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Abstract  

RENCI has developed composable resources for 

Enterprise iRODS (E-iRODS) which allow for 

shareable, flexible definitions of storage resources.  

Using a well-defined tree metaphor to describe 

composite resources provides insight into existing 

resources as well as a powerful tool for envisioning new 

resource configurations.  Defined resources can be 

shared and iterated within the community easily as they 

are plugins, external from the E-iRODS core. 
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1. Introduction 

Resources in iRODS have historically sat at the 

interface between the data management layer and logic 

of iRODS and the storage of physical bits on disk or 

tape.  Resources are characterized by drivers that handle 

the translation to and from those physical media.  With 

E-iRODS composable resources, drivers and 

management logic are encapsulated into a pluggable 

architecture that allows the community to develop new 

and interesting configurations outside the E-iRODS 

core.  

Composable resources are included in the third beta 

of E-iRODS and are planned to be included in future 

releases of iRODS.  They represent a retooling of how 

iRODS manages its relationship with physical media.  

Composable resources use a tree metaphor to describe 

their functionality and capabilities.  They represent a 

more flexible architecture with which to construct as 

complex a configuration of storage devices as necessary. 

Included are resource types representing: 

 unix file system 

 legacy compound (expected) 

 random (expected) 

 replication (expected) 

 round-robin (expected) 

 storage balancing (expected) 

 tiered (expected) 

 pass through (for testing) 

2. Tree Metaphor 

In computer science, a tree is a data structure with a 

hierarchical representation of linked nodes.  These nodes 

can be named based on where they are in the hierarchy. 

The node at the top of a tree is the root node.  

Parent nodes and child nodes are on opposite ends of a 

connecting link, or edge.  Leaf nodes are at the bottom 

of the tree, and any node that is not a leaf node is a 

branch node.  These positional descriptors are helpful 

when describing the structure of a tree.  Composable 

resources are best represented using this tree metaphor. 

 

3. Virtualization 

In iRODS, files are stored as Data Objects on disk 

and have an associated physical path as well as a virtual 

path within the iRODS file system.  iRODS collections 

only exist in the iCAT database and do not have an 

associated physical path (allowing them to exist across 

all resources, virtually). 

Composable resources introduce the same 

dichotomy between the virtual and physical.  E-iRODS 

resources are defined to be either coordinating 

resources or storage resources.  These two different 

classes of resource map directly to the branch nodes and 

leaf nodes of a generic tree data structure.  A 

coordinating resource has built-in logic that defines how 

it determines, or coordinates, the flow of data to and 

from its children.  Coordinating resources exist solely in 

the iCAT and virtually exist across all E-iRODS servers 

in a particular Zone.  A storage resource has a Vault 

(physical) path and knows how to speak to a specific 

type of storage medium (disk, tape, etc.).  The 

encapsulation of resources into a plugin architecture 

allows E-iRODS to have a consistent interface to all 

resources, whether they represent coordination or 

storage. 

This virtualization of the coordinating resources 

allows the logic of how to manage both the placement 

and the retrieval of Data Objects to exist independent of 

the types of resources that are connected as children 

resources.  When E-iRODS tries to retrieve data, each 

child resource will “vote” by offering whether it can 

provide the requested data, and coordinating resources 



will decide which particular storage resource (e.g. 

physical location) the read should come from.  The 

specific manner of this vote is specific to the logic of the 

coordinating resource.  For instance, a coordinating 

resource could optimize for reducing the number of 

requests made against each storage resource within some 

time frame or it could optimize for reducing latency in 

expected data retrieval times.  We expect a wide variety 

of useful optimizations to be developed by the 

community. 

An intended side effect of the tree metaphor and the 

virtualization of coordinating resources is the 

deprecation of the concept of a resource group.  

Resource groups in community iRODS could not be put 

into other resource groups.  A specific limiting example 

was that of the compound resource where, by definition, 

it was a group and could not be placed into another 

group significantly limiting its functionality as a 

management tool. 

Groups in E-iRODS now only refer to user groups. 

 

4. Dynamic Functionality 

4.1 Policy Enforcement Points (PEPs) 

The code that defines a particular type of composite 

resource is developed as a plugin and is dynamically 

parsed when it is added to an E-iRODS system.  When 

an exposed method on a resource type is first called, an 

operation within the resource plugin will dynamically 

construct a string representing a new policy enforcement 

point (PEP) relevant to its own functionality and invoke 

both the pre() and post() PEP for that operation.  These 

well-defined PEPs can be used by rules to enforce more 

fine-grained policy.  These strings are matched directly 

by name and are constructed as follows: 

 

pep_$operation _pre() 
pep_$operation_post() 
 

For example, the derived PEP pre() and post() strings 

for open, close, read, and write would be: 
 

pep_open_pre() 
pep_open_post() 
pep_close_pre() 
pep_close_post() 
pep_read_pre() 
pep_read_post() 
pep_write_pre() 
pep_write_post() 
 

 

Within each of these operations, the following four 

iRODS $-variables (dollar variables) are populated and 

made available: 
 

$pluginInstanceName 
$objPath 
$phyPath 
$replNum 

4.2 Post Disconnect Maintenance Operations 

(PDMOs) 

Since some operations may require multiple replicas 

to be made across potentially slow or latent connections, 

the plugin environment provides functionality for 

allowing “offline” or “post-disconnect” operations.  Any 

work that needs to be done after the prompt is returned 

to the user can be done inside the function named 

post_disconnect_maintenance_operation() within the 

plugin. 

