An Introduction to Resource
Plugin Development

IRODS Consortium Development Team

What Are iRODS Plugins? (Part 1)

Plugins are dynamically loaded code which implements interfaces
through which one can influence runtime behavior. Types of plugins
include:

Resources, Authentication, Network, and Microservices
The use of plugins:

* Provides a method of confining functionality to an easily testable
dynamically loaded library

* Provides ability to change runtime behavior in iRODS without
recompiling all of the servers

Plugins are derived C++ Objects which are created via a well known
factory method loaded directly from a dynamic library

What Are iRODS Plugins? (Part 2)

* A vehicle for mapping new functionality from the dynamic library to
understood Operations used by iRODS

* Plugins provide a place to maintain state across Operations during an
IRODS transaction via a heterogeneous property map

* Plugins provide the functionality, or ‘How’ in the system

* Plugins provide opportunity to leverage type and inheritance with a
C++ Object Model, or the ‘What’

First Class Objects: The ‘What’

* Create a formalized type hierarchy for iRODS

Informally exists today: e.g., Special Collections

* Mounted collection
* Linked collection
e Structured File Object
* First Class Objects resolve plugins for a given interface:
e.g., Resource, Network, Authentication, Microservices

If First Class Objects are the ‘What’ and plugins are the ‘How’
e.g., file_object::resolve(“resource interface”) > Resource Plugin

First Class Objects: The Object Model

First Class Object

Data Object Auth Obiject Network Object

Collection

File Object Object

Structured

Object The Agent works at the most abstract levels in their
hierarchies: the plugin_base class and first _class_object
levels. If a first _class_object resolves a plugin, the system
assumes the plugin can operate on that first class object.

iRODS Consortium Development Team - Supercomputing 2013

What is a Resource Plugin? (Part 1)

* A class derived from eirods::resource_plugin which implements a
POSIX-like interface to a storage medium. (Plus several other
specialized operations)

* A plugin instance is created within a dynamic library via a well known
factory method

* Each Call to a plugin routes through an Operation which is mapped by
the plugin during the creation of the plugin in the plugin factory.
These Operations map directly to the well known POSIX calls within
iRODS.

Resource Plugin Operations

e iRODS API call delegates to the file driver
rsFileOpen(...) interface

* fileOpen creates a file_object, resolves
the proper resource plugin and
delegates to the plugin

* The plugin maps RESOURCE_OP_OPEN to

whichever function the plugin developer
o T designated as that operation within the
resc->call(_comm, eirods:: _OP_ , _Object); map during plugln Creation

fileOpen(...)

iRODS Consortium Development Team - Supercomputing 2013

What is a Resource Plugin? (Part 2)

What are the operations?

Open, Close, Read, Write, etc. (plus specialized operations)

Where are they defined?

iRODS/lib/core/include/eirods_resource constants.h

What do they map to — operations map to free functions defined within
the dynamic library which are loaded at runtime and mapped within
the plugin:

resc->add_operation(eirods::RESOURCE_OP_CREATE, "unix_file_create_plugin");
resc->add_operation(eirods::RESOURCE_OP_OPEN, "unix_file_open_plugin");
resc->add_operation(eirods::RESOURCE_OP_READ, "unix_file_read_plugin");
resc->add_operation(eirods::RESOURCE_OP_WRITE, "unix_file_write_plugin");
resc->add_operation(eirods::RESOURCE_OP_CLOSE, "unix_file_close_plugin");

Resource Composition:

Tree Terminology vs iRODS Terminology

Root Node replResc

passThru3

Branch Node | eEiRalaiks passThru2

Leaf Node unixRescl unixResc2 unixResc3

Storage Resources — reside at the physical location of the media
Coordinating Resource — purely virtual and reside at every iRODS server

iRODS Consortium Development Team - Supercomputing 2013

Coordinating Resource

Coordinating Resource

Storage Resource

Resource Composition: Hierarchy Resolution

How does the system determine which path through the tree to follow?
This can and does change based on which action is invoked: Create vs. Open with Read or Write
Solution: Everyone gets a Vote

Given an Open for Read:

* Avote is a floating point value — 0.0 to 1.0

* The root node queries its children for the action and gathers the votes.

e Each child node does the same until a leaf node is reached.

