
Federated Observational and Simulation Data
in the NASA Center for Climate Simulation

Data Management System Project

John L. Schnase1, Glenn Tamkin2,
David Fladung2, Scott Sinno2, and Roger Gill2

1 Office of Computational and Information Science and Technology
2 NASA Center for Climate Simulation (NCCS)

NASA Goddard Space Flight Center
Greenbelt, MD 20771

Abstract
The NASA Center for Climate Simulation (NCCS)

plays a lead role in meeting the computational and data
management requirements of climate modeling and data
assimilation. Scientific data services are becoming an
important part of the NCCS mission. The NCCS Data
Management System (DMS) is a key element of
NCCS’s technological response to expanding data serv-
ices. In DMS, we are using the Integrated Rule-Oriented
System (iRODS) to integrate disparate data collections
into a federated platform upon which a wide range of
data services can be implemented. Work to date has
demonstrated the effectiveness of iRODS in managing a
large-scale collection of observational data, in managing
model output data in a cloud computing context, and in
managing NCCS-hosted data products that are published
through community-defined services such as the Earth
System Grid (ESG).

Index Keyword Terms—iRODS, data services, ar-
chive management

1. Introduction
The NASA Center for Climate Simulation (NCCS)

provides large-scale compute engines, analytics, data
sharing, long-term storage, networking, and other high-
end computing services designed to meet the specialized
needs of the Earth science communities. By doing so,
NCCS brings NASA observational and model data
products to climate research carried out by a wide range
of national and international organizations [1, 2].

Over the past year, we have examined the potential
of iRODS, the Integrated Rule-Oriented Data System, as
a means of integrating and delivering scientific data
services to the communities we serve. We call this effort
the Data Management System project, and it has re-

sulted in the NCCS Data Management System (DMS)
— a testbed collection of independent iRODS data sys-
tems comprising observational and simulation data. We
have used this opportunity to learn about iRODS and
understand how the technology might further our mis-
sion. In particular, we have tried to understand if iRODS
can provide a comprehensive, federated platform upon
which to build a collection of scientific data services
tailored to the needs of our customers.

In the following sections, we describe our experi-
ences with the DMS project, including motivating fac-
tors behind the effort, rationale for focusing on iRODS,
implementation details, lessons learned, and our future
plans regarding scientific data services in the NCCS.

2. Background
A key challenge for the Earth science community is

to find and access massive amounts of observational and
model data for use in climate and weather studies. As
Earth science applications grow in complexity and reso-
lution, they are requiring unprecedented access to large
amounts of distributed data — on the order of terabytes
and petabytes. In most cases, the data are geographically
distributed, difficult to find, and even more difficult to
access and understand [3, 4].

NCCS’s mission is expanding to include a broader
range of data and information services. First, NCCS’s
two major customers, NASA's Global Modeling and As-
similation Office (GMAO) and the Goddard Institute for
Space Studies (GISS) will be contributing products to the
Intergovernmental Panel on Climate Change (IPCC)
Fifth Assessment Report (AR5) [5, 6]. IPCC is coordi-
nating a team of 831 climate change experts working
throughout the world to produce AR5, which will be
published between 2013 and 2014 [7]. These activities
require that the NCCS provide the data management
services and analytical tools necessary for GMAO and

GISS to conduct their work and support the data publi-
cation requirements of the IPCC.

Another requirement results from the tie that exists
between NASA modeling efforts and satellite missions:
observational data provide the means for evaluating and
improving climate models. There is growing interest in
bringing the climate modeling and observational com-
munities together to work toward the goal of integrating
model outputs and observational data [8]. Goddard
Space Flight Center, being home to GMAO and many of
NASA’s Earth observing missions, is uniquely posi-
tioned to contribute to this effort, and these
observational/simulation data integration activities are
becoming an important part of NCCS’s data services
mission.

Finally, we recognize that computing requirements
for Earth system modeling will increase significantly in
the coming years [9]. We also recognize that high-end
computing requires more than increased speed. Rapid
access to large volumes of heterogeneous and geo-
graphically distributed data will be needed along with
enhanced archiving capabilities, enhanced analysis ca-
pabilities, and the capacity to manage all aspects of
high-performance scientific workflows. NCCS must
keep pace with innovations that can address these needs.

It is against this backdrop that the NCCS began
looking at iRODS as a potential element in our techno-
logical and organizational response to changing de-
mands.

3. NCCS Data Management System
The DMS project has been an effort to learn about

iRODS and understand first hand if this technology
might provide a comprehensive, end-to-end approach to
managing data and data services in the NCCS.

iRODS appealed to us for several reasons. It targets
large repositories, large data objects, digital preserva-
tion, and integrated complex processing, making it one
of the more promising technologies for grid-centric data
services for scientific applications [10, 11, 12]. We also
liked the fact that its development culture has historic
roots in digital libraries, persistent archives, and real-
time data systems research, having received support
from the National Science Foundation and National Ar-
chives and Records Administration.

Our strategy for gaining experience with iRODS
was to build four independent iRODS data systems
comprising a range of data types and circumstances
relevant to our data center. Two of the systems, mer-
ra_Zone and yotc_Zone, manage simulation data prod-
ucts; the other two, modis_Zone and isds_Zone, manage
observational data products.

Using these data systems as a testbed, we then
looked at broader issues of data integration, federation,
and generalized data services support. We also tried to
understand how iRODS might affect our operations
from an organizational perspective by considering the

level and type of technical staffing required to support
iRODS; the work involved in building, deploying, and
maintaining iRODS systems; the work required to im-
plement, test, and maintain domain- and NCCS-specific
iRODS micro-services; how we might accommodate
new and legacy data; customer impacts, including early
adopter and end user support issues; and the financial,
political, and cultural issues attached to a major new
technology initiative such as this.

In this section, we provide details about how the
four iRODS systems were implemented. We assume
general familiarity with iRODS; readers wanting to
know more will find helpful descriptions on the iRODS
website [10].

3.1. modis_Zone: MODIS Earth Observational Data

The goal for modis_Zone was to use iRODS to pro-
vide access to Moderate Resolution Imaging Spectrora-
diometer (MODIS) atmosphere data products. This ex-
ercise allowed us to gain experience with iRODS in the
setting of a production, flight mission observational data
system.

MODIS is a key instrument aboard the NASA Terra
and Aqua satellites [13]. Terra's orbit around the Earth is
timed so that it passes from north to south across the
equator in the morning, while Aqua passes south to
north over the equator in the afternoon. Terra MODIS
and Aqua MODIS are viewing the entire Earth's surface
every one to two days, acquiring data in 36 spectral
bands, or groups of wavelengths. These data will im-
prove our understanding of global dynamics and proc-
esses occurring on the land, in the oceans, and in the
lower atmosphere. MODIS is playing a vital role in the
development of validated, global, interactive Earth sys-
tem models able to predict global change accurately
enough to assist policy makers in making sound deci-
sions concerning the protection of our environment.

