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Abstract 
 

Many scientific computational analyses rely heavily 
on workflow management systems to both link and 
automate execution of multiple tasks. The execution 
time required for such workflows can span days and 
require storage of massive data output into data grids. 
Past attempts to bridge this gap between workflow 
systems and data grids modify the workflow system to 
include additional steps, making the solution very 
specific to the workflow system and the data grid. Our 
workflow-independent approach is based on a stand-
alone, modular workflow virtualization server that 
interfaces with many workflow systems and acts as a 
conduit between data grids and executing workflows. A 
complex workflow can span many workflow systems 
while seamlessly supporting large-scale data 
management. Modularity in the server design at the 
workflow level accommodates customization of 
workflow execution and also enables additional logic 
such as collection of metadata, and trimming or 
modification of the produced data sets. We have 
virtualized data management across workflow systems 
such as Makeflow, and Pegasus using the iRODS data 
grid system. 
 
 
1. Introduction 
  

Recent years have seen a noticeable shift towards 
data-driven research from conventional computational 
research methods. Physicists now run multiple versions 
of complex simulations with a large number of 
variables, and statistically aggregate results.  Examples 
include the study of black hole evolution or generation 
of Gamma ray bursts [1]. In chemistry and biology, the 
results of multiple molecular simulations are managed 
to enable further analysis of the plethora of information 

that is generated. In the Ocean Observatory Initiative, 
real-time sensor data will be compared with prior 
archived data and simulation output to detect events[2].  
A unifying requirement for these examples is a 
workflow that integrates multiple computational steps 
with both massive data input sets and the storage and 
organization of massive output data sets.  Such data-
driven tasks are enabled by High performance 
computing cyber infrastructure, like TeraGrid [3] or 
LONI [4] and usually are executed across distributed 
systems.  
 
1.1 Workflows systems and Data grids 
 

Scientific Workflows are used to manage most of 
these complex computations.  Workflows link the 
scientific tasks to input data sets, manage transfer of 
information between tasks, and generate output data 
sets. A workflow system can also be considered as a 
composition  of related sub-workflows, in which each 
of the tasks can be executed as an independent task or 
service. The integration of multiple workflow systems 
can take advantage of capabilities unique to a specific 
workflow environment and achieving seamless 
orchestration at sub-workflow levels across multiple 
workflow systems is one of the goals of our project. 

Large amounts of data may be generated by these 
workflows or workflow systems.  Typically it is not 
possible to bring back the entire output data sets to 
local machines for further analysis. More often than 
not, these datasets are moved to data grids to enable 
further use. Orchestration of data movement and 
integration of data organization and management with 
workflow systems, relieving the onus from the 
scientist, is a second goal of our project. 
    After successful execution of each workflow, the 
output datasets have to be moved from the compute 
resource to long-term storage space, need to be 
organized to enable collaboration and data sharing, 



need assignment of metadata to provide a context for 
discovery, should be replicated to mitigate risk of data 
loss, and so on. Data grids simplify access to remote 
input data, and simplify management of the output data 
sets. Data grids organize distributed data into a 
shareable collection and manage the properties of the 
collection while interacting with multiple types of 
storage systems.  

A significant opportunity for innovation is the 
integration of server-side workflows for data 
management with traditional client-driven workflows. 
This paper details such integration.  Additional 
information on the design of iRODS, micro-services 
and rules will be dealt with in later sections of the 
paper.  
 
1.2 Integration of data grids and workflow 

systems 
 

Apart from executing a complex workflow 
according to specified input parameters, scientists are 
also challenged with the issue of archiving the 
produced datasets for the purposes of further analyses 
and collaboration. This in itself can be extremely time 
consuming and require attention to data management 
details. There are many workflow systems that are 
popular in the scientific community, and though not 
equal in number, there are a variety of data grid 
middleware to manage data. This introduces an 
unfortunate learning curve on the part of researchers 
before making effective use of their chosen systems. 

There have been various attempts to overcome 
these data management challenges. But most of them 
aim at modifying the workflow system, by addition of 
a few extra tasks that would attempt to automate the 
movement of data into storage areas. Such attempts are 
very specific to the workflow. A specific challenge is 
integration with the workflow system’s trust 
environment.  The transfer of files from a user account 
under which the workflow may be executed, to a 
collection account that controls a shared collection 
requires a change in ownership of the data.  The choice 
of mechanism to affect this transfer can be workflow 
specific.  

