Long-term preservation at BnF

Scalable Preservation and Archiving Repository (SPAR)

June 19th, 2014
Agenda

- BnF and digital preservation
- SPAR
- The Storage Abstraction Service
- Limitation of the Abstraction
- Conclusion
The National Library of France

An autonomous public establishment

2200 agents and dozens of professions, a budget of aprox. 230 M€

Local, national and international missions

About 1M readers per year, 300 000 visitors to the exhibitions

Large collections to manage

- More than 14M books
- More than 30M posters and photos
- More than 250,000 manuscripts
- More than 1M audiovisual material
- “French” Web legal deposit
The National Library of France (BnF)

• Main missions:
 – to build up the collections
 – to preserve them forever
 – to communicate them to the public

• Legal deposit:
 – legal deposit since 1537 for printed materials
 – 1648: engravings and maps
 – 1793: musical scores
 – 1925: photos
 – 1938: phonograms
 – 1941: posters
 – 1975: videograms and multimedia documents
 – 1992: audiovisual and electronic documents
 – 2006: Web legal deposit
Institutional issue: missions

- Preservation is at the heart of BnF’s missions
- Digital preservation is a direct extension of the preservation of BnF’s collections. Two different approaches can be considered:
 1. The digital form as a mean to preserve an analog document that degrades. It then enters in a digitization process (as it’s the case for paper but also for analog audiovisual collections) and the digital surrogate (which may be a substitution) needs to be preserved along side with the analog
 2. The born-digital document (in the case of the web legal deposit since august 1st, 2006, or of the audiovisual legal deposit). This document then belonging to the heritage collections has to be preserved.

Decree n°94-3 of january 3rd of 1994 – record 2:
La Bibliothèque nationale de France a pour missions de collecter, cataloguer, conserver et enrichir dans tous les champs de la connaissance, le patrimoine national dont elle a la garde, en particulier le patrimoine de langue française ou relatif à la civilisation française.
Digital archiving at BnF
Agenda

• BnF and digital preservation
 • SPAR
• The Storage Abstraction Service
• Limitation of the Abstraction
• Conclusion
Some facts about SPAR (at 2014/06/16)

- Operation begins: May 2010
 - Current workflow of BnF’s mass digitization program
 - Distributed storage over 2 sites
- 2,668,000 packages archived
- 266,703,000 data-objects (files)
- > 1,36PB (=1000TB) of raw data
- > 1 billion triples (elementary metadata)
- Very large manuscripts have been ingested (packages with size of 100GB)
- First technological migration made: new tape generation
- Available tracks: monographs, periodicals, still images, audio, video, web archiving, office documents, third-party archiving
SPAR: modular, OAIS compliant repository

Preservation digitization

Audiovisual collections

And so on

Preservation planning
Administration

Ingest

Preservation

Data management

Access

Storage abstraction service

Infrastructure

SIP

mets

AIP

DIP

Scalable Preservation and Archiving Repository

2014/06/19
Infrastructure

Main site

Backup site

Secondary storage

Online storage

Servers

Primary storage

Lookup storage

Backup secondary storage

Backup storage

Backup servers

Backup lookup storage

Scalable Preservation and Archiving Repository

2014/06/19
Infrastructure – Kind of hardware

• **Tapes**
 – Less costly
 – High capacity
 – Energy efficient
 – Slow (reach the tape, mount it in the drive, load the information…)
 ⇒ For archival documents and those that don’t need quick access

• **Disks**
 – Fast access
 – Most expensive
 ⇒ For documents in the workflow
 ⇒ For documents ready for quick dissemination
Decomposition in tracks

• To deal with the variability and heterogeneity of the data, definition of **tracks**

• build on the relation between the digital objects and the archival system, independently of any given organization:
 – Preservation digitization
 – Audiovisual legal deposit
 – Negotiated legal deposit (e-books, large posters, …)
 – Automatic legal deposit (surface Web)
 – Administrative production
 – Third party archiving
 – Acquisition / Donation

+ reference track
Agenda

- BnF and digital preservation
- SPAR
 - The Storage Abstraction Service
- Limitation of the Abstraction
- Conclusion
Requirements for the Storage abstraction service

• Abstract the infrastructure with:
 – storage unit
 • aggregates storage element to defines an abstract storage defined by a class of service
 – mean time (read/write)
 – number of copies …
 – record
 • simple bit stream (no semantics)
 • some properties: checksum, logical name, lastAuditDate
Main concepts for the SAS

- **A record**: is an information managed by the SAS. Each record is hosted on one and only one storage unit.

