

ARIZONA STATE UNIVERSITY

Relationship Extraction from Documents

Chitta Baral Professor Arizona State University

Why?

- Goal: Use text mining and automated reasoning to help research in sciences
- The particular domain area we have focused on: Molecular Biology

Questions of our interest – at a high level

- Semantic Search of documents
- Explain (a set of) observations; make a diagnosis based on observations
- Predict the impact of particular interventions
- Design a drug therapy.
- Generate hypothesis regarding hitherto unknown aspects of a bio-process.

Text Mining: two aspects

- Extract facts from text
 - Automatics Extraction
 - Collaborative development of databases
- Obtain more general knowledge from the text

Extracting Facts from Text

 For example, some of the azole antifungals are inhibitors of both P450 enzymes and P-glycoprotein (Nivoix et al., 2008), whereas rifampicin is an inducer of both CYP3A4 and P-glycoprotein (Katragadda et al., 2005).

Extracting more general knowledge from text

- While the importance of metabolism in many drug-drug interactions is beyond question, it has become increasingly apparent in recent years that inducers and inhibitors of some of the enzymes of drug metabolism can also affect drug transporter proteins.
- For example, some of the azole antifungals are inhibitors of both P450 enzymes and P-glycoprotein (Nivoix et al., 2008), whereas rifampicin is an inducer of both CYP3A4 and P-glycoprotein (Katragadda et al., 2005). (page 2)
- Hence, interaction can sometimes involve drug-metabolizing enzymes, drug transporters, or both.

Extracting facts from text: protein-protein interactions

Yappie – Work flow

Yappie – Initial phrases

- >120,000 snippets that discuss PPI, such as
 - .. P suppressed P ..

.. P helps regulate P ..

.. P recruits the adapter molecule P ..

.. P binding domain of P ..

.. P binds directly to the extracellular domain of P ..

.. P associates with a novel P dependent kinase, P ...

.. while P activation reduces P expression/activation ..

.. P was previously found to interact with the KRAB silencing domain of P and with the P ..

Yappie - Phrase alignment

		<u> Ir</u>	itial	phras	<u>e 1 –</u>		\rightarrow			
3			DT	PTN	VB	PRP	ADJ	PTN	CC	PTN
Initial phrase		0	0	0	0	0	0	0	0	0
	PTN	0	0	4	0	0	0	4	0	4
	VB	0	0	0	7	6	0	0	2	0
	PRP	0	0	0	6	8	-1	0	0	0
Ļ	PTN	0	0	4	5	6	5	11	5	4

Initial phrase 1: DT PTN VB PRP ADJ PTN CC PTN Initial phrase 2: PTN VB PRP - PTN

Yappie – Multiple phrase alignment

Initial phrases:

protein	strongly	binds	to		protein
protein		interacts	with	the	protein
protein	never	binds	to		protein
protein		regulates		the	protein
protein		inhibits		a	protein

Consensus pattern:

PROTEIN {strongly,never} {binds,,}	<to, with=""></to,>	{the, a}	PROTEIN
------------------------------------	---------------------	----------	---------

would exactly match the sentence (part):

protein	binds	to	the	protein
---------	-------	----	-----	---------

Performance: PPI extraction

- #4 system in **BioCreative 2** for protein-protein interactions (2007)
- f-measure of 24%, respectively (1st: 30%)
- 20 participants
- #1 system for PPIs in BioCreative II.5 (2009)
- 30% f-score (2nd: 23%)
- 15 participants
- >100 submissions overall (multiple configurations per participating team allowed)
- Main Person leading this at ASU: Joerg Hakenberg

BioCreative II.5 challenge

- Participated 2 of 3 tasks
 - INT: Interactor normalization task (1st)
 - IPT: Interaction pair task (1st)
- <u>http://www.biocreative.org/news/chapter/</u> <u>biocreative-ii5/</u>
- Main person in our group on this: Joerg Hakenberg

SNPshot of PubMed

SNPshot: Aim

- collect information on genes regarding
 - genetic variants / mutations / alleles,
 - associations with diseases,
 - drug interactions (transport, metabolism; activation, inhibition),
 - allele frequencies and populations
- large-scale, fully automated
- from Medline abstracts
- link to evidence and cross-link to other databases for validation and further information

Entities &

- genes & proteins
- drugs
- diseases
- genetic variants / mutations
- SNPs / alleles / haplotypes
- populations & frequencies
- MutationFinder [CBR+07], 700 regular expressions; added 100 more
- BANNER [LG08@PSB]

relations

Gene - drug Gene - disease Drug - disease Gene - variant Gene - allele Gene - allele Gene - RefSNP Frequency - allele Frequency - variant Frequency - variant Variant - population Allele - population

Normalization

- map genes, drugs, diseases to database identifiers (EntrezGene, Uniprot; PharmGKB, DrugBank; UMLS)
- canonical form for variants (HGVS: c.76A>T)
- map SNPs to RefSNP/dbSNP
- populations to canonical form
- plain dictionary matching for drugs & diseases
- GNAT for genes & proteins [HPL+08]
- heuristics for all others

