
iRODS interfaces: API and Clients based on Jargon-core for Developers, Grid
Users, and Administrators

Mike Conway

Data Intensive Cyber Environments Center (DICE Center), University of North Carolina at Chapel Hill

Abstract
The development of a revised Java API for iRODS

is well underway. Many interfaces and integration use
cases based on Jargon-core have been demonstrated, and
several applications based on this revised API are in
deployment. This paper describes the new Jargon-core
API, as well as a sample of interesting clients and
capabilities that promise to make iRODS more
accessible to developers, grid users, and grid
administrators.

Index Keyword Terms— Jargon, Java, iRODS,

Web Services, REST, iDROP

1. Introduction
The Jargon API, originally developed by Lucas

Gilbert, is a thin-client implementation of the iRODS [2]
XML client protocol [3]. This API addressed many
difficult problems in the implementation of the iRODS
XML protocol. An assessment of the state of Jargon, as
well as a vision of future directions, was presented at the
2010 iRODS User Meeting [4].

Since the writing of the 2010 assessment, work has

proceeded on 'hardening' the existing API (which will be
referred to as 'Jargon-trunk'), as well as development of
a revised API (which will be referred to as 'Jargon-
core'). The two API have evolved together, each effort
informing the other. Jargon-trunk is gradually being re-
factored with an eye towards convergence with the
Jargon-core API. Enhancement requests and bug
reports from users of Jargon are being incorporated into
the design of Jargon-core.

The 2010 assessment of the Jargon API observed

the following [4]:

• Jargon did a good job of navigating the
XML protocol, and had encoded a good
deal of real-world experience with iRODS
protocol operations.

• Jargon was very difficult to use, both in
design, and in the amount of low-level
interaction required.

• Jargon had not kept up with evolving best
practices and frameworks.

A conception of Jargon as part of a larger stack was

discussed in the 2010 assessment. A figure was
included that depicted a stack concept for Jargon-core.
This stack concept has been an important driver for the
development of the new API. At the writing of this
paper, each element in the stack has been at least
demonstrated with a running proof-of-concept. This
paper will talk about developments in the Jargon-core
stack, and highlight some of the possibilities going
forward.

2. Jargon-core API Details

2.1. Jargon-core development infrastructure
Ease of development includes the idea that the

Jargon-core code is easy to obtain and build. The
RENCI/DICE collaboration [1] is intended to establish a
robust, sustainable software environment for iRODS.
As a result of this effort, Jargon-core has moved from
the prior Subversion/Bugzilla environment to a
comprehensive environment that includes:

• GForge project management and issue

tracking software [5].
• A transition from ANT builds to Maven,

including distribution of Jargon-core
artifacts via a Nexus Maven repository [6].

• Continuous Integration support via Hudson
[7].

• Distributed version control via git [8].
• An evolving test environment that will

include a rich grid topology for functional
testing.

The enhanced environment means that an interface

like iDrop can be checked out of git, and with a simple
'mvn install' command, iDrop can be built, automatically
obtaining necessary code in the Jargon-core software
stack.

2.2. Jargon-core API highlights
In response to the findings of the initial 2010

assessment, several goals were articulated [4]:

• A higher-level API was needed that hid
details of iRODS interaction, and provided
easy methods to accomplish typical tasks.

• An API that enabled familiar development
practices was needed. Examples given
included “inversion of control” patterns,
“POJO” domain objects, and test-driven
development.

• Out-of-the-box administrative and
archivist's interfaces were needed.

• A better toolset for integration was needed,
including REST and SOAP capabilities.T

The Jargon-core API has evolved, based on the

findings of the 2010 analysis. At the writing of this
paper, in preparation for the iRODS 2011 User Meeting,
a beta release of Jargon-core is planned. At this time,
there are around 650 unit and functional tests being run
against the codebase, as well as several hundred

additional tests in higher level libraries and interfaces.
The work that remains before a full release has more to
do with completeness of feature coverage and
performance optimization than with the stability of the
existing API.

