
~ a ~

Technical
Overview

iRODS version 4.x

~ 1 ~

iRODS is open-source, data management software that lets users:

•	 access, manage, and share data across any type or number of storage
systems located anywhere, while maintaining redundancy and security,
and

•	 exercise precise control over their data with extensible rules that
ensure the data is archived, described, and replicated in accordance
with their needs and schedule.

iRODS empowers users by supporting

•	 virtualization, which provides a one stop shop for all data regardless
of the heterogeneity of storage devices,

•	 data discovery through the use of descriptive metadata,

•	 workflow	automation,	and

•	 data sharing between collaborating or distributed teams.

This document provides a brief overview of the iRODS architecture to
help you consider whether iRODS is the right solution for your data
management needs. It will describe the iRODS Metadata Catalog (iCAT),
a database that stores all the valuable information about your data, the
iCAT-Enabled Server (IES), and optional Resource Servers which facilitate
data management and replication throughout your storage infrastructure.
Then, the document will describe facets of the architecture that may be
customized to precisely control and manage data. These facets include
policies, rules, plugins, and Composable Resources. This document concludes
with some questions that may be helpful for determining if iRODS will
serve your needs, followed by pointers to other helpful information about
iRODS.

Ru e-Oriented
SystemDATA

The integrated

~ 2 ~

AN iRODS ZONE

Each iRODS deployment—or Zone—is composed of an iRODS Metadata Catalog (iCAT), an
iCAT-Enabled Server (IES), and optional Resource Servers. The iCAT is a relational database
(i.e., a SQL database) that holds all the information about your data, users, and zone that the
iRODS servers—IES and any Resource Servers—need to facilitate the management and sharing
of your data. The iCAT contains the following information:

•	 Data	object	(i.e.,	file)	location	and	access	information

•	 A	virtual	file	system	(i.e.,	mapping	of	 logical	directory	paths	 to	actual	physical	
storage	 paths),	which	 provides	 a	 unified	 namespace	 across	 various	 underlying	
storage systems.

•	 Resource	 configuration	 information—hostnames	and	credentials—for	accessing	
your data on physical storage.

•	 Metadata about individual data objects and entire data collections. For example, author
names,	file	names,	keywords,	abstracts,	etc.—whatever	descriptors	or	metadata	schemes	
you choose can be applied to your data.

•	 User details such as userids, roles, passwords, and home directories.

•	 Zone details for sharing your zone’s data with collaborators from other zones. These
details include the name of your zone, the domain name of your IES, and the network
port number of iRODS servers in your zone.

Currently, PostgreSQL, MySQL, and Oracle are the database technologies that may be used to
implement an iCAT database.

The	iRODS	server	software	allows	users	to	store	and	retrieve	files	on	physical	storage	devices.	
To take full advantage of iRODS’ distributed data capabilities, additional Resource Servers
may be added to your Zone’s architecture. Using multiple Resource Servers can enhance the
performance, security, and resilience of a Zone by providing redundancy, both within a single

location and distributed geographically.

 All iRODS servers—IES and Resource Servers—run the same core code and are
peers. Each server may have its own set of policies, rules, and plugins (ways to
customize your iRODS Zone, discussed later in this document). However, to
facilitate data management, Resource Servers must communicate with the IES,
because it holds the connection to the iCAT.

~ 3 ~

...

. . .

iCAT Database

IES

CO
M

PO
SA

BL
E

R
ES

O
U

R
C

ES

*You may arrange composable resources according to your needs.

iRODS ZONE

10100101011101010100010111100101010101010101010101110101100
11010101011101010010101110101010001011110010101010101010101
010111010110 01101010101110 10100101011101010100010111100101
010101010101010101110101100 1101010101110 101001010111010100
001011110010101010101010101010111010110 01101010101110 10100
10101110101010001011110010101010101010101010111010110011011
01010111010100101011101010100010111100101010101010101010101
110101100 11010101011101010010101110101010001011110010101010

Resource Server1 Resource ServerN

PH
YS

IC
A

L
ST

O
R

A
G

E Storage
Device1

Storage
Device N

Storage Resources

* Coordinating Resources

~ 4 ~

POLICIES

Your organization has data management policies that
specify processes for access control, backup, data
migration, data preparation, metadata extraction,
and more. These organizational policies can be
implemented as iRODS policies, which can help you
customize and automate these data management
tasks. iRODS policies consist of a rule or set of rules
that are triggered based on a condition or set of
conditions. These conditions may pertain to timing,
user role, physical location, etc.

Rules
Rules	 are	 written	 in	 iRODS’	 domain-specific	 rule	
language, which uses many familiar programming
constructs (e.g., loops, conditional statements),
making it easy for your organization’s developers to
construct rules to satisfy your data needs.

