
E-iRODS Composable Resources

example3

tiered

my_cache_resc
local.example.org

my_archive_resc
remote.example.org

tier0 tier1

$ iadmin mkresc example3 tiered
$ iadmin mkresc my_cache_resc "unix file system" local.example.org:/Vault
$ iadmin mkresc my_archive_resc "unix file system" remote.example.org:/Vault
$ iadmin addchildtoresc example3 my_cache_resc "tier0"
$ iadmin addchildtoresc example3 my_archive_resc "tier1"

01
02
03
04
05

$ iadmin mkresc example2 tiered
$ iadmin mkresc my_flash_resc "unix file system" fastest.example.org:/Vault
$ iadmin mkresc my_raid_array "unix file system" raid5.example.org:/Vault
$ iadmin mkresc my_archive replication
$ iadmin mkresc my_tape_resc "unix file system" tape.example.org:/Vault
$ iadmin mkresc my_dark_resc "unix file system" dark.example.org:/Vault
$ iadmin addchildtoresc example2 my_flash_resc "tier0"
$ iadmin addchildtoresc example2 my_raid_array "tier1"
$ iadmin addchildtoresc example2 my_archive "tier2"
$ iadmin addchildtoresc my_archive my_tape_resc
$ iadmin addchildtoresc my_archive my_dark_resc

01
02
03
04
05
06
07
08
09
10
11

$ iadmin mkresc example1 replication
$ iadmin mkresc repl_resc1 "unix file system" renci.example.org:/Vault
$ iadmin mkresc repl_resc2 "unix file system" maxplanck.example.org:/Vault
$ iadmin mkresc repl_resc3 "unix file system" sdsc.example.org:/Vault
$ iadmin addchildtoresc example1 repl_resc1
$ iadmin addchildtoresc example1 repl_resc2
$ iadmin addchildtoresc example1 repl_resc3

01
02
03
04
05
06
07

Terrell Russell1, Jason Coposky1, Harry Johnson1, Ray Idaszak1, Charles Schmitt1
(1) Renaissance Computing Institute, University of North Carolina, Chapel Hill

This first example requires 7 iadmin commands to compose. The replication coordinating resource named “example1” is configured to have three children which would each
receive a replica of every Data Object “put” into “example1”. The default replication coordinating resource code will populate one of the children resources, return to the calling
function, and then use the Post Disconnect Maintenance Operation (PDMO) to queue two replication events to populate the remaining children. It is the coordinating resource’s
responsibility to provide a “voting” mechanism for which replica is returned when the Data Object is requested by a user (i.e. iget). This voting could be as simple as returning
the first replica in the iCAT database or as complicated as keeping statistics on throughput or load or latency.

Example 1: Replicates Data Objects to three locations

Example 2: Tiered storage system with a dark archive

Example 3: Simulates legacy compound resource type

This example requires 11 iadmin commands to compose. The tiered coordinating resource named “example2” has three
children, ordered with context strings specifying their tiered positions (0, 1, and 2). Here, they are ordered by speed with the
fastest tier0 being a flash device, tier1 being a regular raid array of spinning disk, and a third tier2 being a replication
coordinating resource with two children of its own. The tier2 “my_archive” is replicating onto a tape device of some kind as
well as a write-only space known as a dark archive. This “my_dark_resc” could have policy around it specifying that only
admins can write, and no user can read. A dark archive would then always ‘vote’ negatively requiring its parent to coordinate
its own vote when responding to its own parent.

This example requires 5 iadmin commands to compose. The tiered coordinating resource named “example3” has two children which are ordered by locality. The
local “my_cache_resc” would be consulted first for any read request that comes into “example3”. A write request would go into the cache resource first as well
and then be replicated to its peer, the remote “my_archive_resc” via the internal logic of the tiered coordinating resource and employing the PDMO, just like
example 1. This example can duplicate the existing functionality of the compound resource as defined in community iRODS.

http://eirods.org

Abstract

 RENCI has developed composable resources for
Enterprise iRODS (E-iRODS) which allow for shareable,
flexible definitions of storage resources. Using a
well-defined tree metaphor to describe composite
resources provides insight into existing resources as well as
a powerful tool for envisioning new resource
configurations. Defined resources can be shared and
iterated within the community easily as they are plugins,
external from the E-iRODS core.

