
Enterprise iRODS (E-iRODS) Manual
Author: Renaissance Computing Institute (RENCI)

Version: 3.0rc1

Date: 2013-05-14

Table of Contents
1 Release Notes 2

2 License 2

3 Overview 2

4 Download 3

5 Installation 3

6 Quickstart 4

6.1 Changing the administrator account password 4

6.2 Changing the Zone name 4

6.3 Add additional resource(s) 5

6.4 Add additional user(s) 5

7 Upgrading 6

8 Migration from Community iRODS 6

9 Backing Up 6

10 Assumptions 7

11 Architecture 7

12 Pluggable Microservices 7

13 Composable Resources 7

13.1 Tree Metaphor 8

13.2 Virtualization 8

13.3 Coordinating Resources 9

13.4 Storage Resources 9

13.5 Managing Child Resources 9

13.6 Example Usage 10

13.6.1 Example 1 10

14 Configuration 10

15 Glossary 11

16 Known Issues 14

17 History of Releases 14

E-iRODS Manual

page 1

1 Release Notes
This is the first release candidate of the Enterprise integrated Rule-Oriented Data System (E-iRODS).

E-iRODS is developed under the auspices of the E-iRODS Consortium. This release was prepared by the
Renaissance Computing Institute (RENCI) and released under the New BSD (BSD-3) License.

2 License
Copyright (c) 2005-2013, Regents of the University of California, the University of North Carolina at
Chapel Hill, and the Data Intensive Cyberinfrastructure Foundation All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither the name of the University of California, San Diego (UCSD), the University of North
Carolina at Chapel Hill nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3 Overview
This manual attempts to provide standalone documentation for E-iRODS as packaged by the
Renaissance Computing Institute (RENCI).

http://eirods.org

file:///var/lib/eirods/iRODS/doc/html/index.html

Additional documentation is available on the iRODS wiki and in the two books published by the iRODS
team:

http://irods.org

http://irods.org/doxygen

(2010) iRODS Primer: integrated Rule-Oriented Data System (Synthesis Lectures on Information
Concepts, Retrieval, and Services) http://www.amazon.com/dp/1608453332

(2011) The integrated Rule-Oriented Data System (iRODS 3.0) Micro-service Workbook
http://www.amazon.com/dp/1466469129

E-iRODS Manual

page 2

http://eirods.org
file:///var/lib/eirods/iRODS/doc/html/index.html
http://irods.org
http://irods.org/doxygen
http://www.amazon.com/dp/1608453332
http://www.amazon.com/dp/1466469129

4 Download
E-iRODS is currently released in binary form. Full open source repositories and trackers will be available
after the first major release.

RPM and DEB formats are available for both iCAT-enabled servers and resource-only servers. There are
variations available for combinations of platform and operating system.

More combinations will be made available as our testing matrix continues to mature and increase in
scope.

The latest files can be downloaded from http://eirods.org/download.

5 Installation
Installation of the Postgres iCAT DEB:

$ (sudo) dpkg -i eirods-3.0rc1-64bit-icat-postgres.deb
$ (sudo) apt-get -f install

Installation of the Resource RPM:

- Make sure to read ./packaging/RPM_INSTALLATION_HOWTO.txt before trying to install the RPM package.
$ (sudo) rpm -i eirods-3.0rc1-64bit-resource.rpm

These packages declare the dependencies necessary to run E-iRODS and if satisfied, they install a
service account and group named 'eirods', the E-iRODS binaries, microservice documentation, and this
manual.