MODIS Adaptive Processing System (MODAPS)
Web is the web interface to the MODIS Data Processing
System, or MODAPS [14]. MODAPS generates Level 2
through Level 4 MODIS science products for distribu-
tion to the Goddard Earth Sciences Data and Informa-
tion Services Center (GES DISC) for archival storage
and to the MODIS science team for quality control [15].
MODAPS Web is one method used by the MODIS sci-
ence team to access MODIS science products. The sci-
ence team may also view reports on the status of data
processing with MODAPS Web.

The modis_Zone system, which was deployed on
the operational MODAPS servers, consists primarily of
the iRODS application, iRODS/iCAT database, and 22
storage nodes. The entire collection of MODIS products
was registered. The system was initially opened to
MODIS users via the Filesystem in Userspace (FUSE)
interface. With FUSE, the iRODS/iCAT database itself
serves as the filesystem. As a result, any database up-
dates are reflected in the iRODS collection nearly in-
stantaneously, thus eliminating the need for expensive
consistency check jobs between filesystem and database.

3.1.1. Architecture
The modis_Zone implementation is centered around

two Dell Poweredge servers, each equipped with the
following hardware resources:
• 4x Quad Core X5550 (Nahalem) processors
• 48GB DDR3 memory
• 2x 15k RPM SAS hard drives in a RAID1 (mir-

rored) array for standard OS
• 4x 15k RPM SAS hard drives in a RAID10 (stripe +

mirror) array

As shown in the figure below, one of the servers,
modrods, is attached to the EOSDIS network as
modrods.modaps.eosdis.nasa.gov in order to function as
a public interface for the modis_Zone, AADS (Atmos-
pheric Archived Data Sets). The other, modroddb1,
functions as the iCAT server for our AADS zone. Addi-
tionally, an iRODS server was installed on all 21 of
MODIS's pre-existing Atmospheric Data Storage Nodes,
or aadssn nodes. An iRODS daemon running on each of
these nodes ties them into our AADS grid.

To mitigate security concerns, all software used for
the modis_Zone has been setup to run as a dedicated
system user named iguy. This measure establishes a hard
degree of privilege separation such that iRODS lacks
any write privileges beyond what it absolutely requires.
This ensures the safety of the underlying MODIS data in
the event of a compromise or serious bug with the
iRODS software.

The following table identifies all of the software
components used within the standard modis_Zone de-
ployment of iRODS:

Name Version Notes

iRODS 2.3 Core iRODS installation. Includes i-
commands.

Extrods 1.1.0.1-beta Officially provided iRODS web UI.

PHP 5.2.14 Required for iRODS web UI.

Apache
web server

2.2.15 Required to serve iRODS web UI.

FUSE
library

2.7.4 Base FUSE library required for iRODS FUSE
interface.

Postgresql 8.4.4 Required RDBMS for iCAT.

UnixODBC 2.2.12 Required for iRODS communication to iCAT.

NCFTP 3.2.3 FTP Service backended by FUSE

CENTOS 5.5 Base Operating System

The standard iRODS configuration was installed on
each server with the exception of the extensions de-
scribed below. A simple custom database, MODCAT,
was constructed to stand alongside the iCAT database in
order to assist with the task of tracking, scheduling, and
controlling registration tasks. MODCAT tables include:
• active_jobs - Tracks what jobs are actively running

on what systems. Host, pid, start time, number of
files registered so far, and total number to be regis-
tered are all viewable here.

• files_in_irods - Tracks MODIS FileID's that have
been successfully registered into iRODS, thereby
avoiding unnecessary re-registrations.

• cfg - Stores simple configuration values, such as the
maximum number of ingest jobs that may execute
concurrently.

• job_log - A history of all ingest jobs that have been
run on the system, retained primarily for purposes of
tracking execution times, errors, etc.

A standalone bash script, iController, was written to
schedule and control registration of MODIS's large at-
mospheric data collections. iController accepts the fol-
lowing commands:
• start - Starts up iController.sh as a backgrounded

daemon. It will invoke up to maxrunning
irods_disk_ingest jobs, as defined in the cfg table
within the MODCAT database.

• stop - Stops iController.sh on the head-node (mo-
drods). This does not effect the remote ingest jobs –
they will continue to run to completion. This action
is appropriate if the head-node and only the head-
node needs to be reset or shutdown.

• halt_ingest - Gracefully terminates all active ingest
jobs on all remote nodes.

• pause_ingest - Pauses all active ingest jobs on all
remote nodes. This is useful for quick configuration
changes on the iCAT/database side of things that
require a postgres restart, or for restarting
irodsServer on the iCAT host.

• resume_ingest - Un-pause ingests previously
paused by the above directive.

• status - Displays the status of all active jobs by
dumping the contents of the active_jobs table in the
MODCAT DB.
When iController starts, it queries the MODCAT

active_jobs table to determine if new registration jobs
should be executed. If more jobs are to be launched,
iController will query the MODAPS distribution data-
base to get a list of eligible aadssn nodes that are marked
online; this prevents iController from trying to run regis-
tration jobs on a server or filesystem that has been
flagged as offline for one reason or another (maint, out-
age, etc.). iController then randomizes the list of eligible
servers and filesystems and begins launching registra-
tion jobs on the remote nodes until maxrunning is
reached. Upon completion of that goal, it will go dor-
mant for a short period, then repeat the process.

iController invokes the registration jobs by calling
another script we authored, irods_disk_ingest. This
script performs the task of actually registering (ireg) and
metadata-tagging (imeta) files. This script must be
passed a filesystem to scan for registering data, and
must be executed on the aadssn node locally storing that
data. iController handles this aspect of the task, although
it could also be done manually. In either case, this ingest
script executes as follows:
• Check to ensure no other ingest is already running

against the same filesystem (in case a manual run
was invoked while iController was already on the
case), and if not add a record for itself in the ac-
tive_jobs table in MODCAT.

• Query the MODAPS distribution database (MOD-
LADS) to get a list of FileIds stored on the target
filesystem.

• Compare the list above with what has already been
ingested on this filesystem, as recorded in the
files_in_irods table of MODCAT, and ignore FileId's
we already know to be registered.

• For each FileId, determine the physical disk path,
DataDay, CollectionId, and ESDT (product type) of
the associated file by querying MODLADS. Use this
information to register the file into an appropriate
path based on this metadata.

• Query MODLADS for other metadata of interest
and use imeta to tag the registered file within the
iRODS grid.

• Upon completion of registering all identified target
files, remove the related entry for the job from ac-
tive_jobs table in MODCAT, and create a new one
in job_log populated with relevant information, in-
cluding error count, runtime, successful ingest
count, etc.

The process of registering the entire collection of
publicly available MODIS atmospheric data products

was initially very slow. The following database indexes
were added to speed up the registration and search func-
tions:
• customidx_data_main1 on r_data_main using hash

(data_path); Improves data registration time and
search-time when searching against collections (i.e.
Directories).

• customidx_data_main2 on r_data_main (da-
ta_name); Improves search-time when searching
against data-objects (i.e. Filenames).

• customidx_meta_main1 on r_meta_main (meta_at-
tr_name,meta_attr_value,meta_attr_unit); Vastly
improves metadata-tagging time.
The following indexes were also implemented after

discussion and in coordination with the iRODS devel-
opment team. All five vastly improve search-time by
metadata attributes/values:
• idx_meta_main2 on r_meta_main (meta_attr_name).
• idx_meta_main3 on r_meta_main (meta_attr_value).
• idx_meta_main4 on r_meta_main (meta_attr_unit).
• idx_objt_metamap5 on r_objt_metamap (meta_id).
• idx_objt_metamap6 on r_objt_metamap (object_id).