Rules are carried out by the iRODS rule engine—a
built-in interpreter for the iRODS rule language—
that governs the sequence of data management
actions in your iRODS zone. The IES and each
Resource Server run an instance of the rule engine.
Out of the box, the rule engine comes loaded with
an array of basic actions (e.g., error reporting, login
protocols) to get you up and running. As you begin
to dig into iRODS, you can add rules of your own to
tailor a data management program that works for
you.

Rules usually call one or more microservices—
pre-packaged C++ programs designed to accomplish
specific	 tasks.	 Over	 350	 microservices	 have	 been	
contributed to the iRODS codebase by the user
community	 and	 development	 staff.	 Using	 iRODS	
microservices, rather than calling a standalone
external program, enables enforcement of iRODS
access	control	policies,	code	verification	for	auditing	
and	scientific	reproducibility,	and	coordinated	code	
execution across multiple iRODS servers.

You will notice in the example rule on the next
page that one microservice (msiDataObjRepl) is
called.	Microservices	are	denoted	by	the	prefix	msi.
They	are	a	specific	class	of	plugins,	discussed	in	the	
Plugins section of this document.

enable...
Access Control
Rules can specify who can access
data, for what activity (i.e., read or
write), and when they can access it.

Backup and Data Migration
Rules can manage file replication
and transfer among storage devices
or locales, depending on any
parameter, such as date of creation
or last access.

Data Conversion
Rules can convert files between file
formats or different versions of the
same format, such as when you need
an Excel spreadsheet saved as XML.

Data Preparation
Rules can clean and prep your
data prior to use; for example,
eliminating duplicate data, removing
null values, performing spell checks,
indexing data, subsetting data into
more manageable chunks, or any
pre-processing that meets your
needs.

Metadata Extraction
Rules can extract relevant metadata
from files to improve search, so
you are not stuck remembering file
names.

r u l e s

~	5	~

ReplicateAllFilesWithExtension {
 *Query = SELECT COLL_NAME, DATA_NAME WHERE DATA_NAME LIKE "%.*Extension";
 foreach(*Row in *Query) {
 *SourceFile = *Row.COLL_NAME++"/"++*Row.DATA_NAME;
 msiDataObjRepl(*SourceFile,"destRescName=*Resource",*Status);
 writeLine("stdout","Replicated *SourceFile to *Resource");
 }
}
INPUT *Extension="txt", *Resource="backupResc"
OUTPUT ruleExecOut

An example rule

Policy Enforcement Points (PEPs)
Rules are executed based on conditions or, in iRODS parlance, Policy Enforcement Points (PEPs).
Consider, for example, a rule to transfer ownership of data objects to the project manager when a
user is deleted; the trigger—or PEP—is the deletion of the user. Similarly, rules could be written
to	extract	metadata	or	pre-process	data	whenever	a	file	is	uploaded	to	a	storage	device.	Or,	upon	
access	to	particular	data	objects,	a	rule	can	create	a	log	of	the	event,	send	an	email	notification	
to the project manager, or perform some other task you need to occur as a result of the data’s
access.

As	 illustrated	 in	 the	 diagram	 below,	 every	 client-side	 operation	 (e.g.,	 storing	 a	 file	 or	 iput,
retrieving	a	file	or	iget) activates a PEP which can trigger any action you need iRODS to take to
manage your data and metadata. The chaining of rules and PEPs allows you to create powerful,
customized	workflows	that	help	you	automate,	save	time	and	energy,	and	prevent	human	error.

The example rule above locates every file with the .txt extension and creates a replica of each located file on the
resource called backupResc.

RULE ENGINE
iCAT

DATABASE

...

...

...

...

A
PI

Policy Policy Enforcement Points

iput
iget
irepl
...

User or time-initiated client-side
operations (i.e., iCommands).

INSIDE iRODS

~ 6 ~

PLUGINS

In addition to rules, an iRODS installation can be customized
with plugins. Plugins are used to implement core iRODS

functions, such as authentication, communication over the
Internet, communication with storage devices, and more. The
use of plugins allows administrators to tailor iRODS to their

needs and to the existing infrastructure, without having to re-compile code.
Plugins also make it possible to upgrade small portions of iRODS without
interfering with core functions.

Plugins interact with iRODS core code through six interfaces. You have already
read	about	one	pluggable	 interface,	microservices.	The	other	five	are	authentication,	
communication with the iCAT database, network transport, the application programming
interface (API), and communication with storage devices. iRODS ships with a default
set of plugins; others must be installed separately, if you choose to use them.

Interface Plugins

Authentication Native iRODS password access
OSAuth
Pluggable Authentication Module (PAM)
Grid Security Infrastructure (GSI)*
LDAP via PAM

Database Oracle*
PostgreSQL*
MySQL*

Network Transmission Control Protocol (TCP)
Secure Socket Layer (SSL)

API An iRODS application programming interface to
enable storage and retrieval of data objects from
another application.