- PubMed <u>abstracts</u>
- PharmGKB: 3614 referenced PubMed citations
- 40 VIP PGx genes from PharmGKB
- expanded using PubMed's "Related Articles" functionality = 26,000 additional abstracts
- PubMed query => 30,000 abstracts
- around 58,000 abstracts

(phenotype OR haplotype OR genotype OR mutation OR allele OR variant OR SNP OR polymorphism) AND (disease OR risk OR disorder OR malfunction) AND (drug OR pharmalogical OR metabolize OR inhibit OR bioavailability OR orally) AND human[MH] AND hasAbstract,

Relationship extraction

- mostly simple heuristics
- sentence-level co-occurrence + keywords (for different kinds of relations: [CKY+08])

	Total relations per set			
Method	3,614	55,095		
Co-occ with keywords	$14,\!968$	186,983		
Simple co-occ	$2,\!195$	$37,\!949$		
Respectively	97	637		
LCA sub-tree	795	5,166		
Co-occ for 1:n	3,101	24,085		
Co-occ for m:n	1,524	9,314		
Low confidence co-occ	1,790	11,588		
Total	24,470	275,722		

Generalizing text extraction: Querying Parse Trees

Motivation

- Traditional information extraction technique works as a pipeline
 - Perform grammar parsing, named entity identifier, named entity recognizer, normalization, extraction
- Information extraction is seen as a one-time process
- Common issues in the development of extraction system
 - What if we change our extraction goals?
 - e.g. extract gene-disease associations rather than proteinprotein interactions
 - What if we have an improved NER system?
 - Which of the extraction patterns work well?

Motivation

- Information extraction should *not* be seen as a pipeline or one-time process
- With the pipeline approach, need to re-extract from the entire text collection
 - Computationally expensive!
- But change of extraction goals or improvement of components *does not affect* the entire text collection
 - if we extract gene-disease associations, only need to extract from sentences that have gene and disease mentions
 - if we deploy a new NER, only sentences that are newly tagged are needed to perform re-extraction

What's needed for extraction?

- To minimize reprocessing, we need to store parse trees and semantic information
 - a database is ideal to store information that we need to perform extraction
- Extraction should be seen as generic
- Can we use database queries as information extraction?
 - Hard to express syntactic patterns with SQL
 - We need a new query language for extraction, called parse tree query language (PTQL)

- Stores dependency linkages and constituent trees
- Linkage: shows the dependencies between words in a sentence

- S: connects subject-noun
- E: verb-modifying adverbs
- O: transitive verbs to direct or indirect objects

- Constituent trees are represented "vertically"
- Linkages are represented "horizontally"

Tree Database

School of Computing and Informatics

- Represents a document with its sentences and parse trees in a hierarchy
- Uses a labeling scheme
- Certain important properties:
 - Given a parse tree, for any pair of nodes *q* and *p*,

lra A. Fulton

ngineering

- q is a <u>child</u> of p iff q.pid = p.id
- *q* is a <u>descendant</u> of *p* iff *q*.left ≥ *p*.left, *q*.right ≤ *p*.right and *q*.depth
 p.depth
- q <u>immediately follows</u> p iff the left most child of q immediately follows the right most child of p, i.e., q.left = p.right
- $q \text{ <u>follows</u> } p \text{ iff } q.left \ge p.right$

PTQL query syntax

- A PTQL query has 4 components in this format
 - tree pattern : link condition : proximity condition : return expression
- Tree pattern
 - X{...Y...}: Y is a node in the subtree with X as the root
 - /: parent/child relation in the constituent tree
 - //: ancestor/descendant relation in the constituent tree
 - Example: //S{//N[tag='P']->/VP{/V[tag='I']->//N[tag='P']}}

Other applications of PTQL ARIZONA STATE UNIVERSITY

Feature extraction

- Find all MeSH terms and their frequencies among documents that contain recognized gene names.
 - //DOC(x) { //?[tag='GENE'] } : : : count(x.mesh), x.mesh

Normalize gene names

- Find articles x of some author in which gene y is mentioned.
 - //DOC(x)[author='John Smith']{//?[tag='GENE'](y)}::: distinct x.value, y.value

Normalize gene names to species

- Find gene-species relations based on some grammatical patterns, such as gene and species occurring in the same noun phrase.
 - //S{//NP{//N[value='human']=>//?[tag='GENE'](x)}} ::: x.value

Boosting recall for gene name recognizer

- Suppose "p53" has been tagged as a gene name in some documents, find "p53" such that "p53" is not tagged as a gene name.
 - //DOC(x){//STN(y){//?[tag!='GENE' and value='p53']}}::: x.value, y.value

Can we have a system/language that utilizes syntactic dependencies for IR and IE tasks?