The iRODS development group is planning to add
all of the new database indexes to subsequent versions
of iRODS.

3.1.2. Data
The entire catalog of MODIS Atmosphere data

products were registered [13] in this exercise. The
modis_Zone contains upwards of 54 million registered
files, representing over 630TB of data with over 300
million defined metadata values across the collections.
All registered products include the following metadata
attributes and related values:

Attribute Description Sample Val-
ue(s)

Dataday Year, month, and Julian day repre-
sented by the data.

2006339055527

ESDT Earth System Data Type (aka product-
type)

Atmosphere
UARS

OriginalAr-
chiveSet

Original collection under which the
product was produced

5

Tile Numeric tile identifier 51hhhvvv

SatelliteInstru-
ment

Instrument providing the data (MODIS
Aqua or MODIS Terra).

Terra MODIS

Additionally, all non-ancillary products contain the
following geolocation metadata: OrbitNumber, East-
BoundingCoord, NorthBoundingCoord, SouthBound-
ingCoord, WestBoundingCoord, GungLongitude1,
GRingLongitude2, GRingLongitude3, GRingLongi-
tude4, GRingLatitude1, GRingLatitude2, GRingLati-
tude3, GRingLatitude4, StartTime, and EndTime.

3.1.3. Interfaces
The modrods server functions as our public inter-

face to the modis_Zone. modrods provides web, ftp, and
iCommand interfaces to a (currently) limited audience
of evaluators/early adopters at Goddard. We also wrote
our own additional iCommand, called ilocate, in order to
emulate the behavior of the popular GNU locate appli-
cation.

The standard suite of iCommands is also available
for use with the MODIS iRODS collections. The
modis_Zone is mounted as a standard unix directory tree
via the FUSE interface. An NCFTPd server presides
over this FUSE mount, and, as such, provides an ftp-
interface into the system. The standard web interface is
also available for the MODIS collection via the URL
http://modrods.modaps.eosdis.nasa.gov.

3.2. merra_Zone: MERRA Climate Simulation Data
The goal for merra_Zone was to use iRODS to pro-

vide access to Modern Era Retrospective-Analysis for
Research and Applications (MERRA) model output
data. This exercise allowed us to gain experience in an
experimental setting using iRODS to manage simulation
data products produced by the GMAO.

Retrospective-analyses (or reanalyses) have been a
critical tool in studying weather and climate variability
for the last 15 years. Reanalyses blend the continuity
and breadth of output data of a numerical model with
the constraint of vast quantities of observational data.
The result is a long-term continuous data record.
MERRA was developed to support NASA's Earth sci-
ence objectives by applying the state-of-the-art GMAO
data assimilation system that includes many modern
observing systems in a climate framework. The
MERRA time period will cover the modern era of re-
motely sensed data, from 1979 through the present, and
the special focus of the atmospheric assimilation will be
the hydrological cycle [16].

MERRA data can be accessed from the Goddard
Earth Sciences Data and Information Services Center
(GES DISC) through a variety of mechanisms, including
OPenDAP, FTP, and GDS. The MERRA project sup-
ports NASA's Earth science interests by using the
NASA global data assimilation system to produce a
long-term (1979-present) synthesis that places the cur-
rent suite of research satellite observations in a climate
data context and providing the science and applications
communities with state-of-the-art global analyses, with
emphasis on improved estimates of the hydrological
cycle on a broad range of time scales.

3.2.1. Architecture
The merra_Zone system, which was developed on

an NCCS test server, consists primarily of the co-located
iRODS application, iRODS/iCAT database, and file
system storage. The core iRODS system consists of a
single iCAT enabled iRODS server, irodstest:

• Dell PowerEdge r710
• Two quad-core Intel Xeon x5570 processors @ 2.93

GHz
• 24 GB of on-board memory
• 1.2 TB of 15k RPM SAS drives, configured for

RAID-5

This instance serves a single zone, merra_Zone, and
is made up of a single storage resource, merra_Resc.

PyRods and EmbedPython were used to extend the
merra_Zone iRODS installation. The first extension
module, known as iRODS-NCCS, provides custom
micro-services for handling MERRA data. These micro-
services and supporting code perform MERRA-specific
validation (e.g. checks for HDF4 compliance), internal
file metadata extraction, and population of the appropri-
ate metadata iCAT tables. The design, implementation,
and documentation of these NCCS-specific policies,
mechanisms, and associated metadata produced a road-
map for specifying a tailored iRODS archive administra-
tive interface that can be extended and generalized to a
variety of client-side interfaces.

The other set of extended functionality, known as
iRODS-web UI, was created to enhance the existing
auditing capability in iRODS, and create a new report-
ing mechanism. Auditing in iRODS is rudimentary, con-
sisting of a single database table whose data can only be
viewed directly from the database. This table captures
an association of data objects, users, actions, and times-
tamps. Unfortunately, data objects and users can be
completely deleted from iRODS during normal opera-
tions, leaving historical auditing all but impossible.
Moreover, only the Ids of actions are stored in the data-
base, leaving an interested party to compare the Ids
against source files to understand their meaning. Finally,
the timestamps are stored as strings representing Unix
time, making them cumbersome to query.

Our iRODS web enhancements solve these prob-
lems by adding new tables and triggers for historical
data, lookup tables to decouple meaning from the source
code, and views to overcome inadequacies in the field
definitions. Furthermore, a new web application (built
using Java, Javascript, AJAX) was developed to display
audit history (e.g., load time, metadata updates, user
reads/downloads) and statistical usage reports (e.g., file
size/user, file size/zone, storage rate/time, etc.), which
was integrated into the existing iRODS web UI via
HTML iframes. The following table identifies all of the
software components used within this deployment of
iRODS:

Name Version Notes

iRODS 2.3 Core iRODS installation. Includes i-
commands.

Extrods 1.1.0.1-beta Officially provided iRODS web UI.

PHP 5.2.6 Required for iRODS web UI.

Apache web
server

2.2.9 Required to serve iRODS web UI.

http://modrods.modaps.eosdis.nasa.gov/
http://modrods.modaps.eosdis.nasa.gov/

FUSE library 2.7.4-1.1 Base FUSE library required for iRODS
FUSE interface.

Postgresql 8.4.2 Required RDBMS for iCAT.

UnixODBC 2.2.12 Required for iRODS communication to
iCAT.

PyRods 2.3 Community provided Python wrapper for
iRODS libraries.

EmbedPython 2.1 Community provided iRODS extension that
allows for Python based micro-service
development.

Python 2.5 Core Python environment, needed for
PyRods and EmbedPython.

iRODS-NCCS 0.2 Custom Python based micro-services for
MERRA data handling.

iRODS-web 1.0 Java application for viewing iRODS audit
history and usage statistics.

Apache Tomcat 6.0.20 Java Servlet container that serves iRODS-
web-stats application.

Java Runtime 1.6.0_17 Java runtime, required for iRODS-web-
stats.