* Each leaf node examines the request and uses its own criteria for
determining a vote.

replResc

passThrul passThru2 passThru3 UFS e.g.,
Do | have any copy of the file? 0.25
Do | have a non dirty copy of the file? 0.5
Am | local host with a non dirty copy? 1.0

unixResc3

unixRescl unixResc2
* Coordinating nodes may then do whatever they want with their

. . _ children’s votes. They simply must send a decision up the hierarchy.
Filel Filel Filel * A path through the hierarchy is returned as coordinating nodes make
decisions based on their children’s votes.

iRODS Consortium Development Team - Supercomputing 2013

Storage Resources:

* Intended to be leaf nodes — this is not directly enforced

* Only resource plugins which are tied to a particular server and reside
where the storage medium is physically located

* Hierarchy Resolution — mechanism used to determine upon which
data object and on which resource to operate. Votes to participate in
a particular action given an iRODS data object.

Actions include: Create, Open, and Write

* Implements POSIX Operations which directly access storage media

Storage Resources: The Plugin Context

eirods::error unix_file_redirect_plugin(
eirods::resource_plugin_context& _ ctx,

const std::string* _opr,

const std::string* _curr_host,
eirods::hierarchy_parser* _out_parser,
float* _out_vote)

« Every operation provided by a plugin must start with the context as the first
parameter, the rest are defined as template parameters

 The context provides:
_ctx.fco() — The first_class_object in question, held as pointer to base class
_ctx.prop_map() - the heterogeneous property map
_ctx.comm() - the rsComm pointer for this connection
_ctx.results() - results of dynamic policy enforcement point (advanced topic)
_ctx.child_map() - map containing children of this node

 Note - context and available parameters can change across plugin interfaces, this is
only describing the resource plugin context

Storage Resources: Hierarchy Resolution (Part 1)

eirods::error unix_file_redirect_plugin(
eirods::resource_plugin_context& _ctx,

const std::string* _opr,

const std::string* _curr_host,
eirods::hierarchy_parser* _out_parser,
float* _out_vote) {
eirods::error result = SUCCESS();

// il il Bl Bl A

// check the context validity
eirods::error ret = _ctx.valid< eirods::file_object >();
if((result = ASSERT PASS(ret "Invalid resource context.")).ok()) {

// check incoming parameters

if((result = ASSERT_ERROR(_opr && _curr_host && _out_parser && _out_vote, SYS_INVALID_INPUT_PARAM,
"Invalid input parameter.")).ok()) {

// cast down the chain to our understood object type
eirods: :file_object_ptr file_obj = boost::dynamic_pointer_cast< eirods::file_object >(_ctx.fco());

// get the name of this resource

std::string resc_name;

ret = _ctx.prop_map().get< std::string >(eirods::RESOURCE_NAME, resc_name);
if((result = ASSERT PASS(ret "Failed in get property for name.")). ok()) {

// add ourselves to the hierarchy parser by default
_out_parser->add_child(resc_name);

Storage Resources: Hierarchy Resolution (Part 2)

/) =-=-=-=-=-=-=-
// test the operation to determine which choices to make
if(eirods::EIRODS_OPEN_OPERATION == (*_opr) ||
eirods::EIRODS_WRITE_OPERATION == (*_opr)) {
/) =-=-=-=-=-=-=-
// call redirect determination for 'get' operation
ret = unix_file_redirect_open(_ctx.prop_map(), file_obj, resc_name, (*_curr_host), (*_out_vote));
result = ASSERT_PASS_MSG(ret, "Failed redirecting for open.");

} else if(eirods::EIRODS_CREATE_OPERATION == (*_opr)) {

// call redirect determination for 'create' operation

ret = unix_file_redirect_create(_ctx.prop_map(), file_obj, resc_name, (*_curr_host), (*_out_vote));
result = ASSERT_PASS_MSG(ret, "Failed redirecting for create.");

// must have been passed a bad operation
result = ASSERT_ERROR(false, EIRODS_INVALID_OPERATION, "Operation not supported.");
b
ks
ks
ks

return result;

¥ // unix_file_redirect_plugin

Storage Resources: Hierarchy Resolution (Part 3)

// redirect_create - code to determine redirection for create operation
eirods::error unix_file_redirect_create(
eirods::plugin_property_map& _prop_map,

eirods::file_object_ptr _file_obj,
const std::string& _resc_name,
const std::string& _curr_host,
float& _out_vote) {
eirods::error result = SUCCESS();

// il il Bl Bl A

// determine if the resource is down

int resc_status = 0;

eirods::error get_ret = _prop_map.get< int >(eirods::RESOURCE_STATUS, resc_status);
if((result = ASSERT_PASS(get_ret, "Failed to get \"status\" property.")).ok()) {

// if the status is down, vote no.