For the iCAT-enabled server packages, the E-iRODS server and EICAT database are started
automatically with default values:

eirods@hostname:~/ $ ienv
NOTICE: Release Version = rods3.0, API Version = d
NOTICE: irodsHost=hostname
NOTICE: irodsPort=1247
NOTICE: irodsDefResource=demoResc
NOTICE: irodsHome=/tempZone/home/rods
NOTICE: irodsCwd=/tempZone/home/rods
NOTICE: irodsUserName=rods
NOTICE: irodsZone=tempZone

For the resource-only packages, the server is not started automatically. The administrator will need to run
the ./packaging/setup_resource.sh script and provide the following five pieces of information before
E-iRODS can start and connect to its configured iCAT Zone:

1. Hostname or IP

2. iCAT Port

3. iCAT Zone

4. E-iRODS administrator username

5. E-iRODS administrator password

E-iRODS Manual

page 3

http://eirods.org/download

6 Quickstart
Successful installation will complete and leave a running E-iRODS server. If you installed an
iCAT-enabled E-iRODS server, a database of your choice will also have been created and running. The
iCommand ils will list your new iRODS administrator's empty home directory in the iRODS virtual
filesystem:

eirods@hostname:~/ $ ils
/tempZone/home/rods:

When moving into production, you will probably want to cover the next few basic steps:

6.1 Changing the administrator account password
The default installation of E-iRODS comes with a single account 'rods' that has rodsadmin privileges and
password 'rods'. You should change the password before letting anyone else onto the system:

eirods@hostname:~/ $ iadmin moduser rods password <newpassword>

To make sure everything succeeded, you'll need to reauthenticate and check the new connection:

eirods@hostname:~/ $ iinit
Enter your current iRODS password:
eirods@hostname:~/ $ ils
/tempZone/home/rods:

6.2 Changing the Zone name
The default installation of E-iRODS comes with a Zone named 'tempZone'. You probably want to change
the Zone name to something more domain-specific:

eirods@hostname:~/ $ iadmin modzone tempZone name <newzonename>
If you modify the local zone name, you and other users will need to
change your .irodsEnv files to use it, you may need to update
irods.config and, if rules use the zone name, you'll need to update
core.re. This command will update various tables with the new name
and rename the top-level collection.
Do you really want to modify the local zone name? (enter y or yes to do so):y
OK, performing the local zone rename

The Zone has been renamed, but now you will need to update your .irodsEnv file to match (note the three
places where the updated zone name is located):

eirods@hostname:~/ $ cat .irods/.irodsEnv
iRODS server host name:
irodsHost '<hostname>'
iRODS server port number:
irodsPort 1247
Default storage resource name:
irodsDefResource 'demoResc'
Home directory in iRODS:
irodsHome '/<newzonename>/home/rods'

E-iRODS Manual

page 4

Current directory in iRODS:
irodsCwd '/<newzonename>/home/rods'
Account name:
irodsUserName 'rods'
Zone:
irodsZone '<newzonename>'

Now, the connection should be reset and you should be able to list your empty iRODS collection again:

eirods@hostname:~/ $ iinit
Enter your current iRODS password:
eirods@hostname:~/ $ ils
/<newzonename>/home/rods:

6.3 Add additional resource(s)
The default installation of E-iRODS comes with a single resource named 'demoResc' which stores its files
in the /var/lib/eirods/iRODS/Vault directory. You will want to create additional resources at disk locations
of your choosing. The following command will create a basic 'unix file system' resource at a designated
host at the designated fullpath:

eirods@hostname:~/ $ iadmin mkresc <newrescname> 'unix file system' <fully.qualified.domain.name>:</full/path/to/new/vault>

Additional information about creating resources can be found with:

eirods@hostname:~/ $ iadmin help mkresc
 mkresc Name Type [Host:Path] [ContextString] (make Resource)
Create (register) a new storage or database resource.

Name is the name of the new resource.
Type is the resource type.
Host is the DNS host name.
And Path is the defaultPath for the vault.
ContextString is any contextual information relevant to this resource.
 (semi-colon separated key=value pairs e.g. "a=b;c=d")

Creating new resources does not make them default for any existing or new users. You will need to make
sure that default resources are properly set for newly ingested files.