Ncdump 4.2.5 Library for interacting with HDF files, re-
quired for iRODS-nccs

Debian 5 Base OS.

The software and hardware components, including
communication mechanisms between components, are
shown in the diagram below:

3.2.2. Data
The entire catalog of monthly MERRA products

was ingested for the purposes of the prototype mer-
ra_Zone system [13]. This resulted in the ingestion of
360 files occupying 47 GB. During the ingestion proc-
ess, the MERRA data was registered with iRODS and
stored on the filesystem. When each file was registered,
standard iRODS-based metadata was stored in the iCAT.
In addition, MERRA-specific embedded metadata was
parsed and stored. The data model provided by iRODS
was used to manage the data described thus far. Addi-
tional information was also accumulated by extending
the iRODS data model. The following metadata attrib-
utes were collected on all MERRA products:

Attribute Description Sample Value(s)

comment As required GEOS-5.2.0

title Experiment iden-
tification:
“MERRA”

MERRA reanalysis. GEOS-5.2.0

conventions file convention CF-1.0

references GMAO website
address

http://gmao.gsfc.nasa.gov/research/m
erra/

variables geophysical
quantities

Sea-level pressure, Surface pressure,
Surface Geopotential, Geopotential
height, Ozone Mixing Ratio

history CVS tag of this
release.

File written by CFIO

contact contact info http://gmao.gsfc.nasa.gov/

institution NASA Global
Modeling and
Assimilation
Office

Global Modeling and Assimilation
Office, NASA Goddard Space Flight
Center, Greenbelt, MD 20771

dimensions scale (coordinate)
information.

TIME_EOSGRID = 1, YDim_EOS-
GRID = 144, XDim_EOSGRID = 288,
Height_EOSGRID = 42

source source of data Global Modeling and Assimilation
Office. GEOSops_5_2_0

missing_value Same as _Fill-
Value. Required
for COARDS
backwards com-
patibility.

9.9999999e+14f

hdfeosversion Version of the
HDF-EOS library
used to create
this file.

HDFEOS_V2.14

To support the iRODS-web application, new con-
structs were added to the iCAT database schema. All of
the constructs are non-intrusive and do not affect core
iRODS functionality:
• Lookup table for defining action Id to name map-

ping:
ext_audit_actions

• New historical tables that shadow the main iRODS
data tables:

ext_coll_historical ext_resc_historical
ext_data_historical ext_zone_historical

• Trigger function for moving data to be deleted into
the historical tables:

tg_ext_audit_delete
• Views for aggregating historical and current data:

vw_ext_coll vw_ext_zone
vw_ext_data vw_ext_audit
vw_ext_resc

One of the main features of iRODS is the ability to
define rules and policies to be applied to data at any step
in the life-cycle of that data. In merra_Zone, the follow-
ing policies were implemented using the iRODS rule
engine:
• Validate the data – Ensure the file is an HDF file,

readable by ncdump and contains appropriate
MERRA related header fields and values.

• Move the file – If the file was added in the wrong
location, move it to the MERRA collection setup
within the instance (i.e. /merra_Zone/home/public/
merra/<year>)

• Process the metadata – Parse the HDF header and
associate metadata with the file in iRODS

• Replicate the file – If configured for replication,
copy the file to another resource for archival pur-
poses.

3.2.3. Interfaces
MERRA users can use iRODS’s standard iCom-

mand CLI as well as the iRODS/FUSE CLI to interact
with iRODS resources through a POSIX-like representa-
tion of a filesystem. FUSE file operations can be inter-
mingled with iRODS’s standard iCommands, providing
a useful mix of power and familiarity to users.

3.3. yotc_Zone: YOTC Climate Simulation Data
The yotc_Zone system was our second exercise

involving model output data. The goal for yotc_Zone
was to provide production access to Year of Tropical
Convection (YOTC) data. YOTC, a joint activity of the
World Climate Research Programme (WCRP) and
World Weather Research Programme (WWRP)/
THORPEX, is a year of coordinated observing, model-
ing, and forecasting focused on organized tropical con-
vection, its prediction, and predictability. The intent is to
exploit the vast amounts of existing and emerging ob-
servations, the expanding computational resources, and
the development of new, high-resolution modeling
frameworks [17].

The specific contributions provided by GMAO in-
clude both assimilation and forecast products produced
every six hours and at higher frequency. The GMAO
YOTC data set begins in January 2009 and will extend
through the end of the YOTC period. Selected time pe-
riods from 2008 may also be available before the com-
pletion of the YOTC project.

3.3.1. Architecture
The yotc_Zone system, which was deployed on the

NCCS Dataportal, consists of the iRODS application
and iRODS/ICAT database [18]. The Dataportal imple-
mentation use the following hardware:
• 2 Dell PowerEdge R710 Servers
• 4x 2.8GHz Quad-Core Xeon X5570 (Nehalem-

class) processors
• 42GB of DDR3 memory clocked at 1333 MHz
• 2x 73GB 15kRPM SAS Hard drives in a RAID1

(mirrored) configuration, for general OS use.
• 1x Dell Powervault RAID Array with 14x 600GB

15kRPM SAS hard drives in a RAID 10 configura-
tion, exclusively for database use.
One of the servers is active, and the other serves as

a redundant warm-spare with the capability to take over
iCAT services in the event that the active server fails.
The diagram below presents the yotc_Zone hardware
architecture.

As with the modis_Zone, all iRODS software on
the Dataportal has been setup to run as the dedicated
system user 'iguy'. This measure establishes a hard de-

gree of privilege separation such that iRODS lacks any
write privileges beyond what it absolutely requires.

YOTC data physically resides on our Discover sys-
tems, and the NCCS's current security posture only
permits YOTC data to be accessed from the Dataportal
by way of Discover NFS exports.

As such, our best available implementation method
was to scan through the NFS exported filesystems for
relevant YOTC data and register any data not yet en-
compassed within the yotc_Zone. The following scripts
were authored in order to carry out this goal:
• scan_yotc_data: Scans through the Discover NFS

mounts for YOTC data, compiling a list of every-
thing available via NFS. That listing is then com-
pared to already-existing data objects within the
yotc_Zone, and finally the script outputs a listing of
YOTC files that exist within NFS but not in the
yotc_Zone.

• register_yotc: Expects a listing of YOTC files to be
registered within the yotc_Zone, which is normally
provided by the scan_yotc_data script. Data is vali-
dated to ensure it is of the proper NetCDF4 type and
contains valid headers readable by the ncdump util-
ity. Assuming validity tests are passed, the file is
registered into the yotc_Zone, and tagged with rele-
vant metadata attributes, including runID, collec-
tionID, time and geolocation information.
The following table identifies all of the software

components used within this deployment of iRODS:

Name Version Notes

iRODS 2.3 Core iRODS installation. Includes i-
commands.

Extrods 1.1.0.1-beta Officially provided iRODS web UI.

FUSE library 2.7.2 Base FUSE library required for iRODS
FUSE interface.

Postgresql 8.3.11 Required RDBMS for iCAT.

UnixODBC 2.3.0 Required for iRODS communication to
iCAT.