- **Our solution**: integrate IR and a parse tree database with a query language called IR+PTQL
 - database stores parse trees (with syntactic dependencies)
 - allows IR and parse tree database (PTQL) to work independent of each other
- Goals: Flexible use of IR and database
- application-independent
- keep both subsystems (IR and parse tree database)
 "untouched" with the use of a *middleware*
- utilize syntactic dependencies in IR
- improve efficiency for information extraction (IE)

IR+PTQL by example

- Retrieve documents using the IR query (subquery 1)
- Among the documents retrieved by subquery 1, find values of w1, x and y that satisfy the syntactic pattern
- 3. Using the values from subquery 2, form IR query in subquery 3 by enhancing subquery 1

Examples of applications: building pathways

Building pathways

School of Computing and Informatics

- An important part of understanding or reverse-engineering biological phenomena (disease, phenotype, etc.)
- Connecting the dots !!!
- Building pathways involves
 - Connecting the dots, where the dots are
 - Biological data (such as interactions)
 - But an equally important aspect is
 - Biological Knowledge and
 - Reasoning with that knowledge

More examples: studying drug-drug interactions

Importance of studying drug-drug interactions

- Drug design: Early assessment of a new compound's potential interactions with other drugs can avoid costly investment in the drug discovery process.
- Drug prescription: For multi-drug prescription, pharmacokinetic interactions amongst coadministrated drugs may alter the bioavailability of the drugs that can lead to life-threatening side effects for the patients.

Looking beyond automatic extraction and manual curation of facts

Main Issues

- Manual curation is expensive
- Automatic curation still has many errors
- What to do?

Key Idea

- If lots of articles are being written then lot of people are writing them and lot of people are reading them.
- If only we could make these people (the authors and the readers) contribute to the curation effort ...
- Especially the readers; the ones who need the curated data!

Mass collaboration has worked in

- Wikipedia
- Project Gutenberg
- Netflix rating
- Amazon rating
- Etc.

Mass collaborative curation: initial hurdles

- An average reader
 - (S)he is not normally interested in filling a blank curation form.
 - We can not make an average reader go though curation training.
 - So it has to be very different from just making the existing curation tools available to the mass and expect them to contribute.

Mass collaborative curation : key initial ideas

- Make it very easy:
 - user need not remember where (which database, which web page) to put the curated knowledge.
 - Curation opportunity should present itself seamlessly.
- Curation should not be a burden to an average user
 - Make the curated knowledge "thin".
- There should be immediate rewards
 - Do not start with a blank slate.

🗿 Entrez PubMed - Microsoft Internet Explorer 📰 🗗										PX			
<u>F</u> ile	<u>E</u> dit <u>V</u> iev	ı F <u>a</u> vorit	es <u>T</u> ools <u>H</u> e	lp									
0	🔆 Back 🔹 🌍 🔹 🛃 🐔 🔎 Search 🧙 Favorites 🤬 🔗 + 🌺 💿 🔹 🔜 🎇 🎇 🖓												
A <u>d</u> dre	ss ど http:	//www.ncb	oi.nlm.nih.gov/en	trez/query.fc	gi?cmd=Retriev	e&db=pubme	d&dopt=Abstract&	list_uids=	=16107876&query_hl=2		~	🔁 Go	Links »
Goo	Google - 🖸 G Search - 🏈 🛷 PageBank 🕸 12 blocked 🖑 Check - 👯 AutoLink - 🗐 AutoFill 💀 Options 🖉												
Help FAQ Tutorials MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation.										^			
New/Noteworthy E-Utilities <u>Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, Rauscher FJ 3rd, Chen J</u> .													
	Med Servinals Datab		Mole	cular Onco	logy Program	m, H Lee N	loffitt Comprel	nensive	Cancer Center and Res	search Institute, Tar	mpa, FL 33612	, USA.	
Sing Mato Bato Clin Spe Link My N Reli Orde NLM	h Citation I ical Querie: cial Querie: Out ICBI ated Reso er Documer I Mobile I Catalog	Matcher s s burces	p53 tr with t doma Expre with F KAP There part b	ranscription he nuclear in of MDN ession of K CAP1 in M 1 expression fore, MDN by inhibiting	n function, in corepressor 12. KAP1 st AP1 cooper IDM2 bindin on by RNAi 12 interactio 5 KAP1-MD	hibits p53 a KAP1. The imulates for rates with M ng; oncogen stimulates p on with KAP M2 binding	e binding is me mation of p53- IDM2 to prom e induction of A 53 transcription 21 contributes to	promo diated t HDAC ote p52 ARF ex nal activito p53 t	ulator of the p53 tumor tes p53 degradation. He by the N-terminal coiled 21 complex and inhibits 3 ubiquitination and degr pression reduces MDN vity, sensitizes p53 resp functional regulation. Al	ere, we present evid l-coil domain of KA p53 acetylation by radation. The tumor 12-KAP1 interaction onse to DNA dama	dence that MD AP1 and the cer interacting with r suppressor Al on. Depletion of age, and increas	M2 interac ntral acidic MDM2. RF compe endogeno ses apopto	etes pus psis.
×	Gateway	Marian			-	- Indexed I	OF MEDLINE	1			40407070	Cut	×
	Simple	e Version	Full Ve	rsion Lo	gin					PMID	16107876	Sub	mit
		.	V a			V a							
	Protein Enti	/Protein	Gene/Dis		ene/Organ tity 2		io Process	Votes	Average Confidence				
	MDM2	ty 1	interaction	KAP1	itity 2	IntEx	70 Approvai	0 Otes	Not yet rated	More Articles			
				More Articles									
ubiquitin E3 ligase regulator p53 IntEx MDM2 regulator p53 IntEx			IntEx	-	0	Not yet rated	More Articles						
	MDM2		regulator binds	p53 p53		IntEx	-	0	Not yet rated Not yet rated	More Articles			
CBioC	MDM2		inhibits	p55 p53		IntEx	-	0	Not yet rated	More Articles			
			muoits	p55		mutx	-	0	Not yet falled	MOLE ATUCIES			~
ど Do	Done 🔮 Internet												