A few examples can illustrate the utility of the new

API style. Consider the common use case of executing
a GenQuery and returning the results. The following is
the typical code using the prior Jargon-trunk API style:

MetaDataCondition[] condition = new
MetaDataCondition[1];
 condition[0] =
MetaDataSet.newCondition(meta1Attrib,
 MetaDataCondition.EQUAL, meta1Value);

String[] fileds = { StandardMetaData.FILE_NAME,
 StandardMetaData.DIRECTORY_NAME };
MetaDataSelect[] select =
MetaDataSet.newSelection(fileds);

MetaDataRecordList[] fileList =
irodsFileSystem.commands.query(condition, select, 100,
Namespace.FILE, false);

In the Jargon-trunk API, queries are built by

assembling arrays of various types, then calling two-
deep into the IRODSCommands object that also
contains low-level connection methods. The returned
object is an Array of MetaDataRecordList objects that
mix results with an embedded reference to the iRODS
connection.

In contrast, the Jargon-core API allows a more

natural query by GenQuery string, returning a ResultSet
object. The ResultSet has no connection to iRODS.
The query itself is executed by an 'Access Object' that
specializes in servicing iRODS Queries. The following
example illustrates this approach:

IRODSGenQuery irodsQuery =
IRODSGenQuery.instance(queryString, 1000);

IRODSGenQueryExecutor irodsGenQueryExecutor =
accessObjectFactory.getIRODSGenQueryExecutor(irodsAcco
unt);

IRODSQueryResultSet resultSet =
irodsGenQueryExecutor.executeIRODSQuery(irodsQuery,
0);

 The ResultSet object contains information
about the query itself, including the original query and
the internal translation. The ResultSet also has
information on whether more rows are available, and
what position in the results the current set of results
holds. Notably, the query execution process can
internally manage situations where the iRODS Agent
needs to close the result set on the server side. This is
especially common in situations where Jargon-core is

used in session-per-request situations like a Servlet
container. This is an example where not only is the
internal structure of the protocol hidden, but also details
about the multiple steps required to accomplish an
operation. Another simple example of this
encapsulation of protocol details is illustrated by the
following code that creates a new iRODS file:

public boolean createNewFile() throws IOException {
 try {
 fileDescriptor =irodsFileSystemAO.createFile(
 ...);

 ...
 // in irods the file must be closed, then
opened when doing a createnew
 this.close();
 this.open();
 ...
 return true;
}

 Here a file that is newly created must be then
closed and re-opened before it can be used from an input
stream. This sort of protocol detail is representative of
the types of frustrations that can occur when negotiating
the iRODS protocol at a low level, and how sensible
defaulting in a higher level API can help developers
become more productive with Jargon.

 As proposed in the 2010 Jargon review, the
Jargon-core API has moved to a POJO domain model,
and a variant of the DAO (Data Access Object) pattern.
These patterns are now central to the organization of
Jargon-core, and allow for enhanced testability, better
organization, and easier expandability. Since the access
objects that comprise the primary API to iRODS are
implementations of defined Java interfaces, they may be
easily mocked for testing when developing interfaces
and higher-level libraries, as in this example:

CollectionAO collectionAO = mock(CollectionAO.class);

Mockito.when(collectionAO.findMetadataValuesByMetadata
Query(elements)).thenReturn(metaDataAndDomainData);
 Mockito.when(irodsAccessObjectFactory.getColl
ectionAO(irodsAccount)).thenReturn(collectionAO);

 There is now a central factory for the various
access objects, and these objects automatically share a
connection per thread. This allows easy composition of
services from multiple access objects. As new
capabilities are implemented, these can be integrated
into new access objects. This will allow better
organization, ease of use, and more natural composition
of services.

