

Managing Petabytes of data with iRODS at CC-IN2P3

Jean-Yves Nief

Talk overview

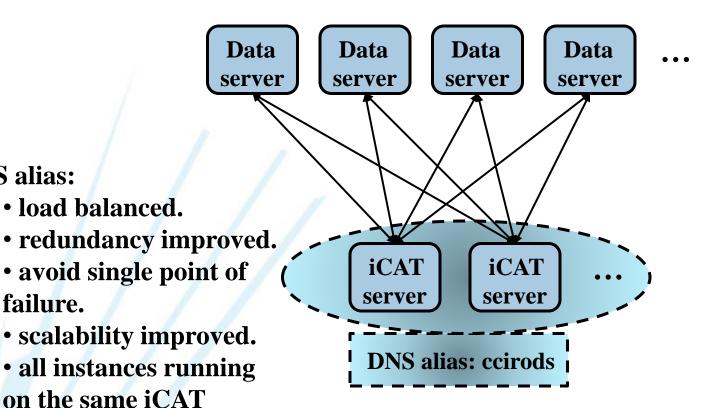
- What is CC-IN2P3 ?
- Who is using iRODS?
- iRODS administration:
 - Hardware setup.
- iRODS interaction with other services:
 - Mass Storage System, backup system, Fedora Commons etc...
 - iRODS clients usage.
- Architecture examples with collaborating sites.
- Rules examples.
- Prospects.

CC-IN2P3 activities

- Federate computing needs of the french scientific community in:
 - Nuclear and particle physics.
 - Astrophysics and astroparticles.
- Computing services to international collaborations:
 - CERN (LHC), Fermilab, SLAC,
- Opened now to biology, Arts & Humanities.

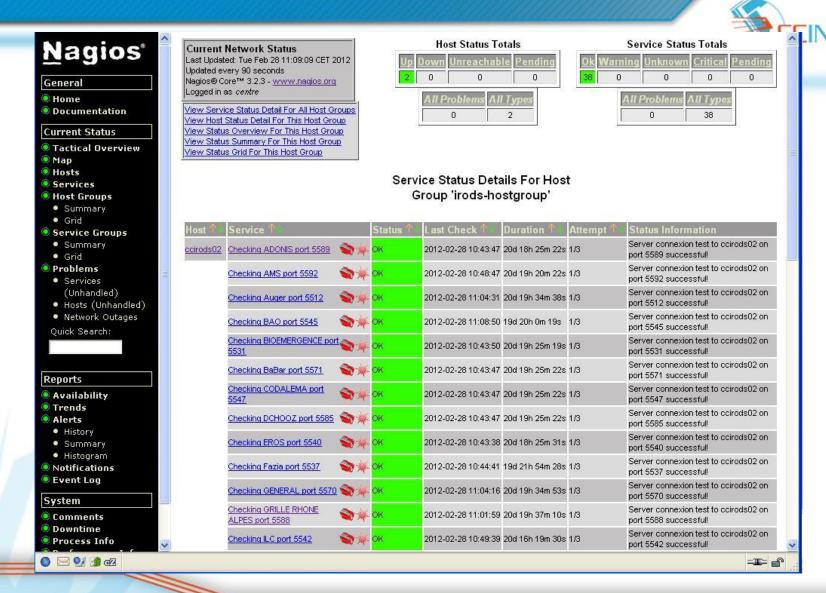
iRODS setup @ CC-IN2P3

- Being used since the beginning in 2006.
- In production since early 2008.
- 15 servers:
 - 2 iCAT servers (metacatalog): Linux SL4, Linux SL5
 - 13 data servers (737 TB): Sun Thor x454 with Solaris 10,
 DELL R510, R720xd with Linux SL5.
- Metacatalog on a dedicated Oracle 11g cluster (2 servers).
- Monitoring and restart of the services fully automated (crontab + Nagios).
- Automatic weekly reindexing of the iCAT databases.
- Accounting: daily report on our web site.