6.4 Add additional user(s)
The default installation of E-iRODS comes with a single user 'rods' which is a designated 'rodsadmin' type
user account. You will want to create additional 'rodsuser' type user accounts and set their passwords
before allowing connections to your new grid:

eirods@hostname:~/ $ iadmin mkuser <newusername> rodsuser

eirods@hostname:~/ $ iadmin lu
rods#tempZone
<newusername>#tempZone

eirods@hostname:~/ $ iadmin help mkuser

E-iRODS Manual

page 5

 mkuser Name[#Zone] Type (make user)
Create a new iRODS user in the ICAT database

Name is the user name to create
Type is the user type (see 'lt user_type' for a list)
Zone is the user's zone (for remote-zone users)

Tip: Use moduser to set a password or other attributes,
use 'aua' to add a user auth name (GSI DN or Kerberos Principal name)

Best practice suggests changing your Zone name before adding new users as any existing users would
need to be informed of the new connection information and changes that would need to be made to their
local .irodsEnv files.

7 Upgrading
The first release of E-iRODS does not yet support upgrading. Every install will be a clean install.

This section will be updated when support is included.

8 Migration from Community iRODS
Support for migrating from Community iRODS is planned, but automated scripts and documentation have
not yet been completed.

This section will be updated with support is included and tested.

9 Backing Up
Backing up E-iRODS consists of three major parts: The data, the iRODS system and configuration files,
and the iCAT database itself.

1. The data itself can be handled by the iRODS system through replication and should not require any
specific backup efforts worth noting here.

2. The iRODS system and configuration files can be copied into iRODS as a set of Data Objects by
using the msiServerBackup microservice. When run on a regular schedule, the msiServerBackup
microservice will gather and store all the necessary configuration information to help you reconstruct
your iRODS setup during disaster recovery.

3. The iCAT database itself can be backed up in a variety of ways. A PostgreSQL database is
contained on the local filesystem as a data/ directory and can be copied like any other set of files.
This is the most basic means to have backup copies. However, this will have stale information almost
immediately. To cut into this problem of staleness, PostgreSQL 8.4+ includes a feature called
"Record-based Log Shipping". This consists of sending a full transaction log to another copy of
PostgreSQL where it could be "re-played" and bring the copy up to date with the originating server.
Log shipping would generally be handled with a cronjob. A faster, seamless version of log shipping
called "Streaming Replication" was included in PostgreSQL 9.0+ and can keep two PostgreSQL
servers in sync with sub-second delay.

Configuration and maintenance of this type of backup system is out of scope for this document, but is
included here as an indication of best practice.

E-iRODS Manual

page 6

file:///var/lib/eirods/iRODS/doc/html/sys_backup_m_s_8c_abab044dfcae659a200741d4f69999c29.html
http://www.postgresql.org/docs/8.4/static/warm-standby.html#WARM-STANDBY-RECORD
http://www.postgresql.org/docs/9.0/static/warm-standby.html#STREAMING-REPLICATION

10 Assumptions
E-iRODS enforces that the database in use (PostgreSQL) is configured for UTF-8 encoding. This is
enforced at the database level and then the tables inherit this setting.

The iRODS setting 'StrictACL' is configured on by default in E-iRODS. This is different from the
community version of iRODS and behaves more like standard Unix permissions. This setting can be found
in the server/config/reConfigs/core.re file under acAclPolicy{}.

11 Architecture
E-iRODS represents a major effort to analyze, harden, and package iRODS for sustainability,
modularization, security, and testability. This has led to a fairly significant refactorization of much of the
underlying codebase. The following descriptions are included to help explain the architecture of E-iRODS.

The core is designed to be as immutable as possible and serve as a bus for handling the internal logic of
the business of iRODS (data storage, policy enforcement, etc.). Exposed by the core will be six or seven
major interfaces which will allow extensibility and separation of functionality into plugins. A few plugins will
be included by default in E-iRODS to provide a set of base functionality.

The planned plugin interfaces and their status are listed here:

Plugin Interface Status Since

Pluggable Microservices Complete 3.0b2

Composable Resources Complete 3.0b3

Pluggable Authentication Planned

Pluggable Database Planned

Pluggable Messaging Planned

Pluggable RPC API Planned

Pluggable Rule Engine Requested

12 Pluggable Microservices
E-iRODS is in the process of being modularized whereby existing community iRODS functionality will be
replaced and provided by small, interoperable plugins. The first plugin functionality to be completed was
pluggable microservices. Pluggable microservices allow users to add new microservices to an existing
E-iRODS server without recompiling the server or even restarting any running processes. A microservice
plugin contains a single compiled microservice shared object file to be found by the server. A separate
development package, including an example, is available at http://eirods.org/download, and explains how
this works in more detail.