PureFTPd 1.0.22 FTP Service backended by FUSE

SuSE Enterprise
Linux

11 Base Operating System

3.3.2. Data
The entire catalog of YOTC products was registered

[18]. The yotc_Zone consists of approximately 134,000
files representing over 12TB of data with approximately
four thousand defined metadata values. Files are all of
type NETCDF4.

3.3.3. Interfaces
FUSE provides the primary interface to the

yotc_Zone on the Dataportal systems. The yotc_Zone is
FUSE mounted on Dataportal nodes dp3 & dp4 to pro-
vide an ftp interface into FUSE by way of pure-ftpd.
The yotc_Zone is also FUSE mounted on nodes dp1,
dp7, and dp15 in order to facilitate publishing YOTC
into the Earth System Grid, as described below. The
standard suite of iCommands has also been installed on
all Dataportal nodes to provide an additional shell inter-
face into the yotc_Zone.

3.4. isds_Zone: ISDS Earth Observational Data
The goal for the Invasive Species Data Service

(ISDS), or isds_Zone, was to design, build, and gain
experience deploying and using a small-scale, multi-
product, application-specific iRODS system. The con-
cept being explored here is using iRODS as means for
personal- or laboratory-scale data management, which,
in addition to providing iRODS’s built-in capabilities for
data organization, would convey the added advantage of
being able to participate in an extended federation of
iRODS resources.

The target application for the isds_Zone is the Inva-
sive Species Forecasting System (ISFS). ISFS is a mod-
eling framework that allows users to load point occur-
rence field sample data for a plant species of interest and
quickly generate habitat suitability maps for geographic
regions of management concern, such as a national park,
monument, forest, or refuge [19]. Target customers for
applications built using ISFS are natural resource man-
agers and decision-makers who have a need for scien-
tifically valid, model-based predictions of the habitat
suitability of plant species of management concern. The
isds_Zone functions as a local data service for ISFS,
managing the input field sample data sets and remote
sensing environmental data sets used by ISFS’s model-
ing algorithms.

3.4.1. Architecture
The isds_Zone is designed to reside on a stand-

alone computer. In the work described here, the follow-
ing configuration was used for development and testing:
• iMac
• OS X 10.6.4 Snow Leopard
• 2.8 GHz Intel Core 2 Duo processor
• 4 GB 667 MHz DDR2 SDRAM
• 1 TB disk

The core iRODS architecture consists of a single
iCAT enabled iRODS server. This instance serves a sin-
gle zone, isds_Zone, and is made up of a single storage
resource, isds_Resc.

As shown in the figure below, the base system con-
sists of the Mac OS X 10.6.4 (Snow Leopard) operating
system, Python 2.6.1, and the Geospatial Data Abstrac-
tion Library (GDAL) 1.7.2. GDAL is open-source soft-
ware to perform geospatial operations on image files. In
our implementation, the isds_Zone uses a Snow Leopard
binary installation available from KyngChaos that in-
cludes Python/GDAL bindings and all GDAL’s depend-
encies: UnixImageIO, PROJ, GEOS, and SQLite3.
GDAL must be installed to a base system in /Library/
Frameworks, specific to OS X.

isds_Zone was built using iRODS 2.3. The installa-
tion requires run-time configuration during the
isds_Zone install process. Users are directed through
this simple procedure by the ISDS installer. Building
iRODS on the base machine requires the Apple Devel-
oper Environment.

Python, GDAL functions, and bash scripts were
used to extend isds_Zone installation. The collection of
program extensions, known as the ISDS_iRODS_Inter-
face, provide custom tools for handling MODIS time-
series data products of particular importance to the ISFS
application. The ISDS_iRODS_Interface provides the
fundamental installation storage, retrieval, and process-
ing procedures common to many types of observational
data and geospatial applications, as shown below.

ISDS_create extracts metadata from environmental
predictors before storing in iRODS. It depends on
GDAL/Python bindings to read metadata from predic-
tors, ISDS_iRODS_Interface to store files and metadata
in iRODS, and iRODS for data storage. ISDS_read re-
trieves predictors from iRODS. It depends on clipRepro-
ject to trim predictors to a user-defined boundary and
reproject them to UTM coordinates. It uses ISDS_i-
RODS_Interface to retrieve files from iRODS. clipRe-
project uses GDAL to trim and reproject the predictors.

ISDS_install is a Unix shell script to set up the ISDS
environment on a user’s base machine. In summary:
• ISDS_create extracts metadata from comma sepa-

rated values (CSV) files and environmental predic-
tors before storing in iRODS.
Command Summary: ISDS_create [options] <path
to input file>
Options:

-a “annotation text” associates free text with the
input file and stores it as metadata
-h prints a summary of the ISDS_create interface

• ISDS_read retrieves CSV files and predictors from
iRODS.
Command Summary: ISDS_read [options] <i-
RODS file name>
Options:

-d destination_directory indicates the file system
location to which to write the retrieved file
-d_epsg=EPSG_code indicates the user wants
the retrieved predictor in a specific projection;
ISDS_read will automatically perform the repro-
jection
-h prints a summary of the ISDS_read interface
--ulx=upper-left_x indicates the user wants the
retrieved predictor clipped to a specific rectangle
in ground coordinates; each ordinate, ulx, uly,
lrx, lry must be provided; ulx is the westernmost
ordinate of the rectangle
--uly=upper-left_y indicates the user wants the
retrieved predictor clipped to a specific rectangle
in ground coordinates; each ordinate, ulx, uly,
lrx, lry must be provided; uly is the northernmost
ordinate of the rectangle
--lrx=lower-right_x indicates the user wants the
retrieved predictor clipped to a specific rectangle

in ground coordinates; each ordinate, ulx, uly,
lrx, lry must be provided; lrx is the easternmost
ordinate of the rectangle
--lry=lower-right_y indicates the user wants the
retrieved predictor clipped to a specific rectangle
in ground coordinates; each ordinate, ulx, uly,
lrx, lry must be provided; lry is the southernmost
ordinate of the rectangle

ISDS_iRODS_Interface wraps the iRODS iCom-
mands iput, iget, and imeta, adding fail-safe error han-
dling and bundling repetitive processes to provide a
single-command application programming interface to
the higher-level ISDS applications ISDS_create and
ISDS_read.

The following table identifies all of the software
components used within this deployment of iRODS:

Name Version Notes

ISDS 1 Interface to manage raw data for envi-
ronmental modeling

iRODS 2.3 Core iRODS installation including i-
commands

Postgresql 8.4.2 Required RDBMS for iCAT

GDAL 1.7.2 Required image processing s/w for
ISDS

GDAL/Python 1.7.2 Python bindings for GDALʼs API

OS X Snow
Leopard

10.6.4 Base operating system

Python 2.6.1 Primary ISDS application development
language

3.4.2. Data
The isds_Zone system is designed to handle a vari-

ety of Earth observational and environmental data sets
that can be used as predictors (independent variables) in
the regression analyses often used in ecological model-
ing. However, the most important of these, and the col-
lection that is the focus of this work, is a set of phenol-
ogy metrics that have been estimated based on tempo-
rally smoothed and spatially gap-filled MODIS vegeta-
tion indices (VI) over the North American continent.
The phenology algorithm has been applied to three
MODIS vegetation indices: Leaf Area Index (LAI),
Normalized Difference Vegetation Index (NDVI), and
Enhanced Vegetation Index (EVI). The spatial coverage
of this phenology data is more complete than other re-
motely sensed data based phenology products and has
become particularly important to invasive species habi-
tat suitability modeling [20].