🕘 Er	🖹 Entrez PubMed - Microsoft Internet Explorer												
<u>F</u> ile	File Edit View Favorites Tools Help												
0	🕞 Back 🔹 🌍 👻 😰 🏠 🔎 Search 🧙 Favorites 🚱 🔗 - 🌺 💿 - 🔜 🐄 - 🚟 鑬 🦓												
A <u>d</u> dre	ddress 🗃 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=16107876&query_hl=2 🕑 🕞 Go 🛛 Links 🌺												
Goo	Google - 💽 Search 🔹 🏈 😻 PageBank 🕸 12 blocked 👋 Check 🔹 👯 AutoLink 🔹 🗐 AutoFill 🍢 Options 🖉												
	Help FAQ Tutorials MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation.											^	
New/Noteworthy E-Utilities <u>Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, Rauscher FJ 3rd, Chen J</u> .													
	oMed Service		Molecular Oncolo	gy Program	n, H Lee Moffit	t Comprehensive (ancer	Center and Rese	arch Institute, Ta	mpa, FL 33	612, USA.		
Sing Mate Bate Clin Spe Link My N Rel Ord NLM	SH Database gle Citation cher ch Citation Mato ical Queries colal Queries cout NCBI ated Resource er Documents Mobile Mobile Matalog	cher	p53 transcription f with the nuclear co domain of MDM2 Expression of KAI with KAP1 in MD KAP1 expression	inction, inf repressor KAP1 sti P1 cooper M2 bindin by RNAi s c interaction	tibits p53 acety KAP1. The bin imulates formati ates with MDM g; oncogene ind stimulates p53 to n with KAP1 co	e and a major regu lation, and promote ding is mediated by on of p53-HDAC 12 to promote p53 fuction of ARF exp ranscriptional activi ontributes to p53 fi	es p53 7 the N l comp ubiquit ression ty, sen	degradation. Her -terminal coiled-or lex and inhibits p ination and degra a reduces MDM2 sitizes p53 respon	e, we present evi coil domain of Ka 53 acetylation by dation. The tumo -KAP1 interactionse to DNA dam	idence that I AP1 and the interacting r suppresso on. Depletic age, and inc	MDM2 intera e central acidi with MDM2. or ARF comp on of endogen creases apopt	etes icous icous	10
	l Gateway	1	PMID: 16107876	[PubMed	- indexed for N	ÆDLINE]							~
×	MDM2	inhibits	p53	IntEx	Yes No	-	0	Rate 🗸	Not yet rated	Modify	<u>More</u> <u>Articles</u>		^
	MDM2	interacts	KAP1	IntEx	Yes No	-	0	Rate 💌	Not yet rated	Modify	<u>More</u> <u>Articles</u>		
	KAP1	stimulates	p53 HDAC1 complex	IntEx	Yes No		1	Rate 💌	2	Modify	<u>More</u> <u>Articles</u>		
	KAP1	interacting	MDM2	IntEx	Yes No		1	Rate 💌	Not yet rated	Modify	<u>More</u> <u>Articles</u>		
Ŋ	KAP1	inhibits	p53	IntEx	Yes No	-	0	Rate 💌	Not yet rated	Modify	<u>More</u> <u>Articles</u>		
CBioC	RNA;	depletion	κ Δ Ρ 1	IntEx	Yes No		0	Rate 🗸	Not vet rated	Modify	More		~
🙆 Do	ne										Internet		

CBioC Summary

- Information/curation window pops up automatically.
- Automatic extraction is used as a boot strap so that no user is working on a blank slate.
- Users vote on correctness, make corrections, add fact.
 - Suppose 60% precision and recall of automatic extraction system
 - A person will have an easier time discarding 40% of wrongly extracted text than identifying 60% of correct entries and entering them!

Introduction: The volume of existing biomedical articles is huge and it grows day by day. From 1994 to 2004, close to 3 million biomedical articles were published by US and European researchers alone. Added to the approximately 15 million abstracts already in PubMed, this represents over 800 new articles per day and a myriad of individual new facts to survey for information relevant to a particular research question.