13 Composable Resources
The second area of modularity to be added to E-iRODS consists of composable resources. Composable
resources replace the concept of resource groups from community iRODS. There are no resource groups
in E-iRODS.

E-iRODS Manual

page 7

http://eirods.org/download

13.1 Tree Metaphor
Composable resources are best modeled with a tree metaphor (and in computer science parlance, they
are tree data structures). An E-iRODS composable resource is a tree with one 'root' node. Nodes that are
at the bottom of the tree are 'leaf' nodes. Nodes that are not leaf nodes are 'branch' nodes and have one
more more 'child' nodes. A child node can have one and only one 'parent' node.

The terms root, leaf, branch, child, and parent represent locations and relationships within the structure of
a particular tree. The terms 'coordinating' and 'storage' represent the functionality of particular resources
within a particular tree. A resource node can be a coordinating resource and/or a storage resource. For
clarity and reuse, it is generally best practice to separate the two so that a particular resource node is
either a coordinating resource or a storage resource.

In computer science, a tree is a data structure with a hierarchical representation of linked nodes. These
nodes can be named based on where they are in the hierarchy. The node at the top of a tree is the root
node. Parent nodes and child nodes are on opposite ends of a connecting link, or edge. Leaf nodes are at
the bottom of the tree, and any node that is not a leaf node is a branch node. These positional descriptors
are helpful when describing the structure of a tree. Composable resources are best represented using this
tree metaphor.

13.2 Virtualization
In iRODS, files are stored as Data Objects on disk and have an associated physical path as well as a
virtual path within the iRODS file system. iRODS collections only exist in the iCAT database and do not
have an associated physical path (allowing them to exist across all resources, virtually).

Composable resources introduce the same dichotomy between the virtual and physical. E-iRODS
resources are defined to be either coordinating resources or storage resources. These two different
classes of resource map directly to the branch nodes and leaf nodes of a generic tree data structure. A
coordinating resource has built-in logic that defines how it determines, or coordinates, the flow of data to
and from its children. Coordinating resources exist solely in the iCAT and virtually exist across all
E-iRODS servers in a particular Zone. A storage resource has a Vault (physical) path and knows how to
speak to a specific type of storage medium (disk, tape, etc.). The encapsulation of resources into a plugin
architecture allows E-iRODS to have a consistent interface to all resources, whether they represent
coordination or storage.

This virtualization of the coordinating resources allows the logic of how to manage both the placement and
the retrieval of Data Objects to exist independent of the types of resources that are connected as children
resources. When E-iRODS tries to retrieve data, each child resource will “vote” by offering whether it can
provide the requested data, and coordinating resources will decide which particular storage resource (e.g.
physical location) the read should come from. The specific manner of this vote is specific to the logic of
the coordinating resource. For instance, a coordinating resource could optimize for reducing the number
of requests made against each storage resource within some time frame or it could optimize for reducing
latency in expected data retrieval times. We expect a wide variety of useful optimizations to be developed
by the community.

An intended side effect of the tree metaphor and the virtualization of coordinating resources is the
deprecation of the concept of a resource group. Resource groups in community iRODS could not be put
into other resource groups. A specific limiting example was that of the compound resource where, by
definition, it was a group and could not be placed into another group significantly limiting its functionality
as a management tool. Groups in E-iRODS now only refer to user groups.

Read more at http://eirods.org/release/e-irods-composable-resources/:

• Paper (279kB, PDF)

• Slides (321kB, PDF)

• Poster (6.4MB, PDF)

E-iRODS Manual

page 8

http://eirods.org/release/e-irods-composable-resources/
http://eirods.org/dev/wp-content/uploads/2013/02/eirods-composable-resources.pdf
http://eirods.org/dev/wp-content/uploads/2013/02/eirods-cr-slides.pdf
http://eirods.org/dev/wp-content/uploads/2013/02/eirods-composable-resources-poster.pdf