if(INT_RESC_STATUS_DOWN == resc_status) {
_out_vote = 0.0;
result.code(SYS_RESC_IS_DOWN);
// result = PASS(result);

by

Storage Resources: Hierarchy Resolution (Part 4)

// get the resource host for comparison to curr host
std::string host_name;

get_ret = _prop_map.get< std::string >(eirods::RESOURCE_LOCATION, host_name);
if((result = ASSERT_PASS(get_ret, "Failed to get \"location\" property.")).ok()) {

// il Rl el el el g

// vote higher if we are on the same host

if(_curr_host == host_name) {
_out_vote = 1.0;

» else {
_out_vote = 0.5;

¥

)
)
¥

return result;

} // unix_file_redirect_create

Storage Resources: Hierarchy Resolution (Part 5)

eirods::error unix_file_redirect_plugin(
eirods::resource_plugin_context& _ctx,

const std::string* _opr,

const std::string* _curr_host,
eirods::hierarchy_parser* _out_parser,
float* _out_vote) {
eirods::error result = SUCCESS();

// il il Bl Bl A

// check the context validity
eirods::error ret = _ctx.valid< eirods::file_object >();
if((result = ASSERT PASS(ret "Invalid resource context.")).ok()) {

// check incoming parameters

if((result = ASSERT_ERROR(_opr && _curr_host && _out_parser && _out_vote, SYS_INVALID_INPUT_PARAM,
"Invalid input parameter.")).ok()) {

// cast down the chain to our understood object type
eirods: :file_object_ptr file_obj = boost::dynamic_pointer_cast< eirods::file_object >(_ctx.fco());

// get the name of this resource

std::string resc_name;

ret = _ctx.prop_map().get< std::string >(eirods::RESOURCE_NAME, resc_name);
if((result = ASSERT PASS(ret "Failed in get property for name.")). ok()) {

// add ourselves to the hierarchy parser by default
_out_parser->add_child(resc_name);

Storage Resources: Hierarchy Resolution (Part 6)

eirods::error unix_file_redirect_open(
eirods::plugin_property_map& _prop_map,

eirods::file_object_ptr _file_obj,
const std::string& _resc_name,
const std::string& _curr_host,
float& _out_vote) {
eirods::error result = SUCCESS();

// il il Bl Bl A

// initially set a good default
_out_vote = 0.0;

[} =-=-=-=-=-=-=-

// determine if the resource is down

int resc_status = 0;

eirods::error get_ret = _prop_map.get< int >(eirods::RESOURCE_STATUS, resc_status);
if((result = ASSERT PASS(get ret, "Failed to get \"status\" property.")). ok()) {

// if the status is down, vote no.
if(INT_RESC_STATUS_DOWN != resc_status) {

// get the resource host for comparison to curr host

std::string host_name;

get_ret = _prop_map.get< std::string >(eirods::RESOURCE_LOCATION, host_name);
if((result = ASSERT_PASS(get_ret, "Failed to get \"location\" property.”)).ok()) {

Storage Resources: Hierarchy Resolution (Part 7)

// =

// set a flag to test if were at the curr host, if so we vote higher
bool curr_host = (_curr_host == host_name);

// =D =T =m="-

// make some flags to clairify decision making
bool need_repl = (_file_obj->repl_requested() > -1);

// set up variables for iteration

bool found = false;

eirods::error final_ret = SUCCESS();

std::vector< eirods::physical_object > objs = _file_obj->replicas();
std::vector< eirods::physical_object >::iterator itr = objs.begin();

// check to see if the replica is in this resource, if one is requested
for(; itr I= objs.end(); ++itr) {

[/ =-=-=-=-=-=-=-

// run the hier string through the parser and get the last

// entry.

std::string last_resc;

eirods::hierarchy_parser parser;

parser.set_string(itr->resc_hier());

parser.last_resc(last_resc);

// = L

// more flags to simplify decision making

bool repl_us = (_file_obj->repl_requested() == itr->repl_num());
bool resc_us = (_resc_name == last_resc);

bool is_dirty = (itr->is_dirty() '=1);

/]

// success - correct resource and dont need a specific

/]

replication, or the repl nums match

if(resc_us) {

// if a specific replica is requested then we
// ignore all other criteria
if(need_repl) {
if(repl_us) {
_out_vote = 1.0;

// repl requested and we are not it, vote
// very low
_out_vote = 0.25;

// if no repl is requested consider dirty flag
if(is_dirty) {

// repl is dirty, vote very low
_out_vote = 0.25;

by

Storage Resources: Hierarchy Resolution (Part 8)