5. Examples 

The following three examples illustrate how some 

new composite resources can be constructed by a data 

grid administrator. 

 

5.1 Replicates Data Objects to three locations 

 
iadmin mkresc example1 replication 
iadmin mkresc repl_resc1 "unix file system" renci.example.org:/Vault 
iadmin mkresc repl_resc2 "unix file system" maxplanck.example.org:/Vault 
iadmin mkresc repl_resc3 "unix file system" sdsc.example.org:/Vault 
iadmin addchildtoresc example1 repl_resc1 
iadmin addchildtoresc example1 repl_resc2 
iadmin addchildtoresc example1 repl_resc3 

 

 

 

This first example requires 7 iadmin commands to 

compose.  The replication coordinating resource named 

“example1” is configured to have three children which 

would each receive a replica of every Data Object “put” 

into “example1”.  The default replication coordinating 

resource code will populate one of the children 

resources, return to the calling function, and then use the 

PDMO to queue two replication events to populate the 

remaining children.  It is the coordinating resource’s 

responsibility to provide a “voting” mechanism for 

which replica is returned when the Data Object is 

requested by a user (i.e. iget).  This voting could be as 

simple as returning the first replica in the iCAT database 

or as complicated as keeping statistics on throughput or 

load or latency. 



5.2 Tiered storage system with a dark archive 

 
iadmin mkresc example2 tiered 
iadmin mkresc my_flash_resc "unix file system" fastest.example.org:/Vault 
iadmin mkresc my_raid_array "unix file system" raid5.example.org:/Vault 
iadmin mkresc my_archive replication 
iadmin mkresc my_tape_resc "unix file system" tape.example.org:/Vault 
iadmin mkresc my_dark_resc "unix file system" dark.example.org:/Vault 
iadmin addchildtoresc example2 my_flash_resc "tier0" 
iadmin addchildtoresc example2 my_raid_array "tier1" 
iadmin addchildtoresc example2 my_archive "tier2" 
iadmin addchildtoresc my_archive my_tape_resc 
iadmin addchildtoresc my_archive my_dark_resc 

 

 

 

This example requires 11 iadmin commands to 

compose. The tiered coordinating resource named 

“example2” has three children, ordered with context 

strings specifying their tiered positions (0, 1, and 2).  

Here, they are ordered by speed with the fastest tier0 

being a flash device, tier1 being a regular raid array of 

spinning disk, and a third tier2 being a replication 

coordinating resource with two children of its own.  The 

tier2 “my_archive” is replicating onto a tape device of 

some kind as well as a write-only space known as a dark 

archive.  This “my_dark_resc” could have policy around 

it specifying that only admins can write, and no user can 

read.  A dark archive would then always ‘vote’ 

negatively requiring its parent to coordinate its own vote 

when responding to its own parent. 

 

5.3 Simulates legacy compound resource type 

 
iadmin mkresc example3 tiered 
iadmin mkresc my_cache_resc "unix file system" local.example.org:/Vault 
iadmin mkresc my_archive_resc "unix file system" remote.example.org:/Vault 
iadmin addchildtoresc example3 my_cache_resc "tier0" 
iadmin addchildtoresc example3 my_archive_resc "tier1" 

 

 
 

 

This example requires 5 iadmin commands to 

compose.  The tiered coordinating resource named 

“example3” has two children which are ordered by 

locality.  The local “my_cache_resc” would be consulted 

first for any read request that comes into “example3”.  A 

write request would go into the cache resource first as 

well and then be replicated to its peer, the remote 

“my_archive_resc” via the internal logic of the tiered 

coordinating resource and employing the PDMO, just 

like example 5.1.  This example can duplicate the 

existing functionality of the compound resource as 

defined in community iRODS. 

6. Conclusion 

The introduction of composable resources into the 

iRODS technology environment represents the 

capability to develop storage resources that have greater 

functionality than can be provided for today.  By 

dynamically generating additional relevant PEPs when 

new resources are plugged into a running instance of E-

iRODS, the benefits of the iRODS rule engine are 

preserved (if not magnified).  This additional flexibility 

and functionality open the door for developers to 

generate new classes of storage resources that can easily 

be integrated into an existing E-iRODS deployment 

without requiring updates to the underlying E-iRODS 

release installation. 
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