 It is important to highlight the structural
changes within Jargon-core in terms of connection
handling. There have been a significant amount of

reports from users about errors in Jargon and in the
iRODS logs caused by abnormal termination of
connections. The Jargon-trunk can spawn and clone
connections at times without knowledge of the caller. In
addition, Jargon-trunk will often rely on finalizers to
close connections, versus direct action from the caller.
This sometimes unpredictable generation of connections
is revised in Jargon-core through a much more explicit
model that manages connections in a session through a
centralized cache, and that allows explicit closing of a
particular connection, or all cached connections. The
connection cache is based on a ThreadLocal, which also
prevents the unpredictable results that can occur when a
connection to iRODS is inadvertently shared between
threads. The new IRODSSDSession holds a
ThreadLocal connection cache, and a new
IRODSProtocolManager interface defines an object that
is asked for a connection, and a place to which
connections are returned. This can be implemented in
various ways, including as a connection pool or cache.
The IRODSSession is also a central shared location
where expensive data relating to the iRODS server or
session can be kept. This includes properties controlling
Jargon itself, and can also include server-side metadata,
such as extensible metadata definitions. This contextual
data about the server and session will be further defined
in later releases, and can include default behavior, as
well as overrides that can be injected at creation time.

3.0. Client views

Jargon-core developments provide a foundation for
a set of API and graphical interfaces that have been
piloted, or are in development. These interfaces fall into
two primary categories. First are 'data cloud' views.
These are interfaces that deal with the storage and
retrieval of data and metadata within iRODS. The goal
is to create a set of interfaces and services that allow
iRODS to be treated as a personal or organizational data
cloud. Second are graphical interfaces and services for
administration of an iRODS grid. Third are interfaces
oriented towards archivists and curators. These are
discussed in more detail below.

3.0.1. Personal and 'cloud views' of iRODS

In presenting a 'personal view' of the iRODS data
grid, the capabilities provided by a client GUI
application provide a baseline. Thus the iDrop GUI can
act as a direct client of iRODS through the XML
protocol, using the Jargon-core libraries. iDrop is
targeted towards several use cases, and can be seen as:

1. A drag-and-drop desktop explorer model,

where files can be easily moved, copied,

replicated, and inspected. This includes
desktop drag-and-drop and copy-and-paste
capabilities.

2. A transfer manager that can manage long
running transfers in a reliable manner.

3. A multi-device synchronization service
that can link local and iRODS folders
across heterogeneous client devices.

4. An ingest tool, with the ability to gather
metadata and to audit transfers.

Since a primary requirement is cross-platform

deployment, iDrop is a Swing GUI that runs as a system
tray application. The iDrop application utilizes a
'transfer engine' library built on Jargon-core. This
transfer engine manages a queue of transfer operations
across multiple grids, and can track the disposition of
each file in a transfer. This includes file-by-file
success/error information, with the ability to pause,
cancel, and restart transfers. Since the transfers are
asynchronous, the iDrop use can use drag-and-drop
gestures to signal the desired operations, then iDrop can
be closed. The client will run in the background and
notify the user of transfer status as required.

As work progresses, iDrop will include the ability

to autonomously retry transfers when a network or agent
error causes a disconnection, o. Or when a device is shut
down mid-transfer. The goal is high-reliability through
fault tolerance. Enhanced audit/control balancing
features are planned for the near future, so that transfer
integrity can be assured.

Since the iDrop queue is asynchronous, and since

iDrop already has a model of periodic queue evaluation,
it becomes possible to create a multi-platform
synchronization service. In this mode, iDrop will
initially display a wizard where users can select a per-
device local synchronization directory. This directory
will be periodically diff'd with iRODS, and
synchronization jobs can be added to the transfer queue
as needed.

An important goal of iDrop is to make transfers

reliable, especially for users uncomfortable with Unix
icommands. Fault tolerance is one strategy. A second
part of the strategy is reporting of success and failure of
transfers. iDrop already maintains a local database of
transfer activity, and already receives file-by-file
success and failure status reports. The iDrop database is
being enhanced such that records are kept on restart
attempts, and on matching of files transferred on each
attempt versus the available source files. The result of a
transfer will include a verification of each file

transferred, and can possibly include checksum
validation, or even a post transfer comparison of the
source and target collections. In addition to the
reporting in iDrop, it would be possible to add a
manifest or other reporting to the target collection at the
conclusion of a transfer.