Currently two approaches are pursued to extract and combine facts from biomedical publications. The first approach of hiring human curators is expensive, and thus does not scale-up. It also leads to bias. The second approach of using automated information extraction systems only has a recall and precision of around 60%.

We present here a new approach to the problem through mass collaboration, where the community of researchers that writes and reads the biomedical texts will be able to contribute to the curation process, dictating the pace at which it is done.

How you can help: Automated text extraction is used as a starting point to bootstrap the database, but then we need help from you and your team of biologists to improve upon the extracted data and help 'iron out' inconsistencies on a massive scale.

Use the search bar to find articles in the PubMed database. Open the document and view both human and algorithmic curations. You can then add your own curations or you can vote on how correct our algorithms or users are.

Pub Med | Bio AI | ASU CSE Department

CBioC2 p53 2001[edat]				Group History Settings	Auro					
					y Login					
Authors	🛄 Publisher		📅 Pub. Date	📎 pmid						
Katano H, Sato Y, Sata T.	Cancer		2001Dec	11753987	^					
Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies.										
Benassi M S, Molendini L, Gamberi G, Magagnoli G, Ragazzini P, Gobbi G A, Sangiorgi I	L, Pazzaglia L, Asp Cancer		2001Dec	11753985	=					
Involvement of INK4A gene products in the pathogenesis and development of human osteosarcoma.										
Esposito I, Friess H, Büchler M W.	Zentralblatt fur Chiru	rgie	2001Nov	11753795						
Molecular mechanisms in chronic pancreatitis.										
Jiang X H, Wong B C, Lin M C, Zhu G H, Kung H F, Jiang S H, Yang D, Lam S K.	Oncogene		2001Nov	11753684						
Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kappaB activation in gastric cancer cells.										
Zhang D, Vuocolo S, Masciullo V, Sava T, Giordano A, Soprano D R, Soprano K J.	Oncogene		2001Nov	11753676						
Cell cycle genes as targets of retinoid induced ovarian tum	or cell growth suppression.									
Münger K, Basile J R, Duensing S, Eichten A, Gonzalez S L, Grace M, Zacny V L.	Oncogene		2001Nov	11753671						
Biological activities and molecular targets of the human pa	pillomavirus E7 oncoprotein.									
Mantovani F, Banks L.	Oncogene		2001Nov	11753670	~					
📄 View 🔻 🗐 🖓 Page 🚺 of 137 🖒 🕪 📄 Abstracts 🛛 Search by re	elation 💌			Displaying articles 1 - 2						
Interaction: Protein Protein										
Bio Entity 1 Interaction		Bio Entity 2	Articles	Collection						
beta-catenin		E-cadherin	25	1561	<u>^</u>					
NF-kappaB		AP-1	15	228						
wnt-1		int-2	3	938						
NK-kappaB		AP-1	14	1946	=					
wnt-1		int-2	11	3081						
wild-type KLF6		p21	24	1976						
Bax		Bcl-2	20	1511						
p53		p21	11	2199						
biclonal anticytokeratin antibody		AE1	20	3045	~					
		···-=								