13.3 Coordinating Resources
Coordinating resources contain the flow control logic which determines both how its child resources will be
allocated copies of data as well as which copy is returned when a data object is requested. These include:

• random

• round robin

• pass through (for testing)

• replication (expected)

• load balanced (expected)

• storage balanced (%-full) (expected)

• storage balanced (bytes) (expected)

• tiered (expected)

13.4 Storage Resources
Storage resources represent storage interfaces and include the file driver information to talk with different
types of storage. These include:

• unix file system

• structured file type (tar, zip, gzip, bzip)

• Universal Mass Storage (expected)

• HPSS (expected)

• S3 (expected)

• WOS (expected)

• non-blocking (expected)

13.5 Managing Child Resources
There are two new iadmin subcommands introduced with this feature.

addchildtoresc:

eirods@hostname:~$ iadmin h addchildtoresc
 addchildtoresc Parent Child [ContextString] (add child to resource)
Add a child resource to a parent resource. This creates an 'edge'
between two nodes in a resource tree.

Parent is the name of the parent resource.
Child is the name of the child resource.
ContextString is any relevant information that the parent may need in order
 to manage the child.

rmchildfromresc:

eirods@hostname:~$ iadmin h rmchildfromresc
 rmchildfromresc Parent Child (remove child from resource)
Remove a child resource from a parent resource. This removes an 'edge'
between two nodes in a resource tree.

E-iRODS Manual

page 9

Parent is the name of the parent resource.
Child is the name of the child resource.

13.6 Example Usage
Creating a composite resource consists of creating the individual nodes of the desired tree structure and
then connecting the parent and children nodes.

13.6.1 Example 1

Example 1: Replicates Data Objects to three locations

A replicating coordinating resource with three unix file system storage resources as children would be
composed with seven (7) iadmin commands:

eirods@hostname:~/ $ iadmin mkresc example1 replication
eirods@hostname:~/ $ iadmin mkresc repl_resc1 "unix file system" renci.example.org:/Vault
eirods@hostname:~/ $ iadmin mkresc repl_resc2 "unix file system" maxplanck.example.org:/Vault
eirods@hostname:~/ $ iadmin mkresc repl_resc3 "unix file system" sdsc.example.org:/Vault
eirods@hostname:~/ $ iadmin addchildtoresc example1 repl_resc1
eirods@hostname:~/ $ iadmin addchildtoresc example1 repl_resc2
eirods@hostname:~/ $ iadmin addchildtoresc example1 repl_resc3

14 Configuration
There are a number of configuration files that control how an iRODS server behaves. The following is a
listing of the configuration files in an E-iRODS installation.

This document is intended to explain how the various configuration files are connected, what their
parameters are, and when to use them.

~/.odbc.ini

This file, in the eirods user's home directory, defines the unixODBC connection details needed for the
iCommands to communicate with the iCAT database. This file was created by the installer package
and probably should not be changed by the sysadmin unless they know what they are doing.

iRODS/config/irods.config

This file defines the main settings for the iRODS installation. It is created by the installer package and
comes preconfigured with approved and tested settings. Changing this file will take effect after a
restart of the iRODS server. It is recommended not to change this file.

iRODS/server/config/server.config

This file defines the behavior of the server Agent that answers individual requests coming into
iRODS. It is recommended not to change this file.

~/.irods/.irodsA

E-iRODS Manual

page 10

This is the scrambled password file that is saved after an iinit is run. If this file does not exist, then
each iCommand will prompt for a password before authenticating with the iRODS server. If this file
does exist, then each iCommand will read this file and use the contents as a cached password token
and skip the password prompt. This file can be deleted manually or can be removed by running
iexit full.

~/.irods/.irodsEnv

This is the main iRODS configuration file defining the iRODS environment. Any changes are effective
immediately since iCommands reload their environment on every execution.

15 Glossary
This glossary attempts to cover most of the terms you may encounter when first interacting with iRODS.
More information can be found on the iRODS wiki at http://irods.org.

Action

An external (logical) name given to an iRODS Rule(s) that defines a set of macro-level tasks. These
tasks are performed by a chain of microservices in accordance with external input parameters. This is
analogous to head atom in a Prolog rule or trigger-name in a relational database.

