

Development of the !
iRODS-RADOS resource plugin

Matthias Grawinkel (grawinkel@uni-mainz.de)

Zentrum für Datenverarbeitung

Johannes-Gutenberg University Mainz

2014-06-18

3

•  Building an iRODS based archival system for research data
management at Johannes-Gutenberg University of Mainz.

•  Integration and use of existing storage solutions

•  Evaluation of ceph based storage cluster

–  No best practices for iRODS + ceph

Motivation

Ceph OSD
 Ceph OSD
 Ceph OSD
...

iRODS resource server

Rados object store

S3 Gateway
 Ceph FS
 Librados client

4

•  ceph is great!

–  Flexible, fast, robust, scaling storage system framework

•  iRODS S3 plugin + Rados S3 Gateway

–  No stable S3 plugin for e-irods till iRODS 4.0.0

•  Place a staging file system in front of ceph?!

•  Compound Resource cache + archive

•  Ceph FS will provide POSIX file system

–  Maybe a good solution

–  Adds file system overhead to rados store

–  Not stable yet

•  Direct access to rados object store?

–  Let‘s try that!

iRODS + ceph?

5

•  Minimize layers between iRODS resource server and rados

•  Based on iRODS file system plugin

–  POSIX like fs calls

–  create(), open(), read(), write(), close(), rename(), unlink()

–  Data is organized in local filesystem

•  librados – Client to rados cluster

–  Key value store

•  object_id -> blob

•  + user attributes

–  read(), write(), append(), remove()

–  Data is organized in pools

•  Client capabilities r/w per pool

•  Quota (max objects / max bytes)

•  #Replicas, distribution policies, ...

Concept

6

•  Every copy of a file in iRODS has two pathes

–  Logical: /zone/home/user/file

–  Physical: /path/to/storage/zone/home/user/file

•  Mapping file system tree to flat object namespace (key->value)

–  Use /the/full/path as key to blob?

•  Long keys

•  Maintenance of moves?

–  imv /old /new

•  Rados cannot rename a key or move and object

•  Use unique identifier?

–  uuid

–  Hash(content)

•  Hash is known after file is transmitted -> staging required

–  hash(logical path)

•  Rename operations...

File Names & Pathes

7

•  File creation generates uuid as rados key

•  What about directories?

–  iRODS manages namespace operations

–  Are opendir(), readdir(), closedir() required?

–  Can be implemented with some overhead

•  Store logical path as attribute to rados objects

•  Manage file system like directory blocks?

•  Update on create, rename, unlink operations

File Names & Pathes 2

std::string oid = rand_uuid_string();

irods::file_object_ptr fop =

boost::dynamic_pointer_cast< irods::file_object>(_ctx.fco());

fop->physical_path(oid);

8

•  New plugin instance on rs for every client session

•  Context for each file/stream

–  Logical / physical path

–  File descriptor

•  Property map per plugin instance

–  Track file descriptor‘s offset in property map

•  Seek, read, write

State in Stateless Architecture

int fd = fop->file_descriptor();

uint64_t read_ptr = 0;

_ctx.prop_map().get < uint64_t > ("OFFSET_PTR_" + fd, read_ptr);

…

_ctx.prop_map().set < uint64_t > ("OFFSET_PTR_” + fd, (read_ptr));

irods::file_object_ptr fop =

boost::dynamic_pointer_cast< irods::file_object >(_ctx.fco());

9

•  Ceph cluster connection + io_ctx instance required for access

–  Singleton, lazy initialization per plugin instance

•  Synchronous reads and writes

State in Stateless Architecture 2

librados::bufferlist write_buf;

write_buf.append((char*)_buf, _len);

int status = io_ctx->write(oid, write_buf, _len, write_ptr);

int status = io_ctx->stat(oid, &psize, &pmtime);

irods::error e =

_ctx.prop_map().get<librados::IoCtx*>("CEPH_IOCTX", io_ctx);

if (e.code() == KEY_NOT_FOUND) {

 connect_rados_cluster();

 …

}

10

•  Plugin requires iRODS >= 4.0.3

•  Client

–  20 GB Ram Disk

•  To prepare files for upload

–  10Gig-E

•  Ceph Cluster

–  4 Server, 14 HDDs each, 10Gig-E

–  Ceph 0.80.1 Firefly release

–  One server is icat + rs

–  irods pool + capabilities for client

Evaluation Setup

11

•  Wall clock time of plugin functions

Evaluation Timings

cluster_connect 73.67ms

create 72.61ms

Unlink 77.81ms

stat 89.90ms

12

Demo Time!

Evaluation Results

13

•  iRODS manages namespace + access rights

–  iRODS resource server is client to one rados pool

•  Full access to all objects

•  Single file overhead

–  Cluster connect per agent instance

–  Metadata updates + checks

•  Set physical path + get stat data

•  High (parallel) throughput

–  Multiple user sessions in parallel

–  Multiple files per user session

–  Multiple streams per file

•  Multiple resource server heads for one ceph cluster

–  Composed Round Robin resource

Summary

14

•  Current development:

–  https://github.com/meatz/irods_resource_plugin_rados

•  Contact:

Matthias Grawinkel

grawinkel@uni-mainz.de

Contact & Sources

?!

