
First iRODS Experience in a Neutrino Experiment

F. Di Lodovicoa, A. Hasanb, Y. Iidac, T. Sasakic

aQueen Mary University of London, London, UK

bUniversity of Liverpool, Liverpool, UK
cHigh Energy Accelerator Research Organisation (KEK), Tsukuba, Japan

Abstract
The T2K experiment is a long-baseline neutrino

experiment with the primary aim of observing muon
into electron neutrino appearance. An important task is
the determination of the quality of the collected data. In
this paper we describe the first experience gained in
managing the T2K data quality data for the near detector
such that it is stored and accessible to collaborators
world-wide in a timely fashion. We also describe a set
of rules developed for the project that have much more
general applicability. This is the first use of iRODS in a
neutrino experiment.

Index Keyword Terms— T2K, neutrino, iRODS

1. Introduction

The Tokai–to–Kamioka (T2K) experiment [1] is a
long baseline neutrino experiment whose primary goal is
to measure the electron into muon neutrino oscillation.
T2K consists of the world highest intensity muon
neutrino beam produced at the 50 GeV Proton-
Synchrotron at J-PARC (Tokai) being directed at a far
detector, Super-Kamiokande (SK), 295 km away from J-
PARC (see Fig. 1).

The initial proton energy is limited to 30 GeV and
will then ramp up to 50 GeV. A near detector system,
ND280, is located 280m away from the target and
consists of several sub-detectors. The main purpose of
the ND280 detector system is to measure the neutrino
flux and spectrum before the oscillation. T2K started to
take data in January 2010.

The assessment of the quality of the data before any
analysis is performed is crucial to achieve reliable
results. The corresponding data–quality files needs to be
available to world–wide collaborators to be checked as
soon as produced at J–PARC. This requires a data–
distribution system and iRODS [2] provides the best
system to achieve that.

Figure 1: Schematic overview of the T2K detector.

2. Data Quality at T2K
The data quality assessment for T2K has a crucial

role, as it allows an assessment of whether the data can
be used for analysis as soon as the data are collected.
The data quality files that we need to store and access
remotely were a total of about 60000 during 2010 for
the near detector. This spans a fraction of the year due to
shutdown periods. The number of files is expected to
increase significantly in the near future with the increase
in the number of protons on target. Not all the files have
the same size. We can approximately divide the sample
into three categories: very-small-size files (less than 1
kB), small-size files (2 MB), large files (above 10 MB),
that correspond to about 30%, 30% and 40%,
respectively of the total. The total size of all the files is
about 360GB. From the data–quality point of view, the
requests to the data distribution system that we need to
use are several, and iRODS reveled itself as the best
match to our needs. The summary of our requests is
shown below, whilst the technical solution offered by
iRODS is described in Sects. 3 and 4:

• storage of files as small as a few kB;
• Easy access to the files for approx 500

collaborators predominantly to download
files. The easiest way for a casual user to

access the files is through a web interface,
where a read–only account is provided to
the T2K collaborators.

Moreover, the line command is also available for
users who want to have more tailored access to the data.
Search tools are also needed for both the web–interface
and the command–line user.

Fig. 2 shows the current flow diagram for the data
quality. The data are collected at the T2K near detector
ND280, and then processed at J-PARC and data quality
files produced. Those files are then copied into iRODS,
from where the user can access them either through the
graphical interface or the command line.

Figure 2: T2K ND280 data quality flow diagram.

3. iRODS
The integrated Rule Oriented Data System (iRODS)

is developed by the Data Intensive Cyber Environments
(DICE) group at the University of North Carolina. The
system was built on the experience of the successful
Storage Resource Broker (SRB) [3] also developed by
the DICE group. The iRODS is an open-source, policy-
based data management system that abstracts the
underlying storage systems. The abstraction makes it
easier to replace storage or change the type of storage,
or even add new storage without affecting access to the
system. This is achieved by creating logical-to-physical
mappings for the storage resource and file location.
Access to the system uses the logical names and iRODS
maintains the logical-to-physical mappings in an SQL
database (currently PostgreSQL, ORACLE or MySQL).
Physical access to a storage system is handled by an
iRODS driver that presents a POSIX standard interface
to the system. New types of storage system may only
require a new storage driver to be written.

The iRODS also provides controlled access through
a number of different authentication mechanisms:
Kerberos, secure username/password and Grid Security
Infrastructure (GSI). User groups can be created making
it easier to manage permissions for a set of collections
(users only need to be added or removed from the group
in order to inherit/disinherit the access permissions).
Access to collections of data can be more finely tuned
by using the iRODS rules to, for example, grant access
temporarily to a collection of data.

The iRODS allow policies to be imposed on any
iRODS object (that is users, storage resources or data)
through the creation of iRODS rules which are server-
side workflows that are executed by the iRODS rule
engine. The iRODS rules follow an event-condition-
action approach with the rule engine checking each rule
in the rule file from top to bottom. The first rule that
satisfies the condition is executed. This schema allows
rules to be overridden by placing the overriding rule
above the overridden rule in the rule file. A rule is
executed sequentially from left to right.