Other important data managed by isds_Zone are
bioclimatic variables derived from monthly temperature
and rainfall values. These are often used in ecological
niche modeling. The bioclimatic variables represent
annual trends (e.g., mean annual temperature, annual
precipitation) seasonality (e.g., annual range in tempera-
ture and precipitation) and extreme or limiting environ-
mental factors (e.g., temperature of the coldest and

warmest month, and precipitation of the wet and dry
quarters) [21].

Other predictor layers are generated from geo-
graphic information system (GIS) data, such as Vegeta-
tion Continuous Fields (VCF) obtained from the Univer-
sity of Maryland, and aspect, elevation, and slope con-
structed from the USGS National Elevation Dataset
(NED) and Shuttle Radar Topography Mission (SRTM).

One of the main features of iRODS is the ability to
define rules and policies to be applied to data at any step
in the life-cycle of that data. In isds_Zone, the following
policies were implemented atop iRODS, but may be
integrated using the iRODS rule engine:
• Validate the data – Ensure the file is a valid field

sample or predictor file containing appropriate ISDS
related header fields and values.

• Process the metadata – Parse field sample and pre-
dictor files and associate metadata with the file in
iRODS.

• Read the data – Retrieve field sample and predictor
files, clipping or reprojecting predictors as requested
by users.

3.4.3. Interfaces
isds_Zone users can use the iRODS standard

iCommand CLI, the iRODS/FUSE CLI, and the iRODS
Rich Web Browser to interact with iRODS resources
through a POSIX-like representation of a filesystem.

4. Data Management System Extensions
These four systems provide a testbed for exploring

the use of iRODS to handle specific challenges that we
face in the NCCS. Here we briefly describe three ex-
ploratory uses of the testbed that could provide a means
of addressing those challenges.

4.1. Observational/Simulation Data Integration
As the title of this paper suggests, integrated access

to heterogeneous data is a topic of increasing interest to
us, particularly as it applies to coordinated access to
observational data and climate model outputs. The
iRODS federation mechanism provides one way of ac-
complishing this integration.

Federation is a feature of iRODS in which separate
iRODS zones, can be integrated. When zones 'A' and 'B'
are federated, they share otherwise isolated data collec-
tions. By eliminating the need to explicitly switch an
iRODS client between distinct instances, federation al-
lows perusal or download of data from multiple iRODS
systems through a single interface.

For the DMS project, two zones were federated, an
‘observational’ zone consisting of MODIS data and a
‘simulation’ zone consisting of YOTC data. This
observational/simulation federation essentially united

separate data collections while providing a single con-
solidated view to the collections.

Each zone in a federation continues to be a separate
iRODS instance, administered separately. However,
users in multiple zones, if given permission, will be able
to access data and metadata in the other zones. No user
passwords are exchanged, as each system will, in a se-
cure manner, check with the user's local zone for authen-
tication when the user connects.

The zone name is at the root of each collection
name, so for most interactions, the zone is found via the
path name, the logical name. For example, /simulation/
home/rods/collection1, is in a zone called ‘simulation’.
Once configured, the iRODS system will contact the
servers in zone ‘simulation’ to access files in
/simulation/home/rods/collection.

In the context of the DMS project, our experimental
observational/simulation federation consists of the fol-
lowing components:
• YOTC data - Hosted on the Discover cluster and

registered in the simulation_Zone
• MODIS data - Hosted on the Dataportal and regis-

tered in the observational_Zone
• YOTC iRODS server - iRODS server and iCAT

installed in the NCCS Data Portal that contains
YOTC registration data and embedded metadata

• MODIS iRODS server - iRODS server and iCAT
installed in the NCCS Data Portal that contains
MODIS registration data and embedded metadata

• iCommand interface – iRODS command-line inter-
face for federation administration and data manage-
ment

In this case, federated instances exist locally on
NCCS’s Dataportal System. One instance is the
yotc_Zone described above, and the other a local
modis_Zone, running on the following hardware:
• 1 HP ProLiant Bladeserver 460c, equipped with 2x

Quad Core Intel Xeon 2.8 GHz processors
• 8GB DDR3 Memory
• 2x 73GB SAS 10k RPM drives

The basic software configuration for the federated
zones is listed below.

Name Version Notes

iRODS 2.3 Core iRODS installation. Includes i-
commands.

Extrods 1.1.0.1-beta Officially provided iRODS web UI.

FUSE library 2.7.2 Base FUSE library required for iRODS
FUSE interface.

Postgresql 8.3.11 Required RDBMS for iCAT.

UnixODBC 2.3.0 Required for iRODS communication to
iCAT.

SuSE Enterprise
Linux

11 Base Operating System

In order to establish the federation, the zone ad-
ministrators use iadmin to define each remote zone and
to create remote-zone user entries. For DMS, federated
two individual zones within the Dataportal System, the
simulation_Zone (dpZone) and observational_Zone
(dpZone2):

In the simulation_Zone (YOTC):
iguy@dp3:~> iadmin mkzone dpZone2 remote
dp16:1247

In the observational_Zone (MODIS):
iguy@dp16:~> iadmin mkzone dpZone remote
dp3:1247

At this point, the users in the observational_Zone
can access collections in the simulation_Zone.

4.2. Earth System Grid Integration
Another challenge for us is finding a way to man-

age NCCS-hosted data products as independent collec-
tions in our archive while simultaneously supporting the
delivery of those products through community-defined
data services. For example, Earth System Grid (ESG) is
the system through which AR5 data will be distributed
to the IPCC community. ESG integrates supercomputers
with large-scale data and analysis servers located at
various national labs and research centers located
throughout the world [22]. We will publish GMAO and
GISS AR5 contributions through an ESG data node lo-
cated in the NCCS.

As shown below, the iRODS FUSE implementation
is one way to abstract archive management from the
specific requirements of a data service such as ESG.
FUSE is a free Unix kernel module that allows non-
privileged users to create their own file systems without
editing the kernel code. This is achieved by running the
file system code in user space, while the FUSE module
provides a "bridge" to the actual kernel interfaces.
iRODS FUSE allows normal users and applications to

access data stored in iRODS using standard UNIX
commands (ls, cp, etc) and system calls (open, read,
write, etc).

In the DMS project, we were able to effectively
register and publish iRODS-controlled testbed data
through the Earth System Grid using iRODS FUSE.

4.3. merra_Zone in the Cloud
Finally, we used the DMS project as an opportunity

to build a prototype iRODS data system in the cloud
using NASA Cloud Services [23].

NASA Cloud Services provide a progressive, effi-
cient and highly-scalable containerized cloud computing
infrastructure. Instead of procuring servers, software,
data center space, and network equipment, users can
stand up computing storage and virtualization instances
in an accessible and affordable pay-as-you go environ-
ment. NASA Cloud Services enhance NASA’s ability to
collaborate with external researchers by providing con-
sistent tool sets and high-speed data connections. NASA
Cloud Services are currently being used for education
and public outreach, for collaboration and public input,
and also for mission support.