ARIZONA STATE UNIVERSITY

CBioC2 p53 2001[edat]				Group History Settings 🄑 Login						
Authors	💷 Publisher		🕮 Pub. Date	📎 pmid						
Katano H, Sato Y, Sata T.	Cancer		2001Dec	11753987						
Expression of p53 and human herpesvirus-8 (HH	Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies.									
ACKGROUND: Kaposi sarcoma (KS) and primary effusion lymphoma (PEL) cells express human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen (LANA) (open reading frame [ORF] 73 protein), suggesting that LANA plays an important role in the pathogenesis of HHV-8- associated malignancies. Recently, the binding of LANA to p53 was demonstrated in vitro. In the current study, the authors investigated the association between p53 and LANA expression with apoptosis in HHV-8-associated malignancies in vivo. METHODS: Twenty-six cases of KS, 1 case of HV-8-associated solid lymphoma, 2 PEL cell lines, and an HHV-8-associated hymphoma engrafted in severe combined immunodeficiency (SCID) mice were examined. Immunohistochemistry using the catalyzed signal amplification system was employed to detect LANA and p53 on paraffin modeficiency (SCID) mice were examined. Immunohistochemistry using the catalyzed signal amplification system was employed to detect LANA and p53 on paraffin modeficiency (SCID) mice were sused on the f53 gene were employed by polymerase chain reaction and examined by rect sequencing. RESULTS: Immunohistochemistry revealed that LANA and p53 were expressed in the tumor cells of all these specimens, and apoptotic cells were rarely detected in them using the TUNEL method. Immunofluorescence assay revealed that LANA colocalized with p53 in the uclei of F2L cells. Sequencing analysis indicated that there was no mutation analysis indicated that there was no mutation in the deduced amino acid sequences of p53 ant KS tissues. CONCLUSIONS: These data suggest colocalization of p53 and LANA and LANA and LANA and LANA and the inhibition of apoptosis in HHV-8-associated malignancies.										
Benassi M S, Molendini L, Gamberi G, Magagnoli G, Ragazzini P, Gobbi G	A, Sangiorgi L, Pazzaglia L, Asp Cancer		2001Dec	11753985						
Involvement of INK4A gene products in the patho	genesis and development of humar	n osteosarcoma.								
To define the role of gene status and molecule expression involved in the proteins were found negative or weakly detectable in 60% and 57% of th found in 12 out of 21 OSs with negative or weak p16 expression. A statistication of the state of the stat	BACKGROUND: The INK4A tumor suppressor gene plays a crucial role in the regulation of the G1 cell cycle phase. It encodes two transcripts, p16 and p14 alternate reading frame (ARF), involved in retinoblastoma protein (pRb)- and p53- cell growth control pathways, respectively. METHODS: To define the role of gene status and molecule expression involved in the INK4A regulatory system, immunoblatchemistry, immunoblotting, and polymerase chain reaction (PCR) analysis were performed on 35 primary high grade osteosarcomas (OS). RESULTS: Although p16 and p14ARF proteins were found negative or weakly detectable in 60% and 57% of the cases respectively. INK4A gene analysis of exons 1alpha, 1beta and 2 did not reveal any deletion or mutation. However, methylation status of the 5CpG promoter region, assessed by methylation-specific PCR, was found in 12 out of 21 OSs with negative or weak p16 expression. A statistical analysis based on pRb/p16 and p3/p14ARF staining status showed that pRb and p16 co-expression was inversely correlated to tumor regulation of the ranscriptional activity of p53. CONCLUSIONS: The current									
Esposito I, Friess H, BÃ1/chler M W.	Zentralblatt fur		2001Nov	11753795						
Molecular mechanisms in chronic pancreatitis.	of the proposed models has been able to provide a	i convincing link between the known etiological factors - alcoho	abuse, metabolic disturbances, congenital or acquired obstruct	tion of the duct system - and the complex						
View • 📢 🔇 Page 1 of 137 🖒 🕪 📑 Abstracts	Search by relation			Displaying articles 1 - 25 of 3422						
Interaction: Protein Protein										
Bio Entity 1	Interaction	Bio Entity 2	Articles	Collection						
beta-catenin		E-cadherin	25	1561						
NF-kappaB		AP-1	15	228						
E-cadherin251561appaBAP-1152281int-23938										
NK-kappaB		AP-1	14	1946						
wnt-1		int-2	11	3081						
wild-type KLF6		p21	24	1976						
Bax		Bcl-2	20	1511						
p53		p21	11	2199						
biclonal anticytokeratin antibody		AE1	20	3045						
		····==		•						

CBioC2 p53 2001[edat] Search

Wnt-1 and int-2 mammary oncogene effects on the beta-catenin pathway in immortalized mouse mammary epithelial cells are not sufficient for tumorigenesis.

Hollmann C A, Kittrell F S, Medina D, Butel J S.

Oncogene

Development of strategies for prevention of breast cancer development requires an understanding of the effects of mammary oncogenes on mammary cells at early stages in neoplastic transformation. As mammary oncogenes wnt-1 and int-2 affect different signal transduction pathways, we investigated their effects on established mouse mammary epithelial cell lines (MMECLs) reflecting early stages in tumorigenesis. Normal interactions between beta-catenin and E-cadherin were abrogated in all three immortalized MMECLs and the cells lacked beta-catenin-mediated transactivation activity, detectable using a reporter assay, suggesting that alterations in cell adhesion may be very early events in mammary tumorigenesis. Immortalized FSK4 and EL12 cells and hyperplastic TM3 cells were stably transfected with expression vectors encoding wnt-1 or int-2 or the control vector, and drug-selected pooled cells from each line were confirmed by reverse transcription-polymerase chain reaction to express the transfected oncogene; this expression persisted in the cells analysed in vitro and in vitro, Resultant phenotypic changes depended both on the oncogene and the target mammary cell line. In FSK4 cells, expression of wnt-1 or int-2 resulted in proliferative changes in vitro, including reduced contact inhibition, increased beta-catenin expression, and decreased p53 transcriptional activity, but neither oncogene conferred upon those cells the ability to produce tumors in vivo. EL12 cells were highly refractory to the effects of both oncogenes, with the only measurable changes being increased E-cadherin levels induced by both oncogenes and increased proliferation of the int-2-transfected cells in the absence of serum. Parental TM3 cells were phenotypically similar to wnt-1. These results suggest that wnt-1 signaling is redundant in the hyperplastic TM3 cells and indicate that wnt-1 induced effects in the immortalized FSK4 and EL12 cells were not sufficient to mediate a tumorigenic phenotype. This study showed that the wnt-1 and int-2 onco

PMID: 11753642

Add a relation								
Bio Entity 1 🔺	Relation or Entity Type	Bio Entity 2	Source	Collection	Agree/Disagree			
∃ Relation: Protein Protein								
beta-catenin	Unknown	E-cadherin	Url	Url	1/0 vote			
wnt-1	Unknown	int-2	Url	Url	1/0 vote			
wnt-1	Unknown	int-2	Url	Url	0/1 vote			

History Settings Settings

p53 2001[edat]

Wnt-1 and int-2 mammary oncogene effects...