DNS alias:

failure.

servers.


iRODS setup @ CC-IN2P3

iRODS monitoring: Nagios

iRODS interaction with other services

- Mass storage system: HPSS.
 - Using compound resources.
 - Interfaced using the universal MSS driver (RFIO protocol used).
 - Staging requests ordered by tapes using tape requests scheduling.
- Backup system: TSM.
 - Used for projects who do not have the possibility to replicate precious data on other sites.

Fedora Commons:

- Storage backend based on iRODS using FUSE.
- Rules to register iRODS files into Fedora.

External databases:

Rules using RDA.

iRODS servers migration

- Almost 200 TBs of disk space decommissioned in 2012.
- Moved the data without stopping production.
- Easy for file system resources (even for data movement to remote sites).
- More tricky with group resources (archive resource is MSS).

iRODS clients

- Clients:
 - Access from batch jobs, virtually from anywhere.
- Authentication: password or X509 certificates.
- iCommands: most popular.
 - From any platform: Windows, Mac OSX, Linux (RH, CentOS, Debian...), Solaris 10.
- Java APIs: interaction with iRODS within workflows.
- C APIs: direct access to files (open, read, write) to do « random access ».
- FUSE for legacy web sites and Fedora Commons.
- Windows explorer and iDrop.

Who is using iRODS?

High energy and nuclear physics:

- BaBar: data management of the entire data set between SLAC and CC-IN2P3: total foreseen 2PBs.
- dChooz: neutrino experiment (France, USA, Japan etc...): 600
 TBs.

Astroparticle and astrophysics:

- AMS: cosmic ray experiment on the International Space Station (1 PB).
- TREND, BAOradio: radioastronomy (170 TBs).
- Biology and biomedical applications: phylogenetics, neuroscience, cardiology (50 TBs).
- Arts and Humanities: Adonis (74 TBs).

iRODS use cases

- Data sharing and transfers for wide spread communities.
- Online data access from any kind of front-end app (web, home grown clients, batch farm...) allowing data policies to be run on the data underneath.
- Data archival.

Not intended for massive I/O ops from a batch farm! (not a parallel file system)

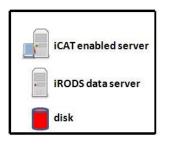
→ Still lots of access from the batch farm (potentially more than 1k clients).

Who is using iRODS?

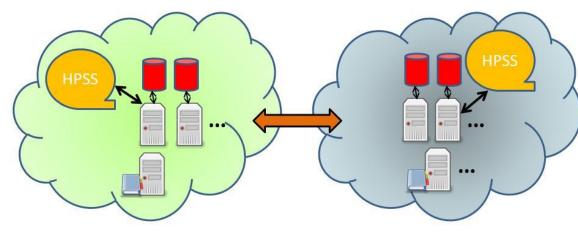
Area maintained by Thomas Kachelhoffer

Description:

6 381 TB are used at this time. These values were collected the 2013-02-27 at 22:27:01. By clicking on the instance name below, you will find the values corresponding to the selected instance and their evolutions.

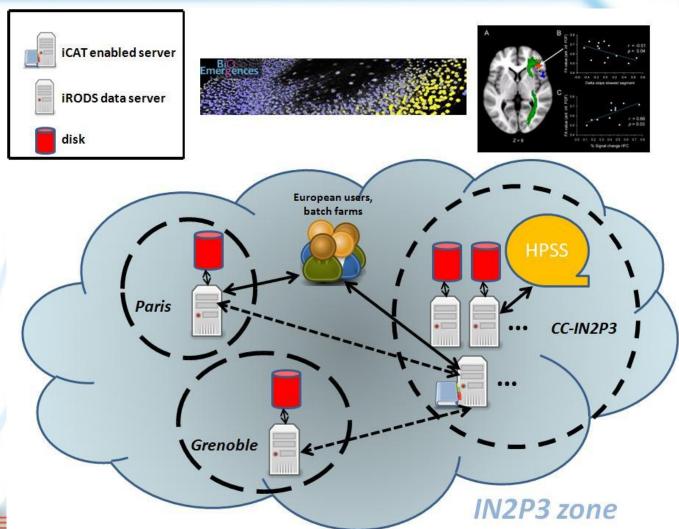

List of iRods instances:

a dania		7.5	100	OD.	- 0	005	100	61
adonis			183		ю			files
ams	1	054	779	GB		644	051	files
auger			- 1	GB		1	195	files
babar	1	550	638	GB	- 1	592	947	files
bao		148	373	GB	2	341	203	files
bioemergence	À	13	807	GB	3	837	665	files
codalema		- 1	953	GB		520	447	files
dchooz		661	673	GB		877	974	files
edelweiss		30	744	GB		9	725	files
fazia		3	352	GB		8	470	files
general		21	959	GB		227	399	files
imxgam		2	141	GB		62	483	files
indra		15	964	GB		72	548	files
ipm		1	179	GB	- 1	114	832	files
Isst			1	GB			2	files
qcd	2	057	208	GB		812	651	files
test		1	920	GB		302	036	files
tidra		23	535	GB	8	164	832	files
tidra-neuro		9	153	GB	- 1	170	730	files
trend		46	754	GB	-1	316	601	files
virgo		814	076	GB		581	165	files
	6	534	395	GB	30	584	146	files



Architecture example: BaBar

SLAC zone


CC-IN2P3 zone

- archival in Lyon of the entire BaBar data set (total of 2 PBs).
- automatic transfer from tape to tape: 3 TBs/day (no limitation).
- automatic recovery of faulty transfers.
- ability for a SLAC admin to recover files directly from the CC-IN2P3 zone if data lost at SLAC.

Architecture example: embryogenesis and neuroscience

Rules examples (I)

- Delayed replication to the MSS:
 - Data on disk cache replication into MSS asynchronously (1h later) using a delayExec rule.
 - Recovery mechanism: retries until success, delay between each retries is doubled at each round.
 - Automatic purge of the cache for the oldest files.
 - Automatic file bundle before migration to MSS.
- ACL management:
 - Rules needed for fine granularity access rights management.
 - Eg:
 - 3 groups of users (admins, experts, users).
 - ACLs on /<zone-name>/*/rawdata => admins : r/w, experts + users : r
 - ACLs on all others subcollections => admins + experts : r/w, users : r

Rules examples (II)

- Fedora Commons:
 - Tar balls content stored in iRODS are automatically registered into Fedora Commons.
 - 1. Automatic untar of the files + checksum on the iRODS side: msiTarFileExtract.
 - 2. Automatic registration in Fedora-commons (delayed rule): msiExecCmd of a java application.
- Automatic metadata extraction from DICOM files (neuroscience...):
 - A given predefined list of metadata is extracted from the files using DCMTK (thanks to Yonny Cardenas), then user metadata are created for each file.

SRB to iRODS migration

- SRB almost completed, still 2 projects to migrate.
- → Finish at the end of the first semester of this year!
- Migration to iRODS already made for BioEmergence (embryogenesis) in 2010:
 - Data workflow was using Jargon: transparent.
 - Migration from Scommands to icommands was needed.
 - 2 hours of downtime to complete the migration (scripts were needed).
- Migration headache:
 - SRB is deeply embedded in data management workflows and projects can't live without SRB.
 - → Main issue: migration should be as « transparent » as possible in order to keep up with the data activity.

To-do list

- Connection control (CCMS):
 - Very useful: some servers could be under heavy stress (one iCAT needed to be rebooted a couple of times!).
 - Connections can come from anywhere especially batch farms on the data grid.
 - Servers can be overwhelmed (network, disk activity for hundreds of connection in //).
 - Causes clients to exit with an error → not good.
 - Improved version of CCMS (connection control) is needed.
- Connection pooling on the Oracle side.

Prospects

- 6.3 PBs in iRODS as of Feb 2013 (should be at least
 8 PBs at the end of this year).
- Future projects:
 - LSST (astro): summer data challenge including NCSA (Illinois) + CC-IN2P3: iRODS will be used for data distribution between the two sites (100 TBs).
 - Replication of archival data from an other data centre (Cines, France).
 - Private companies (data encryption needed).

Acknowledgement

- Thanks to:
 - Pascal Calvat.
 - Yonny Cardenas.
 - Rachid Lemrani.
 - Thomas Kachelhoffer.
 - Pierre-Yves Jallud.