Introduction

 Resources in iRODS have historically sat at the
interface between the data management layer and logic of
iRODS and the storage of physical bits on disk or tape.
Resources are characterized by drivers that handle the
translation to and from those physical media. With
E-iRODS composable resources, drivers and management
logic are encapsulated into a pluggable architecture that
allows the community to develop new and interesting
configurations outside the E-iRODS core.
 Composable resources are included in the third beta of
E-iRODS and are planned to be included in future releases
of iRODS. They represent a retooling of how iRODS
manages its relationship with physical media. Composable
resources use a tree metaphor to describe their functionality
and capabilities. They represent a more flexible
architecture with which to construct as complex a
configuration of storage devices as necessary.
 Included are resource types representing:
 » unix file system
 » legacy compound (expected)
 » random (expected)
 » replication (expected)
 » round-robin (expected)
 » storage balancing (expected)
 » tiered (expected)
 » pass through (for testing)

Tree Metaphor

 In computer science, a tree is a data structure with a
hierarchical representation of linked nodes. These nodes
can be named based on where they are in the hierarchy.
 The node at the top of a tree is the root node. Parent
nodes and child nodes are on opposite ends of a connecting
link, or edge. Leaf nodes are at the bottom of the tree, and
any node that is not a leaf node is a branch node. These
positional descriptors are helpful when describing the
structure of a tree. Composable resources are best
represented using this tree metaphor.

Virtualization

 In iRODS, files are stored as Data Objects on disk and
have an associated physical path as well as a virtual path
within the iRODS file system. iRODS collections only
exist in the iCAT database and do not have an associated
physical path (allowing them to exist across all resources,
virtually).
 Composable resources introduce the same dichotomy
between the virtual and physical. E-iRODS resources are
defined to be either coordinating resources or storage
resources. These two different classes of resource map
directly to the branch nodes and leaf nodes of a generic tree
data structure. A coordinating resource has built-in logic
that defines how it determines, or coordinates, the flow of
data to and from its children. Coordinating resources exist
solely in the iCAT and virtually exist across all E-iRODS
servers in a particular Zone. A storage resource has a Vault
(physical) path and knows how to speak to a specific type
of storage medium (disk, tape, etc.). The encapsulation of
resources into a plugin architecture allows E-iRODS to
have a consistent interface to all resources, whether they
represent coordination or storage.
 This virtualization of the coordinating resources allows
the logic of how to manage both the placement and the
retrieval of Data Objects to exist independent of the types
of resources that are connected as children resources. When
E-iRODS tries to retrieve data, each child resource will
“vote” by offering whether it can provide the requested
data, and coordinating resources will decide which
particular storage resource (e.g. physical location) the read
should come from. The specific manner of this vote is
specific to the logic of the coordinating resource. For
instance, a coordinating resource could optimize for
reducing the number of requests made against each storage
resource within some time frame or it could optimize for
reducing latency in expected data retrieval times. We
expect a wide variety of useful optimizations to be
developed by the community.
 An intended side effect of the tree metaphor and the
virtualization of coordinating resources is the deprecation
of the concept of a resource group. Resource groups in
community iRODS could not be put into other resource
groups. A specific limiting example was that of the
compound resource where, by definition, it was a group
and could not be placed into another group significantly
limiting its functionality as a management tool.
 Groups in E-iRODS now only refer to user groups.

example2

tiered

my_!ash_resc
fastest.example.org

my_raid_array
raid5.example.org

my_archive

replication

my_tape_resc
tape.example.org

my_dark_resc
dark.example.org

tier0 tier1 tier2

example1

replication

repl_resc1
renci.example.org

repl_resc2
maxplanck.example.org

repl_resc3
sdsc.example.org

