
E-iRODS Composable Resources

Terrell Russell
1
, Jason Coposky

1
, Harry Johnson

1
, Ray Idaszak

1
, Charles Schmitt

1

(1) Renaissance Computing Institute, University of North Carolina, Chapel Hill

Abstract

RENCI has developed composable resources for

Enterprise iRODS (E-iRODS) which allow for

shareable, flexible definitions of storage resources.

Using a well-defined tree metaphor to describe

composite resources provides insight into existing

resources as well as a powerful tool for envisioning new

resource configurations. Defined resources can be

shared and iterated within the community easily as they

are plugins, external from the E-iRODS core.

Index Keyword Terms— iRODS, E-iRODS,

storage resources, data management, composability,

plugins

1. Introduction

Resources in iRODS have historically sat at the

interface between the data management layer and logic

of iRODS and the storage of physical bits on disk or

tape. Resources are characterized by drivers that handle

the translation to and from those physical media. With

E-iRODS composable resources, drivers and

management logic are encapsulated into a pluggable

architecture that allows the community to develop new

and interesting configurations outside the E-iRODS

core.

Composable resources are included in the third beta

of E-iRODS and are planned to be included in future

releases of iRODS. They represent a retooling of how

iRODS manages its relationship with physical media.

Composable resources use a tree metaphor to describe

their functionality and capabilities. They represent a

more flexible architecture with which to construct as

complex a configuration of storage devices as necessary.

Included are resource types representing:

 unix file system

 legacy compound (expected)

 random (expected)

 replication (expected)

 round-robin (expected)

 storage balancing (expected)

 tiered (expected)

 pass through (for testing)

2. Tree Metaphor

In computer science, a tree is a data structure with a

hierarchical representation of linked nodes. These nodes

can be named based on where they are in the hierarchy.

The node at the top of a tree is the root node.

Parent nodes and child nodes are on opposite ends of a

connecting link, or edge. Leaf nodes are at the bottom

of the tree, and any node that is not a leaf node is a

branch node. These positional descriptors are helpful

when describing the structure of a tree. Composable

resources are best represented using this tree metaphor.

3. Virtualization

In iRODS, files are stored as Data Objects on disk

and have an associated physical path as well as a virtual

path within the iRODS file system. iRODS collections

only exist in the iCAT database and do not have an

associated physical path (allowing them to exist across

all resources, virtually).

Composable resources introduce the same

dichotomy between the virtual and physical. E-iRODS

resources are defined to be either coordinating

resources or storage resources. These two different

classes of resource map directly to the branch nodes and

leaf nodes of a generic tree data structure. A

coordinating resource has built-in logic that defines how

it determines, or coordinates, the flow of data to and

from its children. Coordinating resources exist solely in

the iCAT and virtually exist across all E-iRODS servers

in a particular Zone. A storage resource has a Vault

(physical) path and knows how to speak to a specific

type of storage medium (disk, tape, etc.). The

encapsulation of resources into a plugin architecture

allows E-iRODS to have a consistent interface to all

resources, whether they represent coordination or

storage.

This virtualization of the coordinating resources

allows the logic of how to manage both the placement

and the retrieval of Data Objects to exist independent of

the types of resources that are connected as children

resources. When E-iRODS tries to retrieve data, each

child resource will “vote” by offering whether it can

provide the requested data, and coordinating resources

will decide which particular storage resource (e.g.

physical location) the read should come from. The

specific manner of this vote is specific to the logic of the

coordinating resource. For instance, a coordinating

resource could optimize for reducing the number of

requests made against each storage resource within some

time frame or it could optimize for reducing latency in

expected data retrieval times. We expect a wide variety

of useful optimizations to be developed by the

community.

An intended side effect of the tree metaphor and the

virtualization of coordinating resources is the

deprecation of the concept of a resource group.

Resource groups in community iRODS could not be put

into other resource groups. A specific limiting example

was that of the compound resource where, by definition,

it was a group and could not be placed into another

group significantly limiting its functionality as a

management tool.

Groups in E-iRODS now only refer to user groups.

4. Dynamic Functionality

4.1 Policy Enforcement Points (PEPs)

The code that defines a particular type of composite

resource is developed as a plugin and is dynamically

parsed when it is added to an E-iRODS system. When

an exposed method on a resource type is first called, an

operation within the resource plugin will dynamically

construct a string representing a new policy enforcement

point (PEP) relevant to its own functionality and invoke

both the pre() and post() PEP for that operation. These

well-defined PEPs can be used by rules to enforce more

fine-grained policy. These strings are matched directly

by name and are constructed as follows:

pep_$operation _pre()
pep_$operation_post()

For example, the derived PEP pre() and post() strings

for open, close, read, and write would be:

pep_open_pre()
pep_open_post()
pep_close_pre()
pep_close_post()
pep_read_pre()
pep_read_post()
pep_write_pre()
pep_write_post()

Within each of these operations, the following four

iRODS $-variables (dollar variables) are populated and

made available:

$pluginInstanceName
$objPath
$phyPath
$replNum

4.2 Post Disconnect Maintenance Operations

(PDMOs)

Since some operations may require multiple replicas

to be made across potentially slow or latent connections,

the plugin environment provides functionality for

allowing “offline” or “post-disconnect” operations. Any

work that needs to be done after the prompt is returned

to the user can be done inside the function named

post_disconnect_maintenance_operation() within the

plugin.