Microservices There are over 350 available, covering a variety of
functions.

Composable
Resources

There are two kinds of Composable Resources
in iRODS: Coordinating and Storage. Both are
discussed in more detail in the next section.

 *External plugins that may be installed

~ 7 ~

COMPOSABLE RESOURCES

Composable Resources are plugins that allow you to create
rich decision trees for managing storage and retrieval of

data on storage devices. There are two types of Composable
Resources: Coordinating and Storage. Coordinating

Resources actively make decisions about which physical device
will receive or serve up a data object. Storage Resources
are the logical representations of—or pointers to—physical
storage	 devices.	 They	 are	 composed	 of	 five	 parts:	 (a)	 the	
name you give the resource, (b) a host name (e.g., willow.

irods.renci.org), (c) a directory path to the exact location on
the storage device (e.g., /full/path/to/storage), (d) the resource type
(e.g.,	 Amazon	 S3),	 and	 (e)	 a	 plugin-specific	 context	 string	 (e.g.,	
the	name	of	 the	file	 containing	 access	 credentials	or	 any	persistent	
information the plugin may require).

One way to think about Composable Resources is to consider Coordinating
Resources as the branch nodes of your decision tree and Storage Resources as the
leaves.	(See	the	iRODS	Zone	figure.)	Examples	of	Coordinating	Resources	include:

Replication Round Robin Load Balanced Compound

A replication re-
source keeps its
children in sync
with identical
copies—or
replicas—of data
objects.

A round robin
resource will
rotate through
its children for
each upload to
the system.

A load balanced
resource
attempts to
balance storage
and retrieval
across children
to avoid taxing
the servers (e.g.,
available space,
CPU usage,
network traffic).

A compound
resource
manages two
children, in the
roles of Cache
and Archive. The
Cache resource
provides a stan-
dard UNIX file
system interface
(i.e., POSIX) to
an Archive that
may not natively
support this type
of access.

~ 8 ~

Examples of Storage Resources that may be used in an iRODS installation:

Unix File System This type of storage resource communicates
with a storage device through the standard
POSIX interface.

Amazon S3* Amazon’s cloud storage service.

Web Object Scalar
(WOS)*

DataDirect Networks’ block storage appliance.

Ceph RADOS* Designed for efficient cacheless access to a
Ceph RADOS block storage cluster.

Direct Access Designed for access to shared high
performance computing (HPC) storage.

Universal Mass
Storage

For use with Compound resources, such as
tape-based archives.

 *External plugins that may be installed

IS iRODS RIGHT FOR ME?

iRODS provides a customizable solution for your data management needs. Questions you may
want to ask yourself when evaluating iRODS as a potential solution include:
•	 Do	I	need	to	share,	back	up,	or	migrate	data	between	different	types	of	storage	devices	
and/or	different	geographic	locations	now	or	in	the	future?

•	 Do	I	need	to	move	data	easily	between	local	and	cloud-based	storage	devices,	or	file	and	
block	storage	devices?

•	 Could	my	 collaborators	 and	 I	 benefit	 from	 accessing	 and	managing	 data	 in	 a	 unified	
namespace?

•	 Do I need to automate data management activities (e.g., data replication, load-balancing)
and/or	 could	 I	 take	 advantage	 of	 data	 processing	 workflows	 to	 streamline	 data	
management?

•	 Do I need to implement and verify compliance with regulatory data retention and privacy
policies	(e.g.,	HIPAA,	Sarbanes-Oxley,	or	other	federal	regulations)?

•	 Do I need to provide data description and annotation (e.g., metadata) for improved
search,	sharing,	or	data	provenance	tracking?

iRODS	can	help	you	fulfill	all	of	these	data	management	needs.	Also	consider	your	future	needs.	
Maybe you don’t need to share data with collaborators or outside organizations yet; but is it
possible	that	you	might	need	to	scale	up	at	some	point	to	do	so?	Maybe	you	will	want	to	migrate	
storage hardware some day. iRODS can grow with your organization as your data needs grow.

For more information:
•	 iRODS website: http://irods.org
•	 iRODS Consortium: http://irods.org/consortium
•	 iRODS documentation: http://irods.org/documentation
•	 iRODS code on GitHub: https://github.com/irods

http://www.irods.org
http://www.irods.org/consortium
http://irods.org/documentation/
https://github.com/irods

	Title Page
	An iRODS Zone
	Policies
	Rules
	An example rule

	Policy Enforcement Points (PEPs)

	Plugins
	Composable Resources
	Is iRODS Right for Me?
	Figures
	iRODS Zone
	Inside iRODS

	Tables
	Plugins
	Coordinating Resources
	Storage Resources