Agent

A type of iRODS server process. Each time a client connects to a server, an agent is created and a
network connection established between it and the client.

API

An Application Programming Interface (API) is a piece of software's set of defined programmatic
interfaces to enable other software to communicate with it. iRODS defines a client API and expects
that clients connect and communicate with iRODS servers in this controlled manner. iRODS has an
API written in C, and another written in Java (Jargon).

Authentication Mechanisms

iRODS can employ various mechanisms to verify user identity and control access to Data Objects
(iRODS files), Collections, etc. These currently include the default iRODS secure password
mechanism (challenge-response), Grid Security Infrastructure (GSI), and Operating System
authentication (OSAuth).

Audit Trail

List of all operations performed upon a Data Object, a Collection, a Resource, a User, or other iRODS
entities. When Auditing is enabled, significant events in the iRODS system (affecting the iCAT) are
recorded. Full activity reports can be compiled to verify important preservation and/or security policies
have been enforced.

Client

A Client in the iRODS client-server architecture gives users an interface to manipulate Data Objects
and other iRODS entities that may be stored on remote iRODS servers. iRODS clients include:
iCommands unix-like command line interface, iDrop (ftp-like client java application), iDropWeb (web
interface), etc.

Collection

All Data Objects stored in an iRODS system are stored in some Collection, which is a logical name
for that set of Data Objects. A Collection can have sub-collections, and hence provides a hierarchical
structure. An iRODS Collection is like a directory in a Unix file system (or Folder in Windows), but is
not limited to a single device or partition. A Collection is logical so that the Data Objects can span
separate and heterogeneous storage devices (i.e. is infrastructure and administrative domain
independent). Each Data Object in a Collection must have a unique name in that Collection.

Data Grid

E-iRODS Manual

page 11

http://irods.org

A grid computing system (a set of distributed, cooperating computers) that deals with the controlled
sharing and management of large amounts of distributed data.

Data Object

A Data Object is a single "stream-of-bytes" entity that can be uniquely identified; a file stored in
iRODS. It is given a Unique Internal Identifier in iRODS (allowing a global name space), and is
associated with (situated in) a Collection.

Driver

A piece of software that interfaces to a particular type of resource as part of the iRODS server/agent
process. The driver provides a common set of functions (open, read, write, close, etc.) which allow
iRODS clients (iCommands and other programs using the client API) to access different devices via
the common iRODS protocol.

Federation

Zone Federation occurs when two or more independent iRODS Zones are registered with one
another. Users from one Zone can authenticate through their home iRODS server and have access
rights on a remote Zone and its Data Objects, Collections, and Metadata.

Jargon

The Java API for iRODS. Read more at https://www.irods.org/index.php/Jargon.

iCAT

The iCAT, or iRODS Metadata Catalog, stores descriptive state metadata about the Data Objects in
iRODS Collections in a DBMS database (e.g. PostgreSQL, MySQL, Oracle). The iCAT can keep
track of both system-level metadata and user-defined metadata. There is one iCAT database per
iRODS Zone.

IES (iCAT-Enabled Server)

A machine that runs both an iRODS server and the iCAT database for a particular Zone.

iCommands

iCommands are Unix utilities that give users a command-line interface to operate on data in the
iRODS system. There are commands related to the logical hierarchical filesystem, metadata, data
object information, administration, rules, and the rule engine. iCommands provide the most
comprehensive set of client-side standard iRODS manipulation functions.

Inheritance

Collections in the iRODS logical name space have an attribute named Inheritance. When Collections
have this attribute set to Enabled, new Data Objects and Collections added to the Collection inherit
the access permissions (ACLs) of the Collection. Data Objects created within Collections with
Inheritance set to Disabled do not inherit the parent Collection's ACL settings. ichmod can be used
to manipulate this attribute on a per-Collection level. ils -A displays ACLs and the inheritance
status of the current working iRODS directory.

Logical Name

The identifier used by iRODS to uniquely name a Data Object, Collection, Resource, or User. These
identifiers enable global namespaces that are capable of spanning distributed storage and multiple
administrative domains for shared Collections or a unified virtual Collection.