- **A copy (or replica)**: Depending on the needs, a record can have multiple copies on the SAS. All copies are strictly identical (integrity control). The SAS only exposes one record with multiple copies. Each copy is written physically in a storage element.

- **A storage unit**: It handles an entity to capture the characteristics of a particular storage. Each unit is declared by an administrator who defines which elements of storage are linked as well as the number of copies. Every record in one storage unit has the same characteristics of storage.

- **A storage element**: it is an entity very closed to the hardware (media, disk, tapes), except that it represents a part of a physical media. For example: a partition of a disk array or a pool of tapes…
Storage abstraction

SPAR - Realization

Audit

Multiple copies management

Refreshment of media

Media migration

Application viewpoint
Infrastructure viewpoint

AQS

AIP

Capsule A

SAS

Main storage

Backup storage

2014/06/19

Scalable Preservation and Archiving Repository
Logical Data Model

```
record
+recordName
+recordCategory
+recordStatus
+auditStatus
+currentSize
+md5sum
+creationDate
+lastUpdateDate
+lastAuditDate

replica
+replicaName
+replicaStatus
+physicalLocation
+md5sum
+creationDate
+lastUpdateDate

readLock
+lockId
+owner
+creationDate

writeLock
+lockId
+owner
+creationDate

storageUnit
+storageUnitName
+storageUnitStatus
+weight
+currentSize
+maxRecordNumber
+maxRecordSize
+storageCapacity
+availabilityPerDay
+availabilityPerYear
+timeStoreRecord
+timeGetRecord
+timeCopyRecord
+firstStorageElementName
+storageType
+creationDate
+lastUpdateDate

storageElement
+storageElementName
+storageElementStatus
+site
+mediaTechnology
+mediaType
+writingMode
+compressionType
+encryptionType
+readTransferRate
+writeTransferRate
+physicalLocation
+creationDate
+lastUpdateDate
```

Slide 17
Scalable Preservation and Archiving Repository
Implementation choice

- **iRods**
 - scalable and proven
 - rules based

- **Use of the rules to configure a storage unit**
 - rule for put
 - rule for audit
 - rule for get

- **General rules for**
 - refreshment migration
 - duplication migration
Technical implementation: iRODS
iRODS : Logical objects ↔ Physical copies

Slide 20 Scalable Preservation and Archiving Repository
The CRAUD interface

• To the classic CRUD verbs, we add a Audit verb
• Implemented through rules:
 – sparPut
 – sparGet
 – sparAudit
 – sparUpdate
 – sparDElete
Dialog between Storage module and SAS

– Storing an AIP
 • corresponding SLA search (storage requirements)
 • retrieval of available storage units with compatible class of service
 • choose of the least expensive storage unit
 • store the AIP as a record

– Audit of an AIP
 • if audit time has expired,
 • asked the SAS for an audit of the copies
 • retrieved the package itself for internal audit

– Retrieve of an AIP
 • get back the first ok copy
 • if one is found bad, launch an audit
Storing an AIP

sasPUT(*rodsName,*cPath,*localFilePath,*mainRsrc,*inChksum) {
 *putStatus = -1;
 rodsPath = "/cPath/*/rodsName";
 acObjPutWithDateAndChksumAsAVUs(*rodsPath,*mainRsrc,*localFilePath,*inChksum,*putStatus);
 if (*putStatus == 0) {
 acGetResourceMetaAttribute(*mainRsrc,"replicaResources",*replList);
 if (*replList != "" && *replList != "null") {
 acSetDataObjAttribute(*rodsName,*cPath,"recordStatus","WRITE_SCHEDULED");
 delay("<PLUSET>1m</PLUSET>") {
 acReplicateFile(*replList,*rodsPath,*cPath,*rodsName);
 }
 } else {
 acSetDataObjAttribute(*rodsName,*cPath,"recordStatus","OK");
 }
 }
}
Audit an AIP

