

E-iRODS Composable Resources
Terrell Russell, Jason Coposky, Harry Johnson, Ray Idaszak, Charles Schmitt
Renaissance Computing Institute, University of North Carolina at Chapel Hill

Plugin Architecture

● Defines a common plugin interface

● Concentrates functionality into independently testable units

● Affords independent community development of new features
external to the core

● Enables distribution of proprietary plugins in a binary-only format

● Affords the ability that plugins are dynamically available to a
running server upon installation

● Includes a “ContextString” as flexible metadata which allows each
instance of a plugin to be independently configured

● Enables multiple instances with different specific parameterization
(e.g. multiple WOS, S3, etc. per E-iRODS server)

Resource Plugins

● Follow existing common iRODS file driver interface
(fileOpen, fileClose, fileRead, fileWrite, etc.)

● Use the “ContextString” to define resource-specific
metadata (e.g. S3 endpoint, WOS URL and port, path to
local credential file)

● Capture complexity of resource behavior into reusable
components

● Repackage existing functionality into plugins

E-iRODS Composable Resources

● Plugins

● Tree Metaphor

● Virtualization

● Extensible

● Community Driven

RENCI has developed composable resources for Enterprise iRODS (E-iRODS)
which allow for shareable, flexible definitions of storage resources. Using a
well-defined tree metaphor to describe composite resources provides insight
into existing resources as well as a powerful tool for envisioning new resource
configurations. Defined resources can be shared and iterated within the
community easily as they are plugins, external from the E-iRODS core.

Coordinating Resource – Strictly virtual (lives in the iCAT only)

It is the coordinating resource’s responsibility to provide a "voting" mechanism for which replica is
returned when the Data Object is requested by a user (i.e. iget).

This voting could be as simple as returning the first replica in the iCAT database or as complicated as
keeping statistics on throughput or load or latency.

Example 1: Replicates Data Objects to three locations

Example 2: Tiered storage system with a dark archive

The relationship between a parent and
child resource may also be defined with a
ContextString.

Here, the three children of the tiered
coordinating resource are ordered by
speed with the fastest tier0 being a flash
device, tier1 being a regular raid array of
spinning disk, and a third tier2 being a
replication coordinating resource with two
children of its own.

The tier2 "my_archive" is replicating onto
a tape device of some kind as well as a
write-only space known as a dark archive.

This "my_dark_resc" could have policy
around it specifying that only admins can
write, and no user can read. A dark archive
would then always "vote" "no" requiring
its parent to coordinate its own vote when
responding to its own parent.

Example 3: Simulates legacy compound resource type

The local "my_cache_resc" would be consulted first
for any read request that comes into "example3".

A write request would go into the cache resource first
as well and then be replicated to its peer, the remote
"my_archive_resc".

This example can duplicate the existing functionality
of the compound resource as defined in community
iRODS.

Thank You

Terrell Russell, Ph.D.
Renaissance Computing Institute (RENCI)
University of North Carolina at Chapel Hill

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