Figure 3: Diagram of a typical iRODS system.

An iRODS system consists of iRODS server
application running on each storage resource plus an
iRODS server application that interfaces to the iRODS
metadata catalogue that holds the logical-to-physical
mappings and access control information as shown in
Fig. 3. An iRODS rule engine runs on each resource
including the iRODS enabled catalogue server (IES).
Clients communicate with iRODS through client-side
applications (either command-line or GUI based) by
creating an iRODS session and then interacting with
iRODS. Each interaction with iRODS triggers the rule
engine to check if the event satisfies any conditions that
require a rule to be invoked. By default, all events
trigger the rule-engine with the exception of the

command to list the contents of a collection (the ils
command) for performance reasons.

Figure 4: An example iRODS workflow.

An example iRODS workflow is shown in Fig 4
where an iRODS session is created by the client first
connecting to an iRODS server (1) which in turn queries
the iRODS metadata catalogue database to verify the
client’s credentials (2) before and after the server
queries the catalogue the rule-engine (RE) is triggered
(3) which checks for any rules that the event’s condition
satisfies and executes the first that is satisfied. Once the
client is verified an iRODS session is created. The client
can then, in this example, store data in an iRODS
controlled storage resource. The client sends the store
request to the server (4) which causes the server to
lookup the physical location of the storage server in the
database (5) and triggers the rule-engine to search for
any rules to execute that match the events condition (6).

The server then passes the request to the destination
storage server (7) and the client sends the data directly
to the destination server (8). After the data has been
transferred to the server the rule-engine fires executing
the first rule that successfully satisfy the event condition
(9). Once the data have been successfully stored the
iRODS metadata catalogue database is updated with
information on the data name and location.

The iRODS provides support for the IBM High
Performance Storage System (HPSS) [4] that provides
the KEK hierarchical storage system.

4. Architecture
The data quality requires the storage to be visible to

collaborators around the world and to be able to manage
large numbers of small files efficiently. At the time of
the project the KEK HPSS system was not tuned to

handle small files and access was restricted to KEK. So,
iRODS described in Section 3 was used to manage the
data stored in HPSS. The iRODS-based architecture
shown in Fig. 5 took care of managing the small files
and provided remote access to the content. Specific
ports are opened between JPARC and KEK that allow
iRODS communication. Data and metadata are sent
from JPARC to the iRODS cache storage at KEK (1).
Successful storage of the data triggers the rule engine
which executes a rule that both tars and stores the data
in HPSS if the total data size is greater than 1 GB (2) or
backs up the data to a backup storage resource if the
total size of the data is below 1GB (3). The rule
executes every six hours checking the total size of the
data on the cache, once it reaches 1GB the data are
tarred and stored in HPSS and the cache and backup
copies are deleted.

Figure 5: Architecture for the T2K iRODS-based
system.

Remote T2K users (4) access the data either
through a modified version of the iRODS PHP browser
or through the client-side irods icommands. In both
cases a read-only iRODS account is used to access the
data to prevent accidental modifications to the data.

Figure 6: Screenshot of the modified iRODS
browser.

The PHP iRODS browser provided practically all
the functionality that was required with the exception of
two important features: a read-only version and
metadata search. The upload and delete functions were
removed from the browser and a search menu was added
allowing basic search of the iRODS attribute-value-unit
metadata and iRODS file metadata (see Fig. 6).

4.1. iRODS Rules

The advantage of the iRODS system over a
standard data management system such as the SRB is
the ability to implement policies on users and data. For
the T2K experiment several rules were written to
prevent users from changing the read account password
and to manage data. All rules were placed in the default
rule file.

The rule to prevent changes to an iRODS account
password required implementing a pre-processing rule
that would be triggered for a modify user account event:

acPreProcForModifyUser(*UserName,*Option,*NewV
alue) || ifExec(
 *UserName == rods,
 ifExec(
 *Option == password,
 msiWriteRodsLog(”Alert:
 attempt to change password
 for *UserName”,
 *status)
 ##fail, nop##nop, nop, nop
),
 nop, nop, nop
) || nop

The rule is only executed if the user account is
‘rods’ in which case the rule writes out a message to the
iRODS log file and then forces the rule to fail resulting
in a failure of the client side application (ipasswd).

