
Virtualization of Workflows for Data Intensive Computation

Sreekanth Pothanis (1,2), Arcot Rajasekar (3,4), Reagan Moore (3,4).
1 Center for Computation and Technology, Louisiana State University, Baton Rouge, LA.

2 Department of Computer Science, Louisiana State University, Baton Rouge, LA.
3 School of Information and Library Science, University of North Carolina, Chapel Hill, NC.

4Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC.
 sreekanth@cct.lsu.edu, sekar@renci.org, rwmoore@renci.org

Abstract

Many scientific computational analyses rely heavily
on workflow management systems to both link and
automate execution of multiple tasks. The execution
time required for such workflows can span days and
require storage of massive data output into data grids.
Past attempts to bridge this gap between workflow
systems and data grids modify the workflow system to
include additional steps, making the solution very
specific to the workflow system and the data grid. Our
workflow-independent approach is based on a stand-
alone, modular workflow virtualization server that
interfaces with many workflow systems and acts as a
conduit between data grids and executing workflows. A
complex workflow can span many workflow systems
while seamlessly supporting large-scale data
management. Modularity in the server design at the
workflow level accommodates customization of
workflow execution and also enables additional logic
such as collection of metadata, and trimming or
modification of the produced data sets. We have
virtualized data management across workflow systems
such as Makeflow, and Pegasus using the iRODS data
grid system.

1. Introduction

Recent years have seen a noticeable shift towards
data-driven research from conventional computational
research methods. Physicists now run multiple versions
of complex simulations with a large number of
variables, and statistically aggregate results. Examples
include the study of black hole evolution or generation
of Gamma ray bursts [1]. In chemistry and biology, the
results of multiple molecular simulations are managed
to enable further analysis of the plethora of information

that is generated. In the Ocean Observatory Initiative,
real-time sensor data will be compared with prior
archived data and simulation output to detect events[2].
A unifying requirement for these examples is a
workflow that integrates multiple computational steps
with both massive data input sets and the storage and
organization of massive output data sets. Such data-
driven tasks are enabled by High performance
computing cyber infrastructure, like TeraGrid [3] or
LONI [4] and usually are executed across distributed
systems.

1.1 Workflows systems and Data grids

Scientific Workflows are used to manage most of
these complex computations. Workflows link the
scientific tasks to input data sets, manage transfer of
information between tasks, and generate output data
sets. A workflow system can also be considered as a
composition of related sub-workflows, in which each
of the tasks can be executed as an independent task or
service. The integration of multiple workflow systems
can take advantage of capabilities unique to a specific
workflow environment and achieving seamless
orchestration at sub-workflow levels across multiple
workflow systems is one of the goals of our project.

Large amounts of data may be generated by these
workflows or workflow systems. Typically it is not
possible to bring back the entire output data sets to
local machines for further analysis. More often than
not, these datasets are moved to data grids to enable
further use. Orchestration of data movement and
integration of data organization and management with
workflow systems, relieving the onus from the
scientist, is a second goal of our project.
 After successful execution of each workflow, the
output datasets have to be moved from the compute
resource to long-term storage space, need to be
organized to enable collaboration and data sharing,

need assignment of metadata to provide a context for
discovery, should be replicated to mitigate risk of data
loss, and so on. Data grids simplify access to remote
input data, and simplify management of the output data
sets. Data grids organize distributed data into a
shareable collection and manage the properties of the
collection while interacting with multiple types of
storage systems.

A significant opportunity for innovation is the
integration of server-side workflows for data
management with traditional client-driven workflows.
This paper details such integration. Additional
information on the design of iRODS, micro-services
and rules will be dealt with in later sections of the
paper.

1.2 Integration of data grids and workflow

systems

Apart from executing a complex workflow
according to specified input parameters, scientists are
also challenged with the issue of archiving the
produced datasets for the purposes of further analyses
and collaboration. This in itself can be extremely time
consuming and require attention to data management
details. There are many workflow systems that are
popular in the scientific community, and though not
equal in number, there are a variety of data grid
middleware to manage data. This introduces an
unfortunate learning curve on the part of researchers
before making effective use of their chosen systems.