// if our repl is not dirty then a local copy
// wins, otherwise vote middle of the road
if(curr_host) {
_out_vote = 1.0;
} else {
_out_vote = 0.5;
ks
ks
b

found = true;
break;
Y // if resc_us
Y // for itr

b
} else {

result.code(SYS_RESC_IS_DOWN);
result = PASS(result);
b
b

return result;

¥ // unix_file_redirect_open

Storage Resources: File Open (Part 1)

// interface for POSIX Open

eirods::error unix_file_open_plugin(
eirods::resource_plugin_context& _ctx)

{

eirods::error result = SUCCESS();

// Check the operation parameters and update the physical path
eirods::error ret = unix_check_params_and_path(_ctx);
if((result = ASSERT_PASS(ret, "Invalid parameters or physical path.")).ok()) {

// get ref to fco
eirods::file_object_ptr fco = boost::dynamic_pointer_cast< eirods::file_object >(_ctx.fco());

// === =-==-=-
// handle OSX weirdness...
int flags = fco->flags();

// =
// make call to open
errno = 0;

int fd = open(fco->physical_path().c_str(), flags, fco->mode());

Storage Resources: File Open (Part 2)

// =
// cache status in the file object
fco->file_descriptor(fd);

[/ =-=-=-=-=-=-=-
// did we still get an error?
int status = UNIX_FILE_OPEN_ERR - errno;
if (!(result = ASSERT_ERROR(fd >= 0, status, "Open error for \"%s\", errno = \"%s\", status = %d, flags = %d.",
fco->physical_path().c_str(), strerror(errno), status, flags)).ok()) {
result.code(status);

T else {
result.code(fd);

// il el el el
// declare victory!
return result;

¥ // unix_file_open_plugin

Coordinating Resources:

* A purely virtual construct which will be instantiated at Agent startup
on every server

* Provides an opportunity to influence where and how a data object
may be placed, modified, or retrieved

* Directly encodes aspects of data management policy in a dynamic
decision tree

* Follows the general convention of polling children, then makes a
decision given the results, and then forwards the results up the tree

* Leverages the additional operations — RESOURCE_OP_NOTIFY

Coordinating Resources: Making Decisions

During the call for Hierarchy Resolution the Coordinating Resources will
forward the call to their children, gather the results, and possibly use
those results to make a decision.

Simple example: replication node for Open

* Forward the call to children

* Place hierarchies and votes into a map

* Sort the results

* Take the highest vote and return that vote and its hierarchy

Coordinating Resources: Talking to Children

e Children may be accessed from the plugin context via the child_map() accessor.

* This results in std::pair containing the key for the map (i.e., child name) and the value
which is also a std::pair.

* This second pair is the parent-child relationship context string and a resource_ptr.
eirods::resource_child_map::iterator it;
float out_vote = 0.0;
for(it = _ctx.child_map().begin(); result.ok() && it '= _ctx.child_map().end(); ++it) {
eirods::hierarchy_parser parser(_parser);
eirods::resource_ptr child = it->second.second;
ret = child->call<const std::string*, const std::string*, eirods::hierarchy_parser*, float*>(
_ctx.comm(), eirods::RESOURCE_OP_RESOLVE_RESC_HIER, _ctx.fco(),
_operation, _curr_host, &parser, &out_vote);
// do something with votes and hierarchies

Coordinating Resources: Taking Action (Part 1)

Hierarchy Resolution is the first way a resource composition is alerted
to an action which is taken—RESOURCE_OP_NOTIFY is an additional
Operation added to the plugins which provides an interface for
communication directly to the hierarchy. Actions include:

EIRODS_CREATE_OPERATION
EIRODS_WRITE_OPERATION
EIRODS_OPEN_OPERATION
EIRODS_MODIFIED OPERATION

Coordinating Resources: Taking Action (Part 2)

RESOURCE_OP_NOTIFY is called with an action of EIRODS _MODIFIED_OPERATION
after the registration of a data object within the resource.

This provides a hook for the resource composition to take action as a change has
happened within the hierarchy.

e.g., Replication Node will replicate a newly added or modified data object

Coordinating Resources: Rebalancing

Initiated via a subcommand of iadmin modresc

* Provides an opportunity for a coordinating resource to make decisions about and
change its current state in an administrative mode

Expected flow is depth first—rebalance children then rebalance one’s self

Currently only implemented by the replication node—ensures all children have a
replica and that all dirty replicas are refreshed

