
DRAFT

Data Intensive processing with iRODS and the middleware CiGri for the
Whisper project

Briand Xavier∗ Bzeznik Bruno†

Abstract
Like many projects in science of the universe, the seismological project Whisper is faced with massive data processing. This
leads to specific IT software for the project as well as suitable IT infrastructure. We present here both aspects.

We provide a flexible way to design a sequence of processing. We also deal with data-management and computational
optimization questions. On IT infrastructure, we present the platform Ciment provided by the University of Grenoble. It
offers a data-grid environement with the distributed storage iRODS and the grid manager CiGri.

This is the partnership between these two IT components that has enabled a data-intensive processing and, also, permits
to the Whisper project to bring new scientific results.

Keywords: Data-Intensive, grid computing, distributed storage, Seismic Noise, Whisper, Cigri, Irods.

1 Introduction
The Whisper ∗ project is a an european project on seis-
mology whose goal is to study properties of the earth with
the seismic ambient noise such that evolution of seismic
waves speed. This noise is almost all the signal continu-
ously recorded by the seismic stations worldwide (Europe,
China, USA, Japan), except earthquakes. It offers new ob-
servables for the seismologists, new types of virtuals seis-
mograms that are not only located at the place of earth-
quakes and that are provided by the operation of correla-
tion which requires significant computations. For instance,
one can obtain wave paths that probes the deepest part of
the Earth [1, 8].

Accordingly, this is one of the first project in the seismo-
logical community that studies systematically the continu-
ous recordings, which represents a large amount of seismo-
logical data, of the order of several tens of terabytes. For
instance, one year of the Japanese Network is about 20 TB
or 3 months of the mobile network USArray represents 500
GB (it depends on the sampling of the recorders).

In addition, the calculation operations downstream may
produce even more data than the observation data. To give
an order of magnitude, more than 200 TB have to be pro-
cessed by the Whisper project at the same time. A classical
processing produces 8 TB in 5 days. Another computation
’read’ 3 or 4 TB and ’produced’ 1 TB in 6 hours. Many
tests of the signal processing are done and computational

data are deleted as and when required.

Nowadays, the earth sciences or more generally, sciences
of the universe are widely engaged in data-intensive pro-
cessing. This leads to design scientific workflow, towards
data-intensive discovery and e-Science.

Reflected by the Whisper project, we have to organize
the science objectives with the computer constraints. We
have to take into account the duration of postdocs and PhD
theses, as well as the availability of computer infrastruc-
tures and their ease of access. This leads to many ques-
tions about software development, including the genericity
of computer code and the technical support. But it also
influences in terms of choice of appropriate infrastrucures.

Even if this project has his own ressources, such a prob-
lem of data-intensive requires specific tools able to orga-
nize distributed data management and acces to computa-
tional ressources: a data grid environment.

The University of Grenoble offers, thanks to the High
Performance Computing (HPC) centre Ciment, this kind of
environement with the distributed file system Irods and the
middelware CiGri.

It is thanks to the close collaboration between IT
ressources of Whisper and the infrastrucrures of the Uni-
versity that this project has been implemented as we show
below.

∗Cnrs, Isterre, Whisper, email xav.briand@gmail.com
†Ciment, Université Joseph Fourier, Technical header of Ciment
∗FP7 ERC Advanced grant 227507, see whisper.obs.ujf-grenoble.fr

1



2 Software for data-intensive pro-
cessing

A part of the Whisper project is specificaly dedicated to
the IT codes. This includes to design a specification, an
implementation and some optimisations of the sequence of
data-management as well as of the computations †. This
project uses its own IT resources (servers, dedicated bay)
as well as the common IT infrastructure of the university.
We developed also adaptations for the IT infrastrutures and
we provide technical support for researchers.

Most of the IT codes are written with the Python lan-
guage and make intensive use of the scientific libraries
Scipy (fortran and C embeded) and Obspy ‡ (essentially
the ’read’ function) which is dedicated to the seismologi-
cal community.

The IT codes consist of several tools described schemat-
ically in figure 2 and grouped into three parts. The first one
concerns the signal processing, the second part permits the
computation of the correlations and the last part consists of
codes for the analysis of the correlations.

The first package provides a flexible way to process raw
data, to specify a pipeline of pre-processing of signal. The
user starts by specifying a directory, a set of seismic sta-
tions and a set of dates. Then the codes scans the directory
and extracts all pieces of seismograms (also called traces)
and rearranges them in a specific architecture of files in or-
der to calculate the correlations to the next step. We use
here intensively the function ’read’ of the library Obspy
which allows to open most of the seismogram file formats.
The user also define his own sequence of processings. He
can use the functions predefined but also the Python li-
braries he needs and, moreover, he can add eventually his
own functions.