There have been various attempts to overcome
these data management challenges. But most of them
aim at modifying the workflow system, by addition of
a few extra tasks that would attempt to automate the
movement of data into storage areas. Such attempts are
very specific to the workflow. A specific challenge is
integration with the workflow system’s trust
environment. The transfer of files from a user account
under which the workflow may be executed, to a
collection account that controls a shared collection
requires a change in ownership of the data. The choice
of mechanism to affect this transfer can be workflow
specific.

Our approach, in integrating workflows and data
grids, is based on a stand-alone modular workflow
virtualization server, which acts as an interface
between multiple workflow systems and data grid
systems. The development of a fault tolerant workflow
virtualization mechanism that is integrated into the
same trust environment as the data management
servers, bridges the gap between the production of data
and their archival storage in an efficient way. Sections
2 and 3 provide a detailed explanation of the design

and implementation of such a system. Sections 4 and 5
discuss future work and conclusions.

2. Workflow Virtualization

Workflow virtualization is the management of the

properties of a workflow while it is executing. This
includes ensuring that input data sets are available on
required resources, the status of the workflow is
monitored, and the output data sets are appropriately
disposed. An implication of workflow virtualization is
the ability to run a workflow in a variety of workflow
systems, and manage the interactions with each
workflow system for both input and output of files.
This capability can be achieved by creating a workflow
manager that will act as a conduit between the
workflow system and the data grid and also between
various workflow systems for both input and output
operations. Advantages of workflow virtualization are
manifold. While it provides a tighter grasp over the
execution of workflows, it also enables execution of
complex workflows spanning multiple different
workflow systems while automating large-scale data
transfers. Moreover, the virtualization server can also
be used as a central point for gathering statistics, for
monitoring execution, and for launching recovery
mechanisms on failures. A check-pointing framework
for stopping and re-launching workflows on demand
can also be implemented. The data required for
execution of complex workflows usually resides on
geographically distributed data grids, from where data
staging can be managed by the workflow server
through trusted communication.

The concept of the virtualization server is based on
its ability to be external to the environment that
actually executes the workflow. This decouples the
workflow from the execution environment, increases
the generality, and enables integration with data grids.
It is also highly modular, enabling integration of
additional workflow systems with minimal effort. In
the later sections we will see in detail how this feature
will also enable a higher degree of control by
administrators and developers over the execution and
management of the workflow.

2.1 Workflow virtualization server (WVS)

The foremost functionality of WVS is to act as an
interface between the workflows, the data grid, and the
workflow systems. It is proposed to be stand-alone and
external to the data grid for several reasons. The most
important of them being the inherent robustness it
brings to the system from a security standpoint. Figure

1 shows an architectural depiction of the system. Upon
the receipt of a valid request to execute a workflow,
WVS would set up the environment required for the
workflow, stage the required input files to the
workflow execution host from the data grid, hand off
the configuration and input files to the module
interfacing to the workflow system, and launch the
workflow process. After a successful run, depending
upon whether or not the request includes execution of
additional workflows, the generated data would be
either transmitted to the next appropriate module or
archived back into data grid. The core of the server is
coupled with the data grid to be able to achieve major
functionalities such as authentication and
authorization, and extraction and maintenance of
contextual information (metadata).

Most of the workflow systems run as an operating
system user, allowing direct access to data. In such an
environment, running the WVS on the same host as the
data grid might create grave security loopholes. For
example, the submit scripts accepted by the Makeflow
engine [5] are very similar to Make files [6]. Hence
executing a Makeflow workflow as an OS user on the
WVS could be catastrophic. The general flow of tasks
is depicted in Figure 2.

2.2 Authentication and context handling

Maintaining a trusted environment for an
authenticated user is of the utmost importance in a
distributed environment. Authentication has to be
handled at multiple levels, once at the data grid level
while performing operations within the data grid and
again at the operating system level while executing the
workflow. Authentication with a data grid has to be
done according to the prescribed standards of the data
grid. For example iRODS uses an administrative
account to proxy as any other user while maintaining a
trusted context. Hence the server can perform all of the
operations for the data grid user who submitted the
request, once it is configured as an administrator
account within the data grid. This approach may be
different for other data grids.

At the operating system level, authentication and
context maintenance are can be managed using proxy
accounts. When a request for execution of a workflow
is received, the WVS will create a logical name space
and perform all the required tasks under this space.
This will be the working directory for any future tasks
related to data handling. But, when concurrent
workflows are executed on the same server, there is a
chance of a workflow stepping on each other’s data. To
overcome this, the process actually executing the
workflow can be circumscribed to the logical directory.
Another approach to overcome this situation is to

spawn operating system level users whenever a new
request is received. This might be unfeasible because,
it would add considerable overhead to computation and
can lead to security flaws.