NASA Cloud Services are based on Amazon's EC2
cloud model. They provides Infrastructure as a Service
(IaaS), which is an aspect of cloud computing that cen-
ters on the delivery of platform virtualization as an al-
ternative to traditional data center installations. For this
analysis, a base Ubuntu (9.10) image was modified for
the IPCC prototype configuration, and was paired with a
60 GB Elastic Block Store (EBS) volume, which is a
model of decoupling physical storage volumes from
instances in a modular way.

We essentially implemented the merra_Zone system
as described above in the NASA cloud. The
“irodscloud” host is configured as follows:
• 1 Nebula m1.large cloud instance
• 4 virtualized (KVM/QEMU) Intel processors @

2.26 GHz
• 4 GB of virtualized physical memory
• 10 GB of virtualized local storage
• 60 GB of virtualized Elastic Block Storage (EBS)

The following table identifies all of the software
components used within this deployment of iRODS:

5. Discussion
We learned many lessons in the course of the DMS

project. Three topics in particular emerged as prominent
factors in our assessment of iRODS: rule and micro-
service development, namespace virtualization, and
iCAT performance at production scale.

5.1. Micro-Service Development
Policies and the mechanisms that implement them

are at the heart of any data management framework.
iRODS achieves its power and adaptability by using
arbitrarily-defined server-side rules and micro-services
to specify policies and mechanisms.

Rules are expressed as Event:Condition:Action-
set:Recovery-set statements. The actions taken by a rule
are performed by micro-services — small, well-defined
procedures (generally written in C, in our case written in
Python) that perform various tasks relating to the data
referenced by the rule. Server-side workflows are cre-
ated by chaining rules together, and rules themselves
can specify rules in a nested hierarchy. Changes to a
policy or process can be made at any time with the addi-
tion of new rules.

This is a powerful and effective approach. But one
of the more interesting issues we dealt with was how to
think about iRODS rules in a larger, organizational con-
text. In a perfect world, we would like to have clearly
stated policies associated with clear, self-documenting
mechanisms — an approach that would streamline the
development process; facilitate communication among

developers, systems administrators, and users; and en-
able continuity of understanding and technical support
in the face of inevitable staff changes. In our experience,
it has not been easy to master rules.

We took a staged approach to ease our entry into the
world of rule and micro-service development. As de-
scribed above, we developed several custom extensions
to handle data in the merra_Zone and isds_Zone sys-
tems. In both cases, we first scripted operations at a high
level using iCommands. Only after prototyping and
evaluating operations at this higher level did we attempt
coding at the level of rules and micro-services.

The advantage of this approach is that high-level
scripting allowed us to combine policies and mecha-
nisms in a readable, easily understood context. It also
allowed us to test our implementation using iRODS’s
robust suite of iCommands. The disadvantage, of course,
is that these operations exist outside of the iRODS sys-
tem and essentially function as custom interfaces, inac-
cessible to other iRODS clients, such as the Rich Web
Browser. They also were inefficient, requiring numerous
calls to iput, imeta, etc. to implement each operation.

The mapping of scripted functions to rules and
micro-services was at times challenging. The design of
the iRODS rule engine has been heavily influenced by
logic programming, drawing on concepts such as recur-
sive rule expression and forward rule chaining. It also
builds on concepts from fields such as active databases,
transactional systems, business rule systems, constraint
management systems, service oriented architectures, and
program verification. Its current state reflects both the
power and complexity of this diverse inheritance, and it
is probably fair to say that the syntax and semantics of
the iRODS rule engine is continuing to evolve. Taken
together, these factors make for a steep learning curve.

If there was a lesson to be learned, it would be that
overall risk — perceived or real — and general anxiety
about a wholesale organizational commitment to iRODS
is elevated by its rule engine complexity. One is unlikely
to find experienced people to staff a new development
effort, which implies that there may be a fairly long
ramp-up as a new team hones is skills with iRODS.
Once the investment is made in building a technical
team, care must be taken to enable continuity of support
should that team leave. Clearly, our efforts to build sta-
ble infrastructure around iRODS will advance in direct
proportion to the degree to which rule and micro-service
development can be simplified and stabilized.

5.2. Namespace Virtualization
Virtualization is a key aspect of iRODS. The

iRODS architecture decouples clients from dependen-
cies on physical systems through multiple levels of ab-
straction, having users and applications interact with
data through well-defined sets of logical namespaces. In
dealing with this aspect of iRODS, we were reminded
about the primacy of the filesystem in this domain: the
vast majority of the storage and file manipulations per-
formed by climate researchers relies on classic filesys-

Name Version Notes
iRODS 2.3 Core iRODS installation. Includes i-

commands.
Extrods 1.1.0.1-beta Officially provided iRODS web UI.

PHP 5.2.10 Required for iRODS web UI.

Apache web
server

2.2.16 Required to serve iRODS web UI.

FUSE library 2.7.4-1.1 Base FUSE library required for iRODS
FUSE interface.

Postgresql 8.4.2 Required RDBMS for iCAT.

UnixODBC 2.2.12 Required for iRODS communication to
iCAT.

PyRods 2.3 Community provided Python wrapper for
iRODS libraries.

EmbedPython 2.1 Community provided iRODS extension
that allows for Python based micro-
service development.

Python 2.6.4 Core Python environment, needed for
PyRods and EmbedPython.

iRODS-NCCS 0.2 Custom Python based micro-services
for MERRA data handling.

iRODS-web 1.0 Java application for viewing iRODS
audit history and usage statistics.

Apache Tomcat 6.0.20 Java Servlet container that serves
iRODS-web-stats application.

Java Runtime 1.6.0_17 Java runtime, required for iRODS-web-
stats.

Ncdump 4.1 Library for interacting with HDF files,
required for iRODS-nccs

Ubuntu 9.10 Base OS.

tem methods and constructs. Likewise, existing models,
analysis tools, applications, and data services generally
set atop POSIX-compliant filesystems.

This makes the iRODS FUSE mechanism particu-
larly important to us, and FUSE filesystem virtualization
appears to be the quickest path to integrating iRODS
into existing NCCS processes. It provides a way to sepa-
rate archive management from the idiosyncrasies of data
services that need access to iRODS-managed collec-
tions, and it provides an interface and way of working
that is familiar to our users.

Fortunately, our experiences with modis_Zone,
yotc_Zone, and tests involving the Earth System Grid
suggest that using FUSE for read-only delivery of data
to existing filesystem-based services is fast enough to
accommodate publication and distribution needs. Writ-
ing data to iRODS-managed collections through FUSE,
however, is another matter. The write performance of
user space filesystems is inherently and notoriously
slow. Regardless of how effective FUSE is in the short
term, the full effectiveness of iRODS will clearly re-
quire other mechanisms. We will need to help our cus-
tomers become familiar with more direct access ap-
proaches to iRODS collections, such as the iCommands
and Rich Web Browser, and perhaps even create inter-
faces tailored to their specific needs.

5.3. iCAT Performance and Optimization
Another crucial element of an iRODS system is its

metadata catalog, called the iCAT. iCATs store descrip-
tive state information about the data objects in iRODS
collections in an underlying DBMS, in our case, Post-
greSQL. Since virtually every key interaction with an
iRODS system involves the iCAT, understand its behav-
ior and performance is of interest.