Management Policies

The specification of the controls on procedures applied to Data Objects in a Collection. Management
policies may define that certain Metadata be required to be stored. Those policies could be
implemented via a set of iRODS Rules that generate and verify the required Metadata. Audit Trails
could be used to generate reports that show that Management Policies have been followed.

Metadata

Metadata is data about data. In iRODS, metadata can include system or user-defined attributes
associated with a Data-Object, Collection, Resource, etc., stored in the iCAT database. The

E-iRODS Manual

page 12

https://www.irods.org/index.php/Jargon

metadata stored in the iCAT database are in the form of AVUs (attribute-value-unit tuples).

Metadata Harvesting

The process of extraction of existing Metadata from a remote information resource and subsequent
addition to the iRODS iCAT. The harvested Metadata could be related to certain Data Objects,
Collections, or any other iRODS entity.

Micro-service

A set of operations performed on a Collection at a remote storage location.

Micro-services are small, well-defined procedures/functions that perform a certain server-side task
and are compiled into the iRODS server code. Rules invoke Micro-services to implement
Management Policies. Micro-services can be chained to implement larger macro-level functionality,
called an Action. By having more than one chain of Micro-services for an Action, a system can have
multiple ways of performing the Action. At runtime, using priorities and validation conditions, the
system chooses the "best" micro-service chain to be executed.

Migration

The process of moving digital Collections to new hardware and/or software as technology evolves.
Separately, Transformative Migration may be used to mean the process of manipulating a Data
Object into a new format (e.g. gif to png) for preservation purposes.

Physical Resource

A storage system onto which Data Objects may be deposited. iRODS supports a wide range of disk,
tape, and remote storage resources.

Resource

A resource, or storage resource, is a software/hardware system that stores digital data. iRODS clients
can operate on local or remote data stored on different types of resources through a common
interface.

Rules

Rules are a major innovation in iRODS that let users automate data management tasks, essential as
data collections scale to petabytes across hundreds of millions of files. Rules allow users to automate
enforcement of complex Management Policies (workflows), controlling the server-side execution (via
Micro-services) of all data access and manipulation operations, with the capability of verifying these
operations.

Rule Engine

The Rule Engine interprets Rules following the iRODS rule syntax. The Rule Engine, which runs on
all iRODS servers, is invoked by server-side procedure calls and selects, prioritizes, and applies
Rules and their corresponding Micro-services. The Rule Engine can apply recovery procedures if a
Micro-service or Action fails.

Scalability

Scalability means that a computer system performs well, even when scaled up to very large sizes. In
iRODS, this refers to its ability to manage Collections ranging from the data on a single disk to
petabytes (millions of gigabytes) of data in hundreds of millions of files distributed across multiple
locations and administrative domains.

Server

An iRODS server is software that interacts with the access protocol of a specific storage system. It
enables storing and sharing data distributed geographically and across administrative domains.

Transformative Migration

The process of manipulating a Data Object from one encoding format to another. Usually the target
format will be newer and more compatible with other systems. Sometimes this process is "lossy" and
does not capture all of the information in the original format.

Trust Virtualization

E-iRODS Manual

page 13

The management of Authentication and authorization independently of the storage location.

Unique Internal Identifier

See Logical Name.

User Name

Unique identifier for each person or entity using iRODS; sometimes combined with the name of the
home iRODS Zone (as username#Zonename) to provide a globally unique name when using Zone
Federation.

Vault

An iRODS Vault is a data repository system that iRODS can maintain on any storage system which
can be accessed by an iRODS server. For example, there can be an iRODS Vault on a Unix file
system, an HPSS (High Performance Storage System), or an IBM DB2 database. A Data Object in an
iRODS Vault is stored as an iRODS-written object, with access controlled through the iCAT catalog.
This is distinct from legacy data objects that can be accessed by iRODS but are still owned by
previous owners of the data. For file systems such as Unix and HPSS, a separate directory is used;
for databases such as Oracle or DB2 a system-defined table with LOB-space (Large Object space) is
used.