Our approach, in integrating workflows and data 
grids, is based on a stand-alone modular workflow 
virtualization server, which acts as an interface 
between multiple workflow systems and data grid 
systems. The development of a fault tolerant workflow 
virtualization mechanism that is integrated into the 
same trust environment as the data management 
servers, bridges the gap between the production of data 
and their archival storage in an efficient way. Sections 
2 and 3 provide a detailed explanation of the design 

and implementation of such a system.  Sections 4 and 5 
discuss future work and conclusions.  
 
 
2. Workflow Virtualization 

 
Workflow virtualization is the management of the 

properties of a workflow while it is executing.  This 
includes ensuring that input data sets are available on 
required resources, the status of the workflow is 
monitored, and the output data sets are appropriately 
disposed.  An implication of workflow virtualization is 
the ability to run a workflow in a variety of workflow 
systems, and manage the interactions with each 
workflow system for both input and output of files. 
This capability can be achieved by creating a workflow 
manager that will act as a conduit between the 
workflow system and the data grid and also between 
various workflow systems for both input and output 
operations. Advantages of workflow virtualization are 
manifold. While it provides a tighter grasp over the 
execution of workflows, it also enables execution of 
complex workflows spanning multiple different 
workflow systems while automating large-scale data 
transfers. Moreover, the virtualization server can also 
be used as a central point for gathering statistics, for 
monitoring execution, and for launching recovery 
mechanisms on failures.  A check-pointing framework 
for stopping and re-launching workflows on demand 
can also be implemented. The data required for 
execution of complex workflows usually resides on 
geographically distributed data grids, from where data 
staging can be managed by the workflow server 
through trusted communication. 

The concept of the virtualization server is based on 
its ability to be external to the environment that 
actually executes the workflow.  This decouples the 
workflow from the execution environment, increases 
the generality, and enables integration with data grids. 
It is also highly modular, enabling integration of 
additional workflow systems with minimal effort. In 
the later sections we will see in detail how this feature 
will also enable a higher degree of control by 
administrators and developers over the execution and 
management of the workflow. 
 
2.1 Workflow virtualization server (WVS)  
 

The foremost functionality of WVS is to act as an 
interface between the workflows, the data grid, and the 
workflow systems. It is proposed to be stand-alone and 
external to the data grid for several reasons. The most 
important of them being the inherent robustness it 
brings to the system from a security standpoint.  Figure 



1 shows an architectural depiction of the system. Upon 
the receipt of a valid request to execute a workflow, 
WVS would set up the environment required for the 
workflow, stage the required input files to the 
workflow execution host from the data grid, hand off 
the configuration and input files to the module 
interfacing to the workflow system, and launch the 
workflow process. After a successful run, depending 
upon whether or not the request includes execution of 
additional workflows, the generated data would be 
either transmitted to the next appropriate module or 
archived back into data grid. The core of the server is 
coupled with the data grid to be able to achieve major 
functionalities such as authentication and 
authorization, and extraction and maintenance of 
contextual information (metadata).  

Most of the workflow systems run as an operating 
system user, allowing direct access to data.  In such an 
environment, running the WVS on the same host as the 
data grid might create grave security loopholes. For 
example, the submit scripts accepted by the Makeflow 
engine [5] are very similar to Make files [6]. Hence 
executing a Makeflow workflow as an OS user on the 
WVS could be catastrophic. The general flow of tasks 
is depicted in Figure 2. 
 
2.2 Authentication and context handling 
 

Maintaining a trusted environment for an 
authenticated user is of the utmost importance in a 
distributed environment. Authentication has to be 
handled at multiple levels, once at the data grid level 
while performing operations within the data grid and 
again at the operating system level while executing the 
workflow. Authentication with a data grid has to be 
done according to the prescribed standards of the data 
grid. For example iRODS uses an administrative 
account to proxy as any other user while maintaining a 
trusted context. Hence the server can perform all of the 
operations for the data grid user who submitted the 
request, once it is configured as an administrator 
account within the data grid. This approach may be 
different for other data grids.  