As a complement to the iDrop Swing GUI,
development has begun on a rich web interface. This
interface is suitable for ad-hoc transfers of small
amounts of data, or more casual use of iRODS. iDrop
Web is currently a prototype under development. The
web application is being developed using the
Groovy/Grails framework [9].

iDrop web is meant to be a very clean, simple

interface, with search and user tagging built in. This is
especially appropriate for treating iRODS as a personal
data cloud, where retrieval by search and tag are
familiar methods. Sharing and 'social' aspects of data
are also being considered in the prototype. A Java
WebStart link located on the iDrop web interface will
allow easy switching to the more capable GUI when
needed.

The development of iDrop web will also create a
REST-ful 'cloud API” for iRODS. Controllers and
methods can be added to switch the rendering mode
from HTML to JSON or XML for various functions.
An example from the iDrop web prototype illustrates
how Groovy/Grails controller code can be used to
represent Jargon-core domain objects as JSON for such
a REST-ful API:

def ajaxDirectoryListingUnderParent = {
 def parent = params['dir']

 def collectionAndDataObjectListAndSearchAO =
irodsAccessObjectFactory.getCollectionAndDataObjectListAndSearc
hAO(irodsAccount)

def collectionAndDataObjectList =
collectionAndDataObjectListAndSearchAO.listDataObjectsAndCollec
tionsUnderPath(parent)

def jsonBuff = []

collectionAndDataObjectList.each {

 ...

 def attrBuf = ["id":it.formattedAbsolutePath,
"rel":type]

 jsonBuff.add(["data":
it.nodeLabelDisplayValue,"attr":attrBuf,"state":state,"icon":ic
on, "type":type])
 }

render jsonBuff as JSON

}

 The availability of a simple REST-ful API for
personal cloud data creates exciting new possibilities for
light-weight uses of iRODS from all manner of
platforms, languages, and devices. Certainly, HTTP
data transfers are limited in size and speed, but uploads
of photographs and other data from mobile devices
provides an example of a use case where a REST-ful
API can create new types of applications.

3.0.2. Lingo – administrative and web services for
iRODS
 While iDrop is targeted towards client views of
the data and metadata stored on the grid, the “Lingo”
projects are oriented towards grid administration and a
more comprehensive service model that exposes a richer
set of functionality.

 At the heart of the project is a comprehensive,
rich web interface that provides an integrated view of
grid status, as well as access to the functions necessary
to administer an iRODS grid. The Lingo web interface
was developed into a running prototype, but was put
aside for a time due to other priorities. As Jargon-core
matures, it is now ready to take beyond the initial
prototype stage to implementation.

 It is important to note that iDrop, and the Lingo
projects, serve two purposes. First, these projects will
create out-of-the-box, user friendly interfaces that can
serve a wide range of use cases. Importantly, these
projects will be under the umbrella of ongoing support
and development as Jargon-core and related services
mature. The second purpose is as a driver of Jargon
development itself. As new capabilities are required for
both the data view and administrative/service view, they
are pushed into the Jargon-core stack. This means that
the API develops with comprehensive support for major
use cases, and undergoes a large amount of functional
testing in multiple situations on a regular basis. This
will contribute to the stability, usability, and
performance of the Jargon libraries.

 The ability to expose administrative and other
grid capabilities, including the transfer of data, as SOAP
web services is an important item in the concept of a
Jargon stack. The underlying components that would
make up an iRODS service model are under
development for the iDrop and Lingo interfaces. The
remaining work will be to select a platform, identify the
course-grained services that should be exposed, and to
expose those services using the desired framework.
That is a considerable undertaking, so the important
activity in the shorter term is to prototype candidate
services to ensure that the Jargon stack is evolving in a
manner that will easily support exposing as web
services. This has been done in initial testing using the
Glassfish platform and the Metro framework.

 For example, user administration functions
were deployed as JAX-WS services on Glassfish, using
very light-weight wrapping classes around jargon-core
services. This is an example of the marshaling between

the Jargon-core domain objects and XML via SOAP:

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:listUsersResponse
xmlns:ns2="http://websvc.lingo.jargon.irods.org/">

...