The second package concerns correlations. Roughly
speaking, a correlation is an operation with two seismo-
grams (for a given time window) that provides the coherent
part of the two seismograms (associated to the 2 stations)
which is the seismic waves that propagate between the 2
stations. (Moreover, in some favorables cases, it converges
to the Green’s function). Thus, the code computes all the

correlations and provides an architecture of files that corre-
sponds to all the couples of seismograms (for each date).

Figure 1: Step of the correlations

Note that the space complexity is linear for seismograms
processing but quadratic for the correlations. We have
therefore to store the seismograms processing before com-
pute the correlation in order to benefit of the good complex-
ity. These quadratic space complexity can be critical and
lot of effort was made in order to optimize the computa-
tion in two direction. First we improve the computation of
the fast fourier transform by pre-calculating some "good"
combinations of small primes numbers. With this method,
we improve of forty percent the time computation in the
favorable cases.

Nevertheless, the main optimization was made by testing
the behaviour of the carbage collector of Python in order to
follow the cache heuristics. More precisely, we do not use
the ’gc’ module or the ’del’ statement but we try to sched-
ule and localize the line of code in order to find the good
unfolding that uses the architecture optimally.

The last part of computer codes concerns the analysis
of correlations (the virtual new seismograms) with meth-
ods such as beamforming, doublet or inversion. We also
compute correlations of correlations C3 (also new seismo-
grams). For example, we study the variations in velocity of
seismic waves as we illustrate below in figure 7.

These codes permit to process a dataset on a computer
laptop. Nevertheless, to take advantage of IT infrastructure
at the University of Grenoble, adjustments have been made
for the grid computing as we shall see later.

Figure 2: Main sequences of processings of the Whisper Codes

†see code-whisper.isterre.fr/html/ (part of the design)
‡see www.obspy.org



3 IT infrastructure for grid comput-
ing

3.1 CiGri and iRODS synergy
The data-intensive processing needs obviously an IT in-
frastructure in order to couple storage and computation. In
our cases, most of the processings are embarrassingly par-
allel. The amount of data and the location of available com-
pute nodes suggests the use of a distributed storage system
and a grid manager.

The IT infrastructure used here is provided by the Ciment
§ platform. Ciment is the High Performance Computing
(HPC) center of the Grenoble University. It offers a par-
tial pooling of computing resources (10 computing clus-
ters, 6600 cores and some GPUS) and many documenta-
tions for users. Moreover, the computational resources are
integrated in a local grid of supercomputers. Associated
with a distributed storage, it provides a local data grid en-
vironement.

The distributed storage accessible by all the computing
nodes of all the clusters is managed by iRODS ¶. Nowa-
days it represents approximately 700 TB. The grid comput-
ing is managed by the CiGri ‖ middleware, that is part of
the OAR ∗∗ [2, 5] project (the Resource and Job Manage-
ment System on which CiGri relies). CiGri and iRODS to-
gether build a complementary solution for embarrassingly
parallel computations with large input/output distributed
data sets.

Furthermore, whith unitary parametric jobs that are rea-
sonnably short in time, CiGri can deal with the best-effort
mode provided by OAR. In this mode, grid jobs are sched-
uled on free resources with a zero priority and may be
killed at any time when the local demand of resources in-
creases. This CIMENT organization (independant comput-
ing clusters glued together with a best-effort grid middle-
ware and a distributed storage), in place for more than a
decade, has proven to be very efficient, allowing near one
hundred percent usage of computing resources thanks to
small jobs being managed at the grid level.

Furthermore, as the results of the grid jobs are stored into
the distributed storage with a unique namespace, iRODS
also acts to the user as a centralized controller with a total
observation and thus allows the user to monitor its calcula-
tion.

3.2 iRODS infrastructure
The Integrated Rule-Oriented Data System (iRODS) is a
Distributed File System (DFS) offering a single names-
pace for files that are stored on differents resources that
may be on different locations. The administrator can set up
rules (microservices) to perform some automatic actions,

for example the storage of a checksum or an automatic
replication to the nearest resource (staging). The user
can control himself replications and create user-defined
metadata. iRODS exposes a Command Line Interface (the
i-commands), an API useable from several programma-
tion languages (C, python, PHP,...), a fuse interface, a web
gui, and a webdav interface. The meta-catalog is an SQL
database, which makes it very efficient for managing ad-
ditionnal meta-data or making advanced queries (see [?]
for an illustration of use). It is not "block-oriented", and
thus relies on underlying Posix filesystems. Performance
is not the main goal, but when the files are distributed on
different resources, the only bottleneck is the meta-catalog
(which is centralized).

Figure 3: iCAT and storage nodes

The iRODS storage infrastructure of Ciment consists of
a unique zone with the iCat server and a dozen of nodes
as illustrated on figure 3. The nodes are groupped inside 3
different locations, called site A, site B and site C, having
heterogeneous WAN connexions. Each site has it’s own
10Gbe local network switch.

Figure 4: iRODS resources close to supercomputers

§see ciment.ujf-grenoble.fr
¶see irods.org
‖see ciment.ujf-grenoble.fr/cigri/dokuwiki
∗∗see oar