Our intent with modis_Zone was to gain iCAT ex-
perience with a large, production data collection. There
are 54 million files in modis_Zone associated with over
300 million metadata values. Files were registered
across 20 storage nodes at an initial rate of about 25 files
per second (a little over two million files per day). After
a million files, the process slowed to about one file per
second. We were able to restore performance by creating
multicolumn b-tree indexes for the iCAT.

After the registration process was complete, we
experienced significant performance problems on imeta
searches, which could take as long as fifteen to twenty
minutes over the entire collection. Here again, perform-
ance was improved by adding indexes. The one column
indexes described above enabled imeta searches taking
two seconds or less. These indexes have been added to
the base iRODS software suite as of Version 2.4.1.

The only remaining size-related frustration involves
the Rich Web Browser: it takes a long time to populate
the pull-down menu of attribute names, making it unus-
able for large collections as currently configured. The
Browser issue notwithstanding, our impression is that

the iRODS iCAT can deliver reasonable performance on
the types of collections that we will manage, but that
obtaining that performance will require straight-forward
optimizations to tailor the iCAT to the local context.

6. Conclusions
The figure below illustrates our long-term goal for

data services in the NCCS. Ultimately, we would like to
be able to provide full information lifecycle manage-
ment to diverse collections within a uniform, coordi-
nated environment. This environment — a production
NCCS Data Management System — would be accessi-
ble through direct interfaces, would provide storage for
analysis and visualization applications, and would be a
platform on which various data servers, tailored to the
needs of a diverse and growing customer base, could set.

We have been impressed with the potential that
iRODS offers for building an integrated capability such
as this. This year, we will use the arrival of IPCC AR5
data as an opportunity to use iRODS in an operational
setting. Specifically, we plan to develop the policies,
mechanisms, rules, and micro-services to manage IPCC
data in the NCCS archive and use the iRODS FUSE
mechanism to accommodate Earth System Grid publica-
tion of GMAO and GISS AR5 data products.

Controlling risk as we adopt this technology is still
a major concern, and this staged, incremental approach
is one element of our mitigation strategy. Simplifying
the approach to rule and micro-service development and
support also is a high priority for us, and we will be
looking for opportunities to work with the iRODS de-
velopment team and the iRODS community to foster
greater use of Python, for example, for scientific appli-
cations such as ours.

The development of an archive administrators
toolkit, or interface, tailored to the needs of the NCCS
(and perhaps more generally to other climate data cen-
ters) also may become an element of our work program.
And time permitting, further consideration of iRODS in
the context of cloud computing will undoubtedly be part
of our future work.

Acknowledgments
We thank our colleagues in the NCCS for their many

contributions to this effort. Dan Duffy, Tom Schardt,
Ellen Salmon, Lynn Parnell, Phil Webster and Ed
Masuoka were instrumental in making the DMS project
possible and provided many helpful insights. Yingshuo
Shen, Tom Maxwell, and Laura Carriere offered impor-
tant input about Earth System Grid. Thanks also to the
iRODS development team at the University of North
Carolina at Chapel Hill for their indispensable technical
advice. This work has been funded in part by the Ameri-
can Recovery and Reinvestment Act of 2009.

References
[1] NASA Center for Climate Simulation (NCCS). htttp://
www.nccs.nasa.

[2] NASA Science Mission Directorate. 2010. Responding to
the Challenge of Climate and Environmental Change: NASA's
Plan for a Climate-Centric Architecture for Earth Observa-
tions and Applications from Space. http://science.nasa.gov/me
dia/medialibrary/2010/07/01/Climate_Architecture_Final.pdf.

[3] Allen, R.B. 2010. Management and Analysis of Large Sci-
entific Data Sets. http://ww.grids.ac.uk/NWGrid/LargeData.
[4] Easterbrook, S. 2010. Climate Change: A Grand Software
Challenge. http://www.easterbrook.ca/steve/?p=1858.
[5] NASA Global Modeling and Assimilation Office (GMAO).
http://gmao.gsfc.nasa.gov.
[6] NASA Goddard Institute for Space Studies (GISS). http://
www.giss.nasa.gov.
[7] Intergovernmental Panel on Climate Change (IPCC).
http://www.ipcc.ch.
[8] Teixeira, J., Waliser, D., Crichton, D., Ferraro, R., Hyon, J.,
Gleckler, P., Taylor, K., Williams, D., Lee, T., Kaye, J.,
Maiden, M., Berrick, S. 2010. NASA Observations for the
IPCC. http://www.clivar.org/organization/wgcm/wgcm-14/talk
s/061010/NASA_obs.pdf.
[9] NASA Science Mission Directorate. 2008. Computational
Modeling Capabilities Workshop Final Report. http://www.
hec.nasa.gov/workshop08/final_report.pdf.
[10] Integrated Rule-Oriented Data System (iRODS). http://
www.irods.org.
[11] Rajasekar, A., Wan, M., Schroeder, W., and Moore, R.W.
2009. Policy virtualization using Rule-based Data Grids.
http://www.irods.org/pubs/DICE_Rule-based-grids.pdf.
[12] Moore, R.W., Rajasekar, A., and Marciano, R. (Eds.).
2010. Proceedings of the iRODS User Group Meeting 2010:

Policy-Based Data Management, Sharing, and Preservation,
(March 24-26, Chapel Hill, NC), 77 pp.
[13] Moderate Resolution Imaging Spectroradiometer
(MODIS). http://modis.gsfc.nasa.gov.
[14] MODIS Atmosphere Data Products (MODAPS).
http://modis-atmos.gsfc.nasa.gov.
[15] Goddard Earth Sciences Data and Information Services
Center (GES DISC). http://daac.gsfc.nasa.gov.
[16] Modern Era Retrospective-Analysis for Research and
Applications (MERRA). http://gmao.gsfc.nasa.gov/research/
merra/intro.php.
[17] Year of Tropical Convection (YOTC). http://gmao.gsfc.
nasa.gov/projects/yotc.
[18] NCCS Dataportal. http://www.nccs.nasa.gov/dataportal_
front.html.
[19] Schnase, J.L., Most, N., Gill, R., and Ma, P. 2009. The
Invasive Species Forecasting System: A workflow-oriented
decision support framework for managing biological inva-
sions. In: Proceedings of the 17th International Conference on
Geoinformatics (Geoinformatics 2009), (August 12-14, Fair-
fax, VA), 14 pp.
[20] Bin, T., Morisette, J.T., Wolfe, R.E., Feng, G., Edere,
G.A., Nightingale, J., and Pedelty, J.A. 2008. Vegetation phe-
nology metrics derived from temporally smoothed and gap-
filled MODIS data. In: Proceedings of the Geoscience and
Remote Sensing Symposium (IGARSS 2008), (July 7-11, Bos-
ton, MA), pp. III-593 - III-596.
[21] Bioclamtic Data . http://www.worldclim.org/bioclim.
[22] Earth System Grid (ESG). http://www.earthsystemgrid.
org/about/overview.htm.
[23] NASA Cloud Services. http://nebula.nasa.gov.

