Enterprise iRODS (E-IRODS) Microservice Developers Tutorial

Author: Renaissance Computing Institute (RENCI)
Version: 3.0.1
Date: 2013-11-17

Table of Contents

Prerequisites
About microservices and microservice plugins
Generic template for writing a microservice plugin

"Hello World!" as a microservice plugin

g A~ W N
AN N B B,

"CURL Get" as a microservice plugin

1 Prerequisites

This tutorial covers two built-in examples: "Hello World!" and "CURL Get".

To run this tutorial:

1. Download E-iRODS binary package and Development Tools from http://www.eirods.org/download
2. Install E-IRODS

3. Install the E-IRODS Development Tools

4. Install package libboost1.xx-dev

5. If you want to run the curl based example, install the libcurl and libcurl-dev packages

After installing the E-iIRODS dev tools, make a test directory on your system and copy the contents of
/usr/share/eirods/examples/microservices into it. This will be our current working directory for the rest of
the tutorial.

2 About microservices and microservice plugins

An iRODS microservice is a C function which takes as parameters:

» One argument of type ruleExeclnfo_t* (required)

» Any number of arguments of type msParam_t* (optional)
Input and output values of a microservice are passed through its msParam_t* arguments.

A set of helper functions is commonly used in microservices to interface with the generic msParam_t*
type:
* parseMspForXxx() for inputs

« fillXxxInMsParam() for outputs
Where "Xxx' varies depending on the type of parameter ('Str', 'Int', 'DataObjlnp’, etc..).

For more information on iRODS microservices and related helper functions see
https://lwww.irods.org/index.php/iRODS _Introduction sections 6 and 8:

* https://lwww.irods.org/index.php/iRODS _ Introduction#iRODS_Micro-services

* https://lwww.irods.org/index.php/iRODS _ Introduction#Extending_iRODS

E-iIRODS allows microservices to be dynamically loaded as plugins, without the need to rebuild the iIRODS
server.

page 1

http://www.eirods.org/download
https://www.irods.org/index.php/iRODS_Introduction
https://www.irods.org/index.php/iRODS_Introduction#iRODS_Micro-services
https://www.irods.org/index.php/iRODS_Introduction#Extending_iRODS

Enterprise iRODS (E-IRODS) Microservice Developers Tutorial

3 Generic template for writing a microservice plugin

/] =-=-=-=-=-=-=-

/1 E-iRCODS | ncl udes

#i ncl ude "nsParam h'

#i ncl ude "red obal sExt ern. h"
#i ncl ude "eirods_ns_pl ugi n. h"

// —— e T S-S T -
/1 STL I ncl udes
#i ncl ude <i ostreanp

extern "C' {

/] =-=-=-=-=-=-=-

// 1. Wite a standard issue m croservice

int my_microservice(..., ruleExeclnfo_t* rei) {
[...]
return O;

}

/] =-=-=-=- == =-

/[l 2. Create the plugin factory function which wll

I return a microservice table entry

eirods::ns_table_entry* plugin_factory() ({

/] =-=-=-=- == =-

/1 3. Allocate a microservice plugin which takes the nunber of function

/1 parans as a paraneter to the constructor, not including _rei. Wth

/1 N as the total nunber of argunents of ny_m croservice() we woul d have

eirods:: ns_table_entry* msvc = new eirods::ns_table_entry(N1);

] sc=c===Sc=-=o

/1 4. Add the microservice function as an operation to the plugin

/1 the first paramis the nane / key of the operation, the second
/1 is the nane of the function which will be the m croservice
nmsvc- >add_operation("my_m croservice", "nmy_mcroservice");

] sc=====-=-====

/1 5. Return the newWy created microservice plugin
return msvc;

}

}; I/ extern "C'

4 "Hello World!" as a microservice plugin

Given the above template we can write a simple microservice plugin that returns a string to the client. That
string needs to be passed out via a microservice parameter (msParam_t*). A simple microservice plugin

would then look like this (ei r ods_hel | 0. cpp):

] S=====-==-=-

/'l E-i RODS | ncl udes

#i ncl ude "nsParam h"