 <return>
 <count>0</count>
 <lastResult>false</lastResult>
 <comment/>
 <createTime/>
 <id>9001</id>
 <info/>
 <modifyTime/>
 <name>rodsadmin</name>
 <userDN/>
 <userType>RODS_GROUP</userType>
 <zone>test1</zone>
 </return>
 <return>
 <count>0</count>
 <lastResult>false</lastResult>
 <comment/>
 <createTime/>
 <id>10007</id>
 <info/>
 <modifyTime/>
 <name>rods</name>
 <userDN/>
 <userType>RODS_ADMIN</userType>
 <zone>test1</zone>
 </return>
 <return>
 <count>0</count>
 <lastResult>false</lastResult>
 <comment/>
 <createTime/>
 <id>1154810</id>
 <info/>
 <modifyTime/>
 <name>addUserUpdatedZone</name>
 <userDN/>
 <userType>RODS_USER</userType>
 <zone>test1</zone>
 </return>
 sResponse>
 </S:Body>
</S:Envelope>

3.0.3. Arch – archivist's interfaces to iRODS
 It is beyond the scope of this paper to go into
details on Arch and recent projects regarding policy-
based preservation environments. However, it is worth
mentioning that a class of interfaces has been identified
that is oriented towards archivists who are using iRODS
for policy-based preservation. Some aspects of this
class of interfaces were demonstrated at the end of last
year at NARA, and at the SAA annual meeting in
Washington, DC. These demonstrations are discussed
in a paper that has been submitted to the proceedings for
the 2010 SAA Annual Conference [10].

4. Summary and looking forward
Much of the work on Java and interfaces has been

on fundamentals. A solid, sustainable API design that is
simple to use, easy to test, and easy to integrate is the
enabler for a large number of useful interfaces and
services. There will be a shift in emphasis in the
coming year from fundamental API development to
such interface and integration activities. With the
establishment of a richer test bed as a part of the
RENCI/DICE collaboration, there will also be a greater
emphasis on performance measurement and
optimization as well as federated grid operations.

As illustrated by the use of Groovy/Grails, it is

quite possible for PHP, Python, Ruby, Scala, and
Groovy developers to leverage the Jargon-core API in
their favorite language. This requires running the script
on the JVM, but this can be a very high-performance
runtime for the script language of choice. This will not
necessarily appeal to die-hard Python developers, for
example, but is quite viable for the common situation
where a developer tasked with a web interface knows
PHP, and is more productive using a familiar language
with Jargon libraries.

The ability to use Jargon-core with dynamic

scripting languages on the JVM also provides an
attractive approach for ad-hoc reporting, utilities, and
custom scripts for conversion.

Briefly, here are some other important future topics

beyond the described interface and service development:

• An assessment of the low-level networking
in Jargon, including the use of NIO.
Measurement based optimization will be
an important activity using the new test
bed.

• Fedora repository integration via low level
storage as well as Akubra.

• An assessment of the new JDK 1.7 NIO
file system, with a potential
implementation.

The primary goal for Jargon remains the same.

Jargon and the Jargon stack are meant to make iRODS
accessible to users, administrators, and software
developers through friendly and reliable API, and
through easy-to-use interfaces oriented towards grid
users and grid administrators.

7. References

[1] RENCI partners with DICE at UNC and UCSD to sustain
iRODS software available at:
 http://www.renci.org/news/releases/renci-partners-with-dice

[2]iRODS Introduction available at:
https://www.irods.org/index.php/iRODS_Introduction

[3] Distributed Shared Collection Communication Protocol,
Michael Wan, Reagan Moore, Arcot Rajasekar available at:
https://www.irods.org/index.php/iRODS_Protocol_Overview

[4] Enhancing IRODS Integration: Jargon and an Evolving
IRODS Service Model, Mike Conway, available at:
http://irods.org/pubs/Meeting_1003/irods_meeting_1003_evol
ution_mconway2.pdf

[5] available at: http://gforge.org/gf/

[6] available at: http://maven.apache.org/

[7] avalable at: http://hudson-ci.org/

[8] available at: http://git-scm.com/

[9] available at: http://www.grails.org/

[10] Policy-based Preservation Environments: Policy
Composition and Enforcement in iRODS, Mike C. Conway,
Jewel H. Ward, Antoine De Torcy, Hao Xu, Arcot Rajasekar,
and Reagan W. Moore