\[
sasAUDIT(*\text{rodsName},*\text{parentColl},*\text{stageDir},) \{ \\
\text{replicasToReplace} = \text{list}(''); \\
\text{rodsPath} = ''; \\
\text{acGetFullPathFromParentCollection}(*\text{rodsName}, *\text{parentColl}, *\text{rodsPath}); \\
\text{goodReplicaEncountered} = 0; \\
\text{acGetDataObjMetaAttribute}(*\text{rodsName}, *\text{parentColl}, "MD5SUM", *\text{objStoredChksum}); \\
\text{acGetDataObjLocations}(*\text{rodsName}, *\text{parentColl}, *\text{matchingObjects}); \\
\text{foreach} (*\text{obj} in *\text{matchingObjects}) { \\
\text{msiGetValByKey}(*\text{obj}, "DATA_PATH", *\text{objPhysicalPath}); \\
\text{msiGetValByKey}(*\text{obj}, "RESC_NAME", *\text{currRescName}); \\
*\text{objPhysicalMD5} = ''; \\
\text{msiExecCmd}("\text{rodsMD5sum}", "*\text{objPhysicalPath}", "null", "null", "null", *\text{cmdOut}); \\
\text{msiGetStdoutInExecCmdOut}(*\text{cmdOut}, *\text{objPhysicalMD5}); \\
\text{if} (*\text{objStoredChksum} == *\text{objPhysicalMD5}) { \\
*\text{goodReplicaEncountered} = 1; \\
} else { \\
\text{replicasToReplace} = \text{cons}(\text{replicasToReplace},"*\text{currRescName}");
} \\
\text{if} (*\text{goodReplicaEncountered} == 1) { \\
\text{if} (*\text{replicasToReplace} != '') { \\
\text{acSetDataObjAttribute}(*\text{rodsName}, *\text{parentColl}, "recordStatus", "DIRTY"); \\
*\text{allReplicaReplacementOk} = 1; \\
\text{foreach} (*\text{replica} in *\text{replicasToReplace}) { \\
\text{acReplaceStaleReplica}(*\text{rodsPath}, "*\text{replica}", *\text{replStatus}); \\
\text{if} (*\text{replStatus} != 0) { \\
*\text{allReplicaReplacementOk} = 0;
} \\
\text{if} (*\text{allReplicaReplacementOk} == 1) { \\
\text{acSetDataObjAttribute}(*\text{rodsName}, *\text{parentColl}, "recordStatus", "OK");
} else { \\
\text{acSetDataObjAttribute}(*\text{rodsName}, *\text{parentColl}, "recordStatus", "OK");
} else { \\
\text{acSetDataObjAttribute}(*\text{rodsName}, *\text{parentColl}, "recordStatus", "ERROR");
}
}\}
\]