At the operating system level, authentication and 
context maintenance are can be managed using proxy 
accounts. When a request for execution of a workflow 
is received, the WVS will create a logical name space 
and perform all the required tasks under this space. 
This will be the working directory for any future tasks 
related to data handling. But, when concurrent 
workflows are executed on the same server, there is a 
chance of a workflow stepping on each other’s data. To 
overcome this, the process actually executing the 
workflow can be circumscribed to the logical directory. 
Another approach to overcome this situation is to 

spawn operating system level users whenever a new 
request is received. This might be unfeasible because, 
it would add considerable overhead to computation and 
can lead to security flaws. 

Context information can broadly be categorized 
into data grid context, and workflow execution context. 
Pertinent information regarding the data grid can be 
obtained from its context. These details could include, 
user information on the data grid, such as privileges, 
quota, and default preferences. It could also be useful 
to obtain information regarding the grid. Examples 
include, host from which the request was made, other 
hosts and their storage capacities available on the grid, 
and system polices imposed by administrators. 
Workflow context also needs to be generated after each 
request is received. Some of the information would 
include type of workflow or workflow systems to be 
executed in the request, logical working name space, 
list of input files and configuration files required by the 
workflow systems, list of output files, storage 
destination on the data grid, and system and user 
metadata, if any, to be tagged to the generated datasets.  
None of the information should be workflow system 
specific because a typical request could span multiple 
workflow systems. 
 
2.3 Staging, pre-processing and data transfers 
  

Most of the present day complex scientific 
workflows manipulate large amounts of data.  
Automation of staging of the data to the execution 
resource is highly desirable. When a request is received 
for execution of a particular workflow or a set of 
workflows, WVS will check all of the requirements 
and set up the environment. This not only saves time, 
but also lets workflow developers manage data within 
the context of a logical name space.  They do not have 
to specify physical storage locations or be concerned 
with moving data. Staging is performed just before the 
interface module is called; this is particularly efficient 
when executing multiple workflow systems in the same 
request. The time required for transfer of input files for 
the subsequent workflow is eliminated; thereby 
execution of successive workflows can be started 
immediately.  

Apart from staging, certain other pre-processing 
tasks are also carried out before executing the 
workflow. Most of the system metadata attributes are 
initialized at this stage, to be later added as metadata to 
newly produced datasets. Examples of the standard 
system metadata attributes could include type of 
workflow systems involved, starting time of the 
execution, input file names and sizes, logical working 
directory, next workflow system to be executed (if 



any), final logical destination on the data grid and so 
on. 

Moving datasets to and from the data grid is 
achieved using the protocol defined by the data grid. 
Usually all data grid middleware provide a simple data 
transport mechanism.  Since WVS is built into the trust 
domain of the data grid; data transfers can be handled 
very effectively. 
 
2.4 Execution of workflow and post-processing 
 

Workflows are integrated into the server through 
modules; these are independent functions that interface 
the workflow to the workflow system. The modules 
can be thought of as server building blocks. Each new 
type of workflow system can be integrated through a 
specific module that understands the required job 
description protocol.  The modules enable high levels 
of customizability with the integrated data grid and 
workflow system. Modules can be easily developed in 
accordance to the requirement of each site. Each 
module can simply execute the workflow according to 
the configuration submitted by the user, or it can 
collect metadata, replicate certain or all of the datasets 
that are produced, and create derived data products 
before archiving in accordance with user-specified 
requirements. Administrators can define modules that 
execute specific custom scripts or checks before or 
after executing the specified workflow, i.e. modules 
can be also used to implement policy control-points 
specific to that installation.  For example before 
executing a Makeflow workflow, administrators can 
have scripts check the consistency of the workflow 
configuration file to see if all datasets are accessible. 
Another use-case could be a module that requires 
execution of certain other pre-existing modules in a 
particular sequence to achieve the required 
functionality for the site. 

Modularity at the level of workflow execution not 
only eases integration of new workflow systems into 
the server but also provides the administrator a tighter 
control over the workflows that are being executed. 
Administrators and developers will be able to decide 
the kind of variations that can be used in executing the 
workflow; any workflow system can easily be made 
inaccessible, by disabling the control module. 

System metadata attributes available at the end of 
execution can be collected within the workflow server. 
Examples include the total execution time, the total 
size of datasets produced, or any metadata provided by 
the users for association with output files. Clean up of 
temporary files and datasets that are archived can also 
be carried out automatically. 

 
 

3. Implementation with iRODS data grid 
 

The past year has seen significant increase in the 
use of iRODS as a data grid throughout the world. This 
has generated many scenarios that provide compelling 
reasons to integrate multiple types of workflow 
systems with iRODS.  The basic requirement is the 
automation of the execution of an external workflow in 
tandem with the data grid automation of administrative 
workflows managed within iRODS. In our 
implementation, clients submit requests for workflow 
execution through iRODS rules.  We also use the rules 
and micro-services of iRODS to establish 
communication between the data grid and an external 
WVS. This approach is highly extensible, enables use 
of a wide variety of data management interfaces, and 
enables the automation of derived data product 
generation.  Though many intricacies are yet to be 
realized, initial integrations with Pegasus, Makeflow 
and Taverna have provided satisfactory results. 

 
3.1 Micro-services and rules 
 

iRODS manages shared collections assembled from 
data distributed across multiple storage locations 
through use of a logical name space [7]. All operations 
within iRODS are performed based upon the logical 
name space.  Every task carried out in iRODS is 
accomplished by executing sets of micro-services, 
which provides customizability and extensibility.  
Micro-services are well-defined functions that are 
created to realize a specific task; they are the building 
blocks of the system. Set of micro-services can be 
chained together to achieve a complex workflow. 
Micro-services are further classified into system micro-
services and module micro-services. System micro-
services are chained under administrative control to  
carry out essential system tasks, such as creation and 
deletion of users, creation of new resources and so on. 
Module micro-services allow customization of the 
operations performed at each storage installation to 
meet the needs of users. Examples include, extraction 
of data points from specific image datasets when 
uploaded, tweeting messages upon occurrence of 
specific events and so on. We utilize the ability of 
iRODS to control the execution of micro-services to 
develop a micro-service that is capable communicating 
with the WVS installation.  

The execution of these micro-services is completely 
controlled by rules, which are defined by 
administrators and users. In the case of WVS, rules can 
be considered as the client interface through which 
users submit requests for execution of workflows. Each 
rule will specify the WVS server host, the port on 



which it is accepting connections, the path to the 
location of a client side configuration file, which is 
stored within the data grid, and the micro-service that 
will interact with the WVS installation. 
 
3.2 Client design and configuration 
 

The micro-service submitting the workflow can be 
thought of as the client controlling interactions with the 
WVS. The functioning of the client depends on the 
module micro-service, “msiwfSubmit”, a client 
configuration file and a rule that triggers the 
submission. The micro-service requires a host address 
and port number for the WVS and the location of a 
configuration file, which would contain all of the 
required details to execute the workflow through a rule. 
A micro-service would then contact the WVS over 
standard TCP/IP sockets and provide the current 
context structure, including the path to the 
configuration file. The context would also contain all 
of the user details, such as username, resource name, 
and destination collection path. A typical client 
configuration file is shown in figure 3. 

 

 
 

Figure 3. Client configuration snippet 
 

In the above configuration file, “WORKFLOW” 
and “SUBMIT” are mandatory fields.  If input files are 
required, they are also specified. If no destination is 
mentioned, the datasets generated after executing the 
workflow will be archived to a folder containing the 
configuration file. Any metadata that is mentioned here 
is attached to the generated datasets after they are 
archived.  
 
3.3 Server design and configuration 
 

There are four major routines that constitute the 
server core. They handle authentication, data transfer, 
metadata tagging and module execution, respectively. 
Authentication module is capable of connecting to a 
pre-defined iRODS installation similar to any other 
client executing under an iRODS administrative 
account. This enables the WVS to act as a proxy for an 

iRODS user for further transactions. At the operating 
system level, the process executing the workflow is 
tied to a virtual working directory. Within iRODS, the 
Rule Execution Information (REI) structure provides 
extensive information on the current state of the 
execution, both for system and user related attributes. 
This structure is preserved and is directly used in WVS 
to identify and keep track of the current context for all 
of the iRODS related information. This includes 
context information about the completion of the 
workflow that could be used globally, for managing 
complex interactions with other workflow systems. 