CBioC2 p53 2001[edat] History Settings 🔑 Logout Search View Recent Activity Wnt-1 and int-2 mammary oncogene effects on the beta-catenin pathway in immortalized mouse mammary epithelial cells are not sufficient for tumorigenesis. Protein/Gene Hollmann C A, Kittrell F S, Medina D, Butel J S. Drug Disease Oncogene Species Development of strategies for prevention of breast cancer development requires an understanding of the effects of mammary oncogenes on mammary cells at early stages in neoplastic Bioprocess transformation. As mammary oncogenes wnt-1 and int-2 affect different signal transduction pathways, we investigated their effects on established mouse mammary epithelial cell lines 🗹 Cell (MMECLs) reflecting early stages in tumorigenesis. Normal interactions between beta-catenin and E-cadherin were abrogated in all three immortalized MMECLs and the cells lacked Cellular Component beta-catenin-mediated transactivation activity, detectable using a reporter assay, suggesting that alterations in cell adhesion may be very early events in mammary tumorigenesis. Multiple Immortalized FSK4 and EL12 cells and hyperplastic TM3 cells were stably transfected with expression vectors encoding wnt-1 or int-2 or the control vector, and drug-selected pooled cells from each line were confirmed by reverse transcription-polymerase chain reaction to express the transfected oncogene; this expression persisted in the cells analysed in vitro and in 🗹 Relation vivo. Resultant phenotypic changes depended both on the oncogene and the target mammary cell line. In FSK4 cells, expression of wnt-1 or int-2 resulted in proliferative changes in vitro, including reduced contact inhibition, increased beta-catenin expression, and decreased p53 transcriptional activity, but neither encodence conferred upon these calls the ability to produce tumors in vivo. EL12 cells were highly refractory to the effects of both oncogenes, with the only measurable changes being wnt-1: Defined as Protein/Gene oncogenes and increased proliferation of the int-2-transfected cells in the absence of serum. Parental TM3 cells were phenotypically Search wnt-1 as Protein/Gene: 10 or 20 articles and displayed an increased rate of proliferation in vitro and markedly increased tumorigenicity in vivo following transfection with int-2 but Source: BANNER and/or MetaMap t-1 signaling is redundant in the hyperplastic TM3 cells and indicate that wnt-1-induced effects in the immortalized FSK4 and EL12 cells have been encounted a compared a compared of the second phenotype. This study showed that the wnt-1 and int-2 oncogenes have similar but distinguishable effects on immortalized MMECLs and that the genetic background of the mammary cells greatly influences the consequences of oncogene expression at early stages of cell transformation.

PMID: 11753642

Add a relation 🗸 🕞 Upload Changes								
Bio Entity 1 🔺	Relation or Entity Type	Bio Entity 2	Source	Collection	Agree/Disagree			
∃ Relation: Protein Protein								
beta-catenin	Unknown	E-cadherin	Url	Url	1/0 vote			
wnt-1	Unknown	int-2	Url	Url	1/0 vote			
wnt-1	Unknown	int-2	Url	Url	0/1 vote			

History Settings 🔑 Logout

View Recent Activity

Protein/Gene

Drug
Disease

CBioC2 p53 2001[edat] Search

Wnt-1 and int-2 mammary oncogene effects on the beta-catenin pathway in immortalized mouse mammary epithelial cells are not sufficient for tumorigenesis.

Hollmann C A, Kittrell F S, Medina D, Butel J S.

Oncogene

Development of strategies for prevention of breast cancer development requires an understanding of the effects of mammary oncogenes on mammary cells at early stages in neoplastic transformation. As mammary oncogenes wnt-1 and int-2 affect different signal transduction pathways, we investigated their effects on established mouse mammary epithelial cell lines (MMECLs) reflecting early stages in tumorigenesis. Normal interactions between beta-catenin and E-cadherin were abrogated in all three immortalized MMECLs and the cells lacked beta-catenin-mediated transactivation activity, detectable using a reporter assay, suggesting that alterations in cell adhesion may be very early events in mammary tumorigenesis. Immortalized FSK4 and EL12 cells and hyperplastic TM3 cells were stably transfected with expression vectors encoding wnt-1 or int-2 or the control vector, and drug-selected pooled cells from each line were confirmed by reverse transcription-polymerase chain reaction to express the transfected oncogene; this expression persisted in the cells analysed in vitro and in vitro, Resultant phenotypic changes depended both on the oncogene and the target mammary cell line. In FSK4 cells, expression of wnt-1 or int-2 resulted in proliferative changes in vitro, including reduced contact inhibition, increased beta-catenin expression, and decreased p53 transcriptional activity, but neither oncogene conferred upon those cells the ability to produce tumors in vivo. El 12 cells were bindly refractory to the effects of both oncogenes, with the only measurable changes being increased E-cadherin levels induced by both