The management of T2K data required a rule that
would (a) backup the data on the cache disk to a backup
resource if the total size of data on the cache was below
1GB, (b) tar and copy the data to the HPSS system if the
data were greater than or equal to 1GB. The rule
acBundleOrReplicate is given by:

acBundleOrReplicate(*collPath, *cacheRes, *backRes,
 *archive, *threshold)||
msiCheckCollSize(*collPath, *cacheRes, *threshold,
 *aboveThreshold, *status)##
ifExec(
 *aboveThreshold == 1,
 msiWriteRodsLog(”Creating bundle”, *status)##
 msiPhyBundleColl(collPath, archive, *status)##
 msiWriteRodsLog(”Finished bundling”, *status),
 nop##nop##nop,
 msiWriteRodsLog(”Starting to backup files”,
 *status)##
 acGetIcatResults(list, COLLNAME LIKE
 ‘*collPath’, *List)##
 forEachExec(
 *List, msiGetValByKey(*List, DATA_NAME,
 *Data)##
 msiGetValByKey(List, COLL_NAME,
 *Coll)##
 msiGetValByKey(List,
 DATA_RESC_NAME,
 *dataRes)##
 ifExec(
 *dataRes == *cacheRes,
 msiWriteRodsLog(”Replicating
 file *Coll/*Data”, *status)##
 msiDataObjRepl(*Coll/*Data,
 verifyChksum++++backupRes
 cName = *backRes, *status)##
 msiWriteRodsLog(”Completed
 replicating file *Coll/*Data”;
 *status),
 nop##nop##nop,
 nop,
 nop
),
 nop##nop##nop
),
nop##nop##nop
)|| nop##nop

The rule first finds if the total collection size is

greater than a threshold value (1GB) using the
msiCheckCollSize microservice and returns 1 if it is. In
that case the rule involves the msiPhyBundleColl
microservice to tar-up the collection and store the
contents on the HPSS resource. If the total size is below

the threshold the list of files in the collection is obtained
with the acGetIcatResults rule and each file in the
collection is backed up to the back resource using the
msiDataObjRepl microservice. The
acBundleOrReplicate rule runs periodically checking
the newly input files. A rule to delete data from the
backup resource that is stored in HPSS also runs
periodically.

These rules were developed for the T2K iRODS
project, but are of general applicability.

5. Performance
Treating the large number of small files

individually introduced an unavoidable overhead when
storing or retrieving (see Table 1). This was due to the
finite time needed to establish the connection between
the client and server.

Mode Bulk

Mode
Individual
Files
(JPARC)

Tar File
(JPARC)

Individual
Files
(KEK)

iput 250s 630s 210s 213s
iget N/A 1396s 456s 410s

 Table 1: iput and iget comparisons for 1.2GB
collection of files.

Table 1 shows the overhead for handling large
numbers of small files compared with a treating the
collection of files as a single unit. The iRODS provides
the possibility to treat individual files as a collection
with the iput commands through the ‘bulk’ option which
minimizes the number of connections between the client
and server and provides a performance much closer to
that for an individual file.

Unfortunately, the data quality data cannot
currently take advantage of the bulk mode as data must
be archived as soon as it is produced and not all files in
a directory must be copied. If the ability to filter the
input collection were implemented this would be highly
desirable.

The poorer performance for the iget command for
small files compared with the tar file is due to a number
of factors:

• The overhead of establishing connections
between client and server,

• The overhead in translating the logical
name to a physical file in order to fetch
the data.

• The time to write to the target disk being
different to the time to read from the disk
which can become significant if the disk
is fragmented.

The last column shows the total time for importing
and exporting individual files within KEK. The numbers
show performance comparable with the transfer of an
individual file. This suggests that a majority of the
latency is actually not due to the iRODS infrastructure,
but due to the network connectivity and also the storage
resource at JPARC.

These are early days for the iRODS setup for T2K
and efforts are being made to improve the performance
for small files in conjunction with the iRODS
developers that will be of benefit to the project and the
community in general.

6. Conclusions
The T2K experiment in conjunction with the KEK

computer centre has setup an iRODS system to manage
the storage and access to the T2K data quality data for
the near detector. This is the first neutrino experiment
(and possibly particle physics experiment) to adopt the
iRODS for data management. The setup has simplified
the management of the small files in HPSS and has
provided easy access to the content to collaborators
world-wide. More importantly, the effort to manage and
maintain the system is proving to be extremely light
compared to other alternatives. Another important result
of the adoption was the development of a set of rules
that greatly help in the management of small files that
we hope will be of wider use by the community.

7. Acknowledgements
This work has been supported in part by the EU

project T2KQMUL - grant agreement no. 207282-
T2KQM and by the KEK foreign researcher grant. We
are also grateful to Jean-Yves Nief (ccin2p3), Mike Wan
(DICE group), Wayne Schroeder (DICE group) and
Arcot Rajasekar (DICE group) for technical help and
advice.

8. References
[1] Y. Itow et al., The JHF-Kamioka neutrino project, hep-
ex/0106019, 2001.
[2] The DICE group, IRODS
https://www.irods.org/index.php/IRODS:Data_Grids,_Digital_
Libraries,_Persistent_Archives,_and_Real-
time_Data_Systems.

[3] The DICE group, SRB
http://www.sdsc.edu/srb/index.php/Main_Page.

[4] High Performance Storage System, http://www.hpss-
collaboration.org/