Context information can broadly be categorized
into data grid context, and workflow execution context.
Pertinent information regarding the data grid can be
obtained from its context. These details could include,
user information on the data grid, such as privileges,
quota, and default preferences. It could also be useful
to obtain information regarding the grid. Examples
include, host from which the request was made, other
hosts and their storage capacities available on the grid,
and system polices imposed by administrators.
Workflow context also needs to be generated after each
request is received. Some of the information would
include type of workflow or workflow systems to be
executed in the request, logical working name space,
list of input files and configuration files required by the
workflow systems, list of output files, storage
destination on the data grid, and system and user
metadata, if any, to be tagged to the generated datasets.
None of the information should be workflow system
specific because a typical request could span multiple
workflow systems.

2.3 Staging, pre-processing and data transfers

Most of the present day complex scientific
workflows manipulate large amounts of data.
Automation of staging of the data to the execution
resource is highly desirable. When a request is received
for execution of a particular workflow or a set of
workflows, WVS will check all of the requirements
and set up the environment. This not only saves time,
but also lets workflow developers manage data within
the context of a logical name space. They do not have
to specify physical storage locations or be concerned
with moving data. Staging is performed just before the
interface module is called; this is particularly efficient
when executing multiple workflow systems in the same
request. The time required for transfer of input files for
the subsequent workflow is eliminated; thereby
execution of successive workflows can be started
immediately.

Apart from staging, certain other pre-processing
tasks are also carried out before executing the
workflow. Most of the system metadata attributes are
initialized at this stage, to be later added as metadata to
newly produced datasets. Examples of the standard
system metadata attributes could include type of
workflow systems involved, starting time of the
execution, input file names and sizes, logical working
directory, next workflow system to be executed (if

any), final logical destination on the data grid and so
on.

Moving datasets to and from the data grid is
achieved using the protocol defined by the data grid.
Usually all data grid middleware provide a simple data
transport mechanism. Since WVS is built into the trust
domain of the data grid; data transfers can be handled
very effectively.

2.4 Execution of workflow and post-processing

Workflows are integrated into the server through
modules; these are independent functions that interface
the workflow to the workflow system. The modules
can be thought of as server building blocks. Each new
type of workflow system can be integrated through a
specific module that understands the required job
description protocol. The modules enable high levels
of customizability with the integrated data grid and
workflow system. Modules can be easily developed in
accordance to the requirement of each site. Each
module can simply execute the workflow according to
the configuration submitted by the user, or it can
collect metadata, replicate certain or all of the datasets
that are produced, and create derived data products
before archiving in accordance with user-specified
requirements. Administrators can define modules that
execute specific custom scripts or checks before or
after executing the specified workflow, i.e. modules
can be also used to implement policy control-points
specific to that installation. For example before
executing a Makeflow workflow, administrators can
have scripts check the consistency of the workflow
configuration file to see if all datasets are accessible.
Another use-case could be a module that requires
execution of certain other pre-existing modules in a
particular sequence to achieve the required
functionality for the site.

Modularity at the level of workflow execution not
only eases integration of new workflow systems into
the server but also provides the administrator a tighter
control over the workflows that are being executed.
Administrators and developers will be able to decide
the kind of variations that can be used in executing the
workflow; any workflow system can easily be made
inaccessible, by disabling the control module.

System metadata attributes available at the end of
execution can be collected within the workflow server.
Examples include the total execution time, the total
size of datasets produced, or any metadata provided by
the users for association with output files. Clean up of
temporary files and datasets that are archived can also
be carried out automatically.

3. Implementation with iRODS data grid

The past year has seen significant increase in the
use of iRODS as a data grid throughout the world. This
has generated many scenarios that provide compelling
reasons to integrate multiple types of workflow
systems with iRODS. The basic requirement is the
automation of the execution of an external workflow in
tandem with the data grid automation of administrative
workflows managed within iRODS. In our
implementation, clients submit requests for workflow
execution through iRODS rules. We also use the rules
and micro-services of iRODS to establish
communication between the data grid and an external
WVS. This approach is highly extensible, enables use
of a wide variety of data management interfaces, and
enables the automation of derived data product
generation. Though many intricacies are yet to be
realized, initial integrations with Pegasus, Makeflow
and Taverna have provided satisfactory results.