Calculate the checksum
Retrieve all the replicas
Replace the bad replica
Update the record status
Retrieving an AIP

```plaintext
sasGET(*rodsName,*parentColl,*stageDir,*getStat) {
  *replicasToReplace = list("");
  *rodsPath = ";
  acGetFullPathFromParentCollection(*rodsName, *parentColl, *rodsPath);
  *goodReplicaEncountered = 0;
  acGetDataObjMetaAttribute(*rodsName, *parentColl, "MD5SUM", *objStoredChksum);
  acGetDataObjLocations(*rodsName, *parentColl, *matchingObjects);
  foreach (*obj in *matchingObjects) {
    msiGetValByKey(*obj, "DATA_PATH", *objPhysicalPath);
    msiGetValByKey(*obj, "RESC_NAME", *currRescName);
    *objPhysicalMD5 = "";
    msiExecCmd("rodsMD5sum", "*objPhysicalPath", "null", "null", "null", *cmdOut);
    msiGetStdoutInExecCmdOut(*cmdOut, *objPhysicalMD5);
    if (*objStoredChksum == *objPhysicalMD5) {
      *goodReplicaEncountered = 1;
      break;
    } else {
      *replicasToReplace = cons(*replicasToReplace,"*currRescName");
    }
  }
  if (*goodReplicaEncountered == 1) {
    if (*replicasToReplace != "") {
      acSetDataObjAttribute(*rodsName, *parentColl, "recordStatus", "DIRTY");
      foreach(*replica in *replicasToReplace) {
        delay("<PLUSET>1m</PLUSET>") {
          acReplaceStaleReplica(*rodsPath, *replica, *replStatus);
        }
      }
    }
    *localFilePath = "*stageDir/*rodsName";
    *getContext = "getting *rodsName to *localFilePath from resource : *currRescName ...";
    msiDataObjGet(*rodsPath, "localPath=*localFilePath++++rescName=*currRescName++++forceFlag=",
      *getStat);
    else {
      acSetDataObjAttribute(*rodsName, *parentColl, "recordStatus", "ERROR");
    }
  }
}
```

No good replica yet found

Calculate the checksum

Plan the replacement of the bad replica

Get the first good replica
Transparent media migration

Main site: from 9840C (40GB) to LTO5 (1.5TB)
Backup site: from T10000A (500GB) to T10000B (1TB)
3 months operation

Scalable Preservation and Archiving Repository
Agenda

- BnF and digital preservation
- SPAR
- The Storage Abstraction Service
 - Limitation of the Abstraction
- Conclusion
Issues of storage and SAS

• Provide a intelligent storage system:
 – Driven by the services it should supplied
 – Auto-healing
 – Able to make regular audits
 – Able to take into account new hardware, using replication migration
 – Able to migrate from equivalent hardware (tape change), using refreshment migration
SPAR Réalisation

Suivre les capsules

<table>
<thead>
<tr>
<th>Capsule</th>
<th>Statut</th>
<th>% occupation</th>
<th>Nb enregistrements</th>
</tr>
</thead>
<tbody>
<tr>
<td>aip-ref</td>
<td>ONLINE</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>capsAIP01</td>
<td>READONLY</td>
<td>0</td>
<td>149463</td>
</tr>
<tr>
<td>capsAIP02</td>
<td>OFFLINE</td>
<td>0</td>
<td>2783</td>
</tr>
<tr>
<td>capsAIP03</td>
<td>OFFLINE</td>
<td>0</td>
<td>717</td>
</tr>
<tr>
<td>capsAIP04</td>
<td>ONLINE</td>
<td>0</td>
<td>31041</td>
</tr>
<tr>
<td>capsAIP05</td>
<td>OFFLINE</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Limits on the abstraction

- With non-random access resources, need to know where the records are
- Batch ‘vsn2irods’ to inform on where are located the record
- => allow for optimization of retrieval and auditing
Technical metadata

• Additional metadata linked to the archival package
 – `sparprovenance:recordLastUpdateDate`: date of the last update of a record
 – `sparprovenance:recordLastAuditDate`: date of the last audit of a record
 – `sparreference:replicaLocations`: serial numbers of the tapes where the replicas are located
Notion of plans

• The [Administration] module executes plans over a large number of archival packages
• In order for the plans to be efficient, need to know where some of the copies are located => register the location in the data management index (triplestore)
Agenda

• BnF and digital preservation
• SPAR
• The Storage Abstraction Service
• Limitation of the Abstraction
• Conclusion
Conclusion

• iRods provides a great way to abstract the application from the work of the administrators

• Work to do:
 – Use of Jargon
 – Migration to iRods 4.0 and use of composable resources
 – Better integration with “tapes” resources
Open source usage

- Pre Ingest
 - Quartz
 - JWAT
- Ingest
 - JHOVE
 - JHOVE2
 - Tika
- Preservation planning
- Administration
 - Struts\(^2\)
- Data management
 - OpenLDAP
 - Virtuoso
- Storage
- Storage Abstraction Service
- Access

Scalable Preservation and Archiving Repository

Slide 35
Main computer room