The functioning of the server is controlled through 
a configuration file. This can be considered as an 
administrative interface for the initial version of the 
system.  The configuration file contains information 
pertaining to each individual module. For example 
consider figure 4.  
  

 
 

Figure 4. WVS server configuration file 
snippet 

 
Module names in square braces act as delimiters to 

module specific information. They also act as pointers 
to the interfacing modules that will be invoked during 
execution. This design makes integration of new 
modules very easy. Each time a new module is added, 
the module name and the interfacing module function 
pointer have to be entered into a module map that will 
be referred to by the WVS at the time of execution. In 
addition all the information pertaining to the workflow 
system has to be entered into the server configuration 
file. The workflow system represented by the new 
module will be ready to use as soon as the interfacing 
module is compiled. Note this compilation is done only 
once for each new type of workflow system.  The 

WORKFLOW=MAKEFLOW 
CONFIG=/tempZone/home/wfuser/test.makeflow 
INPUT=/tempZone/home/wfuser/capitol.jpg 
INPUT=/tempZone/home/wfuser/local.jpg 
INPUT=/tempZone/home/wfuser/meta.jpg 
DEST=/tempZone/home/wfuser/test_dest/  
METADATA=NAME1=VAL1 
METADATA=NAME2=VAL2 

[MAKEFLOW]  
path=/usr/local/cctools/redhat5/bin/makeflow  
args= -T condor  
[MAKEFLOW]  
[MAKEFLOW1]  
path=/usr/local/Makeflow/bin/makeflow  
args=  -p 9876 
[MAKEFLOW1]  
#[KEPLER]  
#path=path to kepler  
#args=-t –P  
#[KEPLER]  
[PEGASUS]  
path=/usr/local/Pegasus/Pegasus-plan  
path_to_sites.xml = /usr/local/Pegasus/sites.xml 
path_to_rc.data /usr/local/Pegasus/rc.data 
path_to_tc.data = /usr/local/Pegasus/tc.data 
[PEGASUS] 
	  



client also uses this module name to denote the type of 
the workflow system to be executed.  This 
configuration file is read every time an interfacing 
module has to be called. Even though this increases the 
number of disk accesses, it provides dynamic re-
configurability to the system and eliminates the need to 
restart the server. 

After the interfacing module is executed 
successfully, WVS will initiate data transfer of newly 
generated datasets back to iRODS using the iRODS 
client API. Metadata will be tagged to these datasets 
once they are registered into the data grid. Module 
developers are provided with functions that can query 
any user metadata they wish to tag to these datasets.  

 
4.  Conclusion 
 

This paper describes the design and implementation 
of a workflow virtualization mechanism that can be 
used to integrate, manage and orchestrate execution of 
workflows and archive the resulting large-scale data. 
The design implements a stand-alone, highly modular 
server that acts as an interface between the data grid 
and workflow systems. The detached hosting of such a 
server is vindicated by the fact that it improves the 
security of the system to a great extent. Our successful 
implementation of the concept with the data grid 
iRODS and workflow systems Makeflow and Pegasus, 
justifies the assertion that the integration of workflows 
and data grid trust environments can provide a generic 
solution to the use of distributed compute and storage 
resources.   
 
5. Future work 
 

The WVS presented here provides the desired 
workflow virtualization, but there are additional 
functionalities that have to be worked out. Federation 
with more than one data grid, of the same or different 
kind, will increase the usability of the system. 
Federation across multiple types of data grids would 
require modular extensions to the trust environment 
and efficient handling of interfacing protocols 
according to each grid’s specifications. We will 
continue development of the WVS with the iRODS 
data grid as a benchmark. One of the major areas to be 
dealt with is to provide feedback to the users, in terms 
of status of workflow execution, logs, progress of 
execution, after the job is submitted. This can be easily 
achieved in iRODS by having a dedicated micro-
service that can query WVS. A simple rule can provide 
access to such a service. We have discussed several 
authentication methodologies that can be implemented 
with WVS, but the preferred approach is not feasible 

on all systems. Hence an efficient, yet viable solution 
has to be developed. Further, the design has to be 
implemented and tested with other data grids and 
storage systems. 
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Figure 1. Workflow virtualization server architecture 
 
 
 
 
 
 

 
 



 
 

Figure 2. WVS flowchart 