3.1 Micro-services and rules

iRODS manages shared collections assembled from
data distributed across multiple storage locations
through use of a logical name space [7]. All operations
within iRODS are performed based upon the logical
name space. Every task carried out in iRODS is
accomplished by executing sets of micro-services,
which provides customizability and extensibility.
Micro-services are well-defined functions that are
created to realize a specific task; they are the building
blocks of the system. Set of micro-services can be
chained together to achieve a complex workflow.
Micro-services are further classified into system micro-
services and module micro-services. System micro-
services are chained under administrative control to
carry out essential system tasks, such as creation and
deletion of users, creation of new resources and so on.
Module micro-services allow customization of the
operations performed at each storage installation to
meet the needs of users. Examples include, extraction
of data points from specific image datasets when
uploaded, tweeting messages upon occurrence of
specific events and so on. We utilize the ability of
iRODS to control the execution of micro-services to
develop a micro-service that is capable communicating
with the WVS installation.

The execution of these micro-services is completely
controlled by rules, which are defined by
administrators and users. In the case of WVS, rules can
be considered as the client interface through which
users submit requests for execution of workflows. Each
rule will specify the WVS server host, the port on

which it is accepting connections, the path to the
location of a client side configuration file, which is
stored within the data grid, and the micro-service that
will interact with the WVS installation.

3.2 Client design and configuration

The micro-service submitting the workflow can be
thought of as the client controlling interactions with the
WVS. The functioning of the client depends on the
module micro-service, “msiwfSubmit”, a client
configuration file and a rule that triggers the
submission. The micro-service requires a host address
and port number for the WVS and the location of a
configuration file, which would contain all of the
required details to execute the workflow through a rule.
A micro-service would then contact the WVS over
standard TCP/IP sockets and provide the current
context structure, including the path to the
configuration file. The context would also contain all
of the user details, such as username, resource name,
and destination collection path. A typical client
configuration file is shown in figure 3.

Figure 3. Client configuration snippet

In the above configuration file, “WORKFLOW”
and “SUBMIT” are mandatory fields. If input files are
required, they are also specified. If no destination is
mentioned, the datasets generated after executing the
workflow will be archived to a folder containing the
configuration file. Any metadata that is mentioned here
is attached to the generated datasets after they are
archived.

3.3 Server design and configuration

There are four major routines that constitute the
server core. They handle authentication, data transfer,
metadata tagging and module execution, respectively.
Authentication module is capable of connecting to a
pre-defined iRODS installation similar to any other
client executing under an iRODS administrative
account. This enables the WVS to act as a proxy for an

iRODS user for further transactions. At the operating
system level, the process executing the workflow is
tied to a virtual working directory. Within iRODS, the
Rule Execution Information (REI) structure provides
extensive information on the current state of the
execution, both for system and user related attributes.
This structure is preserved and is directly used in WVS
to identify and keep track of the current context for all
of the iRODS related information. This includes
context information about the completion of the
workflow that could be used globally, for managing
complex interactions with other workflow systems.

The functioning of the server is controlled through
a configuration file. This can be considered as an
administrative interface for the initial version of the
system. The configuration file contains information
pertaining to each individual module. For example
consider figure 4.

Figure 4. WVS server configuration file
snippet

Module names in square braces act as delimiters to

module specific information. They also act as pointers
to the interfacing modules that will be invoked during
execution. This design makes integration of new
modules very easy. Each time a new module is added,
the module name and the interfacing module function
pointer have to be entered into a module map that will
be referred to by the WVS at the time of execution. In
addition all the information pertaining to the workflow
system has to be entered into the server configuration
file. The workflow system represented by the new
module will be ready to use as soon as the interfacing
module is compiled. Note this compilation is done only
once for each new type of workflow system. The

WORKFLOW=MAKEFLOW
CONFIG=/tempZone/home/wfuser/test.makeflow
INPUT=/tempZone/home/wfuser/capitol.jpg
INPUT=/tempZone/home/wfuser/local.jpg
INPUT=/tempZone/home/wfuser/meta.jpg
DEST=/tempZone/home/wfuser/test_dest/
METADATA=NAME1=VAL1
METADATA=NAME2=VAL2