Relations	broliferation of the int-2-transfected cells in the absence of serum. Parental TM3 cells were phenotypically similar to wnt-1- or int-2-transfected FSK4 cells and									
c Protein Protein	of proliferation in vitro and markedly increased tumorigenicity in vivo following transfection with int-2 but not with wnt-1. These results suggest that wnt-1									
Frotein Disease Fortein Drug Disease Drug Protein Cellular Component Fortein Bioprocess Protein Cell Drug Bioprocess Drug Cell Cell Disease	e hyperplastic TM3 cells and indicate that wnt-1-induced effects in the immortalized FSK4 and EL12 cells were not sufficient to mediate a tumorigenic wed that the wnt-1 and int-2 oncogenes have similar but distinguishable effects on immortalized MMECLs and that the genetic background of the mammary consequences of oncogene expression at early stages of cell transformation.									
Single Entity										
×	🕞 Upload Changes									
Bio Entity 1 🔺		Relation or Entity Type	Bio Entity 2	Source	Collection	Agree/Disagree				
Relation: Protein Protein										
beta-catenin		Unknown	E-cadherin	Url	Url	1/0 vote				
wnt-1		Unknown	int-2	Url	Url	1/0 vote				
wnt-1		Unknown	int-2	Url	Url	0/1 vote				

History Settings 🔑 Logout

View Recent Activity

Protein/Gene

DrugDisease

CBioC2 p53 2001[edat] Search

Wnt-1 and int-2 mammary oncogene effects on the beta-catenin pathway in immortalized mouse mammary epithelial cells are not sufficient for tumorigenesis.

Hollmann C A, Kittrell F S, Medina D, Butel J S.

Oncogene

Species Development of strategies for prevention of breast cancer development requires an understanding of the effects of mammary oncogenes on mammary cells at early stages in neoplastic Bioprocess transformation. As mammary oncogenes wnt-1 and int-2 affect different signal transduction pathways, we investigated their effects on established mouse mammary epithelial cell lines Cell (MMECLs) reflecting early stages in tumorigenesis. Normal interactions between beta-catenin and E-cadherin were abrogated in all three immortalized MMECLs and the cells lacked Cellular Component beta-catenin-mediated transactivation activity, detectable using a reporter assay, suggesting that alterations in cell adhesion may be very early events in mammary tumorigenesis. Multiple Immortalized FSK4 and EL12 cells and hyperplastic TM3 cells were stably transfected with expression vectors encoding wnt-1 or int-2 or the control vector, and drug-selected pooled cells from each line were confirmed by reverse transcription-polymerase chain reaction to express the transfected oncogene; this expression persisted in the cells analysed in vitro and in 🗹 Relation vivo. Resultant phenotypic changes depended both on the oncogene and the target mammary cell line. In FSK4 cells, expression of wnt-1 or int-2 resulted in proliferative changes in vitro, including reduced contact inhibition, increased beta-catenin expression, and decreased p53 transcriptional activity, but neither oncogene conferred upon those cells the ability to produce tumors in vivo. EL12 cells were highly refractory to the effects of both oncogenes, with the only measurable changes being increased E-cadherin levels induced by both oncogenes and increased proliferation of the int-2-transfected cells in the absence of serum. Parental TM3 cells were phenotypically similar to wnt-1- or int-2-transfected FSK4 cells and displayed an increased rate of proliferation in vitro and markedly increased tumorigenicity in vivo following transfection with int-2 but not with wnt-1. These results suggest that wnt-1 signaling is redundant in the hyperplastic TM3 cells and indicate that wnt-1-induced effects in the immortalized FSK4 and EL12 cells were not sufficient to mediate a tumorigenic phenotype. This study showed that the wnt-1 and int-2 oncogenes have similar but distinguishable effects on immortalized MMECLs and that the genetic background of the mammary cells greatly influences the consequences of oncogene expression at early stages of cell transformation.

PMID: 11753642

Add a relation 🔽 🕞 Upload Changes								
Bio Entity 1 🔺	Relation or Entity Type	Bio Entity 2	Source	Collection	Agree/Disagree			
∃ Relation: Protein								
beta-catenin	Unknown	E-cadherin	Url	Url	1/0 vote			
wnt-1	Unknown	int-2	Url	Url	1/0 vote			
	Unknown	int-2	Url	Url	0/1 vote			
p53	🖸 Add	Add	User	-				

- Relationship Extractions can be of big help in Science.
 - We focused on molecular biology and pharmacology
- Applications
 - Semantic Search
 - Help in reasoning (prediction, explanation, design)
 - Discovery

- My students and post-doctoral researchers
 - Especially, Luis Tari, Joerg Hakenberg, Graciela Gonzalez, Bob Leaman, Vo Nguyen, Barry Lumpkin
- Funding agencies
 - NSF
 - Science Foundation of Arizona
 - ASU
 - IARPA; ONR