#i ncl ude "red obal sExt ern. h"
#i ncl ude "eirods_ns_pl ugi n. h"

page 2

Enterprise iRODS (E-IRODS) Microservice Developers Tutorial

// - S-S S-S - ==
/] STL | ncl udes
#i ncl ude <i ostreanp

extern "C' {

[l =====-==-==

/1 1. Wite a standard i ssue m croservice

int eirods_hello(msParamt* _out, ruleExeclnfo_t* _rei) {
std::string ny_str = "Hello World!l'";
fillStrinMsParan(_out, ny_str.c_str());

return O;
}
// - S-S0 ==
/'l 2. Create the plugin factory function which wll
/1 return a mcroservice table entry

eirods::nms_table_entry* plugin_factory() {

]| S=c====-=-=x=-

/1 3. Allocate a microservice plugin which takes the nunber of function

/1 parans as a paraneter to the constructor, not including _rei.
eirods::ms_table_entry* msvc = new eirods: :nms_table_entry(1);

Il =s==c===—=-=-

/1l 4. Add the m croservice function as an operation to the plugin

/1 the first paramis the name / key of the operation, the second
/1 is the nane of the function which will be the m croservice
nsvc- >add_operation("eirods_hello", "eirods_hello");

] Sc=c===c=-=-

/1 5. Return the newly created m croservice plugin
return msvc;

}

}; /1 extern "C
To run this example from your test directory type:
$ make hello

This should create a shared object: | i bei rods_hel | 0. so

Copy | i bei rods_hel | 0. so to the microservices plugin directory (as eirods):

$ sudo -u eirods cp -f libeirods_hello.so /var/lib/eirods/plugins/mcroservices/

Now that you have "loaded" your new microservice plugin you can test it with its corresponding rule:

$irule -F eirods_hello.r

page 3

Enterprise iRODS (E-IRODS) Microservice Developers Tutorial

5 "CURL Get" as a microservice plugin

In this second example we are using libcurl to make a GET request and write the result to an E-IRODS
object. For the full source see ei rods_curl _get. cpp.

While the previous example simply returned an arbitrary string, this microservice is manipulating iIRODS
content and therefore needs an iIRODS connection context. This connection context is provided to our
microservice via its ruleExeclInfo_t* parameter and is required when making iRODS API calls to create
and write to iRODS objects. In our example this is done by the CURL write function that writes blocks of
data to a new IRODS object, using rsDataChjCreate(), rsDataChjWite(), and
r sDat aCbj C ose() . For this reason the iRODS connection context needs to be passed all the way to
the CURL write function.

To keep our microservice code concise we define an irodsCurl object that maintains an iRODS connection
context and a (reusable) CURL handler. We can then use the i rodsCurl : : get () method to make one
or more requests to remote objects, e.g:

nyCurl . get ("ww. exanple.conffilel.htm ", "/tenpZone/ hhorme/exanple/filel.htm");
myCurl . get ("www. exanpl e.com file2. htnmd ", "/tenpZone/ hone/ exanple/file2.htm");
myCurl . get ("www. exanpl e.com file3. htm", "/tenpZone/ hone/ exanple/file3.htm");
etc...

To run this example from your test directory type:
$ make curl _get

This should create a shared object: | i bei rods_curl _get. so

Copy | i bei rods_curl _get. so to the microservices plugin directory (as eirods):

$ sudo -u eirods cp -f libeirods_curl_get.so /var/lib/eirods/plugins/mcroservices/

Edit the rulefile ei rods_curl _get.r to make sure that the destination object path (*dest_object) is
valid in your environment

Run the rulefile:
$irule -F eirods_hello.r
Check if the new object is there:

$ ils -L PATH OF DEST_OBJECT
$ i get PATH OF DEST_OBJECT -

Note the - at the end of the iget command. This simply puts the retrieved file into stdout and will print the
file contents to your screen.

page 4

	1 Prerequisites
	2 About microservices and microservice plugins
	3 Generic template for writing a microservice plugin
	4 "Hello World!" as a microservice plugin
	5 "CURL Get" as a microservice plugin