5. Examples

The following three examples illustrate how some

new composite resources can be constructed by a data

grid administrator.

5.1 Replicates Data Objects to three locations

iadmin mkresc example1 replication
iadmin mkresc repl_resc1 "unix file system" renci.example.org:/Vault
iadmin mkresc repl_resc2 "unix file system" maxplanck.example.org:/Vault
iadmin mkresc repl_resc3 "unix file system" sdsc.example.org:/Vault
iadmin addchildtoresc example1 repl_resc1
iadmin addchildtoresc example1 repl_resc2
iadmin addchildtoresc example1 repl_resc3

This first example requires 7 iadmin commands to

compose. The replication coordinating resource named

“example1” is configured to have three children which

would each receive a replica of every Data Object “put”

into “example1”. The default replication coordinating

resource code will populate one of the children

resources, return to the calling function, and then use the

PDMO to queue two replication events to populate the

remaining children. It is the coordinating resource’s

responsibility to provide a “voting” mechanism for

which replica is returned when the Data Object is

requested by a user (i.e. iget). This voting could be as

simple as returning the first replica in the iCAT database

or as complicated as keeping statistics on throughput or

load or latency.

5.2 Tiered storage system with a dark archive

iadmin mkresc example2 tiered
iadmin mkresc my_flash_resc "unix file system" fastest.example.org:/Vault
iadmin mkresc my_raid_array "unix file system" raid5.example.org:/Vault
iadmin mkresc my_archive replication
iadmin mkresc my_tape_resc "unix file system" tape.example.org:/Vault
iadmin mkresc my_dark_resc "unix file system" dark.example.org:/Vault
iadmin addchildtoresc example2 my_flash_resc "tier0"
iadmin addchildtoresc example2 my_raid_array "tier1"
iadmin addchildtoresc example2 my_archive "tier2"
iadmin addchildtoresc my_archive my_tape_resc
iadmin addchildtoresc my_archive my_dark_resc

This example requires 11 iadmin commands to

compose. The tiered coordinating resource named

“example2” has three children, ordered with context

strings specifying their tiered positions (0, 1, and 2).

Here, they are ordered by speed with the fastest tier0

being a flash device, tier1 being a regular raid array of

spinning disk, and a third tier2 being a replication

coordinating resource with two children of its own. The

tier2 “my_archive” is replicating onto a tape device of

some kind as well as a write-only space known as a dark

archive. This “my_dark_resc” could have policy around

it specifying that only admins can write, and no user can

read. A dark archive would then always ‘vote’

negatively requiring its parent to coordinate its own vote

when responding to its own parent.

5.3 Simulates legacy compound resource type

iadmin mkresc example3 tiered
iadmin mkresc my_cache_resc "unix file system" local.example.org:/Vault
iadmin mkresc my_archive_resc "unix file system" remote.example.org:/Vault
iadmin addchildtoresc example3 my_cache_resc "tier0"
iadmin addchildtoresc example3 my_archive_resc "tier1"

This example requires 5 iadmin commands to

compose. The tiered coordinating resource named

“example3” has two children which are ordered by

locality. The local “my_cache_resc” would be consulted

first for any read request that comes into “example3”. A

write request would go into the cache resource first as

well and then be replicated to its peer, the remote

“my_archive_resc” via the internal logic of the tiered

coordinating resource and employing the PDMO, just

like example 5.1. This example can duplicate the

existing functionality of the compound resource as

defined in community iRODS.

6. Conclusion

The introduction of composable resources into the

iRODS technology environment represents the

capability to develop storage resources that have greater

functionality than can be provided for today. By

dynamically generating additional relevant PEPs when

new resources are plugged into a running instance of E-

iRODS, the benefits of the iRODS rule engine are

preserved (if not magnified). This additional flexibility

and functionality open the door for developers to

generate new classes of storage resources that can easily

be integrated into an existing E-iRODS deployment

without requiring updates to the underlying E-iRODS

release installation.

7. Acknowledgements

This work has been supported by RENCI. We

would like to thank the iRODS team and community for

input and guidance on the presented approach.