Zone

An iRODS Zone is an independent iRODS system consisting of an iCAT-Enabled Server (IES),
optional additional distributed iRODS Servers (which can reach hundreds, worldwide) and clients.
Each Zone has a unique name. When two iRODS Zones are configured to interoperate with each
other securely, it is called (Zone) Federation.

16 Known Issues
Ticket Item: [#1260] unixODBC on OpenSuSE 12.x fails when iRODS resource name contains a hyphen (aka "hpss-sdsc")
--

unixODBC on OpenSuSE 12.x fails when iRODS resource name contains a hyphen (aka "hpss-sdsc").

Also, 'moon landing' in rules3.0/rulewriteKeyValPairs.r.

Other Operating Systems and versions do not exhibit this behavior.

Mar 6 09:47:34 pid:21588 NOTICE: rsAuthCheck user rods#tempZone
Mar 6 09:47:34 pid:21588 NOTICE: rsAuthResponse set proxy authFlag to 5, client authFlag to 5, user:rods#tempZone
proxy:rods client:rods
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[1]=RajaBase
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[2]=acRegisterData
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[3]=acRegisterData()
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[4]=($objPath like "/home/raja#sdsc/myImportantFiles*" && $dataSize > 10000000)
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[5]={
 msiRegisterData():::recover_msiRegisterData();
 msiQueue("msiReplicateData(\'hpss-sdsc\') ::: recover_msiReplicateData;");
}
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[6]=@REL
Mar 6 09:47:34 pid:21588 NOTICE: cllExecSqlWithResult: SQLExecDirect error: -1, sql:select rule_id from R_RULE_MAIN
where rule_base_name = ? and rule_name = ? and rule_event = ? and rule_condition = ? and rule_body = ? and
rule_recovery = ?
Mar 6 09:47:34 pid:21588 NOTICE: SQLSTATE: 01000
Mar 6 09:47:34 pid:21588 NOTICE: SQLCODE: 4294967295
Mar 6 09:47:34 pid:21588 NOTICE: SQL Error message: [unixODBC]Error while executing the query (non-fatal);
ERROR: syntax error at or near "hpss" at character 344
Mar 6 09:47:34 pid:21588 NOTICE: chlInsRuleTable cmlGetIntegerValueFromSqlV3 find rule if any failure -806000
Mar 6 09:47:34 pid:21588 NOTICE: rsGeneralRowInsert: rcGeneralRowInsert failed
Mar 6 09:47:34 pid:21588 ERROR: executeRuleAction Failed for msiAdmInsertRulesFromStructIntoDB status = -806000
CAT_SQL_ERR

17 History of Releases

Date Version Description

E-iRODS Manual

page 14

2013-05-14 3.0rc1 First Release Candidate.

This is the first release candidate from RENCI. It includes PAM support,
additional resources (compound, universalMSS, replication, random, and
nonblocking), and additional documentation.

2013-03-15 3.0b3 Third Beta Release.

This is the third release from RENCI. It includes a new package for
CentOS 6+, support for composable resources, and additional
documentation.

2012-06-25 3.0b2 Second Beta Release.

This is the second release from RENCI. It includes packages for iCAT,
Resource, iCommands, and development, in both DEB and RPM
formats. Also includes more documentation.

2012-03-01 3.0b1 Initial Beta Release.

This is the first release from RENCI, based on the iRODS 3.0 community
codebase.

E-iRODS Manual

page 15

	1 Release Notes
	2 License
	3 Overview
	4 Download
	5 Installation
	6 Quickstart
	6.1 Changing the administrator account password
	6.2 Changing the Zone name
	6.3 Add additional resource(s)
	6.4 Add additional user(s)

	7 Upgrading
	8 Migration from Community iRODS
	9 Backing Up
	10 Assumptions
	11 Architecture
	12 Pluggable Microservices
	13 Composable Resources
	13.1 Tree Metaphor
	13.2 Virtualization
	13.3 Coordinating Resources
	13.4 Storage Resources
	13.5 Managing Child Resources
	13.6 Example Usage
	13.6.1 Example 1

	14 Configuration
	15 Glossary
	16 Known Issues
	17 History of Releases

