between data
contributors.

Hadoop is an open-source Java based software
framework that supports large-scale distributed data
processing. At the heart of Hadoop are the Hadoop
Distributed File System (HDFS) and the MapReduce
computational model. The file system divides large data
sets into smaller blocks, spreading them across many
machines; the computational model simplifies data
processing by decomposing an application into a series
of components (mappers and reducers) that enable a
form of distributed computing that is not only robust and
scalable but also simple and accessible.

Connecting iRODS and HDFS will extend the data
management capabilities of Hadoop (through iRODS),
while augmenting the data processing capabilities of
iRODS (through Hadoop).

3.7.4. Other Projects

In addition, RENCI supports the use of iRODS
technology for the Cyberinfrastructure for Billions of
Records (CI-BER) project sponsored by NARA and the
DHS-sponsored NC Bio Preparedness project.

4. The Open Source Sustainable Model
4.1. Red Hat

Red Hat (RH) is one of the world's premier open
source technology companies, sponsoring leading-edge
Fedora Linux [9] and providing subscription services to
Red Hat Enterprise Linux.

Figure 3. Close ties to contributors and testers in the
 user community allow fast turnover. [10]

Red Hat's very successful approach to open source

is based on their strong relationship with the user-
contributor community. The Open Source Way [11],
Red Hat's introduction to creating and nurturing
communities of contributors, says that, "Contributors are
the oxygen" because they are vital to the health and
sustainability of the technology. At the same time, the
Red Hat mission statement is: To be the catalyst in
communities of customers, contributors, and partners

creating better technology the open source way.
Community is critical to effective open source
technology, and open source technology provides
robust, sustainable, interoperable software with open
standards to the community.

Adaptability is a crucial component in open source
sustainability models. As Michael Tiemann, VP of
Open Source Affairs at Red Hat and President of the
Open Source Affairs Initiative, has pointed out [12],
adaptability is now understood as a strategic capability
and a key to sustainability (survival of the most
adaptable), leading to less abandonment and greater re-
use of software.

The Red Hat Fedora model, built on what has been
proven to make an open source model work, is basically
this:
• the community contributes heavily to Fedora

Linux development;
• the developer community and Red Hat select

features for integration into the Fedora Linux
open source code that is released several times per
year;

• community usage contributes to testing and
troubleshooting;

• the Fedora code repository is periodically forked
and hardened by Red Hat into a tested and
certified open source code, Red Hat Enterprise
Linux (RHEL), which is released much less
frequently than Fedora and for which commercial
support subscriptions can be purchased.

Community input keeps the code contributions and

evolving directions relevant to the users, RH testing
keeps the developments reliable, frequent release of the
Fedora community code keeps evolution and debugging
active, while the RHEL release is solid enough that
support of the code is cost-effective.

4.2. iRODS-Enterprise

It is useful to examine the parallels between Red
Hat open source practice and iRODS practice when
exploring new sustainability models for the open source
iRODS.

The success of iRODS (and of SRB before it) has
largely been driven by the connection of the DICE
groups to the communities of iRODS users, and the
open source nature of iRODS is now a strong element in
cultivating communities of practice around the
technology. Vibrant communities of contributors have
been (and will continue to be) crucial to growing the
technology and allowing it to evolve in directions that
keep it relevant to its users.

RENCI is building on the Red Hat model to
incorporate the best practices of the open source model
into iRODS support. The incorporation of some
practices, such as agile development for adaptability and

flexibility and a more formal community architecture
model for collecting user contributions and hardening
those into code releases, will allow for solid expansion
of support for the technology, improving productivity
and collaboration.

To move toward new funding models beyond those
of traditional public funding, RENCI is also preparing to
emulate Red Hat's Fedora model: the iRODS
community code will continue to be developed and
released by the DICE group at the current frequency,
while RENCI will periodically freeze this code, harden
and test it to higher levels of reliability, and release it on
a slower schedule, as iRODS-Enterprise, with
subscription support services available for commercial
clients.

While both code releases will be open source, the
differences between the community code and the
hardened code will be several and include the following:
• the community code will be for technical

enthusiasts using iRODS in non-critical computing
environments, while the hardened code will be for
users looking for stable, supported, and certified
iRODS (business, government, etc);

• the community code will be bleeding-edge
technology, released early and often, while the
hardened code will be stable, reliable, and broadly
supported, easy to deploy and manage;

• the community code will be tested by the developer
community, while the hardened code will be
rigorously tested by RENCI, DICE, partners and the
beta team.

Figure 4. iRODS community code and hardened code

 releases; inspired by the RH Fedora model.

5. Conclusion
As RENCI ramps up its contributions and widens

its support of the iRODS technology, quality of service
can be heightened, and commercial service level
agreements tailored to specific user needs become more
sustainable. This opens up new funding sources,
boosting the long-term sustainability of this technology
and the services that depend on it.

References
[1] Agile ALM: Impossible or Best of Both? Available
at http://www.purecm.com/whitePapers.php
(registration necessary)

[2] Agile Scrum and PureCM. Available at
http://www.purecm.com/whitePapers.php (registration
necessary)

[3] Agile Development. http://www.initto.com/agile-
development.html

[4] Git. http://git-scm.com/

[5] GForge. http://gforge.org/gf/

[6] Hudson Continuous Integration. http://hudson-ci.org/

[7] Maven Nexus. http://nexus.sonatype.org/

[8] Boost. http://www.boost.org/

[9] http://fedoraproject.org/

[10] Freedom Isn't Free. Open Source Mechanics.
Gunnar Hellekson, Chief Technology Strategist for Red
Hat’s US Public Sector group. Invited speaker, NSF
Workshop on Creating a Scientific Software Innovation
Institute (S2I2) for Environmental Observatory
Communities, October 5, 2010.

[11] The Open Source Way.
http://www.theopensourceway.org/book/The_Open_Sou
rce_Way-Introduction.html

[12] "Tiemann on transforming IT the open source
way," 3 Jun 2010 by Jonathan Opp (Red Hat).
 http://opensource.com/business/10/6/tiemann-
transforming-it-open-source-way

	