[MAKEFLOW]
path=/usr/local/cctools/redhat5/bin/makeflow
args= -T condor
[MAKEFLOW]
[MAKEFLOW1]
path=/usr/local/Makeflow/bin/makeflow
args= -p 9876
[MAKEFLOW1]
#[KEPLER]
#path=path to kepler
#args=-t –P
#[KEPLER]
[PEGASUS]
path=/usr/local/Pegasus/Pegasus-plan
path_to_sites.xml = /usr/local/Pegasus/sites.xml
path_to_rc.data /usr/local/Pegasus/rc.data
path_to_tc.data = /usr/local/Pegasus/tc.data
[PEGASUS]
	

client also uses this module name to denote the type of
the workflow system to be executed. This
configuration file is read every time an interfacing
module has to be called. Even though this increases the
number of disk accesses, it provides dynamic re-
configurability to the system and eliminates the need to
restart the server.

After the interfacing module is executed
successfully, WVS will initiate data transfer of newly
generated datasets back to iRODS using the iRODS
client API. Metadata will be tagged to these datasets
once they are registered into the data grid. Module
developers are provided with functions that can query
any user metadata they wish to tag to these datasets.

4. Conclusion

This paper describes the design and implementation
of a workflow virtualization mechanism that can be
used to integrate, manage and orchestrate execution of
workflows and archive the resulting large-scale data.
The design implements a stand-alone, highly modular
server that acts as an interface between the data grid
and workflow systems. The detached hosting of such a
server is vindicated by the fact that it improves the
security of the system to a great extent. Our successful
implementation of the concept with the data grid
iRODS and workflow systems Makeflow and Pegasus,
justifies the assertion that the integration of workflows
and data grid trust environments can provide a generic
solution to the use of distributed compute and storage
resources.

5. Future work

The WVS presented here provides the desired
workflow virtualization, but there are additional
functionalities that have to be worked out. Federation
with more than one data grid, of the same or different
kind, will increase the usability of the system.
Federation across multiple types of data grids would
require modular extensions to the trust environment
and efficient handling of interfacing protocols
according to each grid’s specifications. We will
continue development of the WVS with the iRODS
data grid as a benchmark. One of the major areas to be
dealt with is to provide feedback to the users, in terms
of status of workflow execution, logs, progress of
execution, after the job is submitted. This can be easily
achieved in iRODS by having a dedicated micro-
service that can query WVS. A simple rule can provide
access to such a service. We have discussed several
authentication methodologies that can be implemented
with WVS, but the preferred approach is not feasible

on all systems. Hence an efficient, yet viable solution
has to be developed. Further, the design has to be
implemented and tested with other data grids and
storage systems.

7. Acknowledgements

The research results in this paper and the iRODS
technology development have been funded by NSF
SDCI 0721400, "SDCI Data Improvement: Data Grids
for Community Driven Applications" (2007-2010). We
gratefully acknowledge the funding. We also thank the
Numerical Relativity group at Center for Computation
and Technology, Louisiana State University for
providing the statistics about their simulations and data
transfers and all other scientist collaborators who
motivated the research described in the paper.

6. References

[1] HPCWire. (2010, HPCWire:TeraGrid 2010

Keynote: The Physics of Black Holes with Cactus.
Available:
http://www.hpcwire.com/features/TeraGrid-2010-
Keynote-The-Physics-of-Black-Holes-with-Cactus-
100463419.html

[2] Ocean Observatory Initiative(OOI). Available:
http://www.oceanleadership.org/programs-and-
partnerships/ocean-observing/ooi/

[3] Teragrid. Teragrid. Available: www.teragrid.org
[4] L. O. N. Initiative. LONI. Available: www.loni.org
[5] U. o. N. Dame. Makeflow. Available:

http://www.nd.edu/~ccl/software/makeflow/
[6] Douglas Thain and Christopher Moretti,

"Abstractions for Cloud Computing with Condor,"
in Cloud Computing and Software Services: Theory
and Techniques, S. A. a. M. Ilyas, Ed., ed: CRC
Press, 2010, pp. 153-171.

[7] A. R. Reagan Moore, "White Paper: IRODS:
Integrated Rule-Oriented Data System," 2008.

	

Figure 1. Workflow virtualization server architecture

Figure 2. WVS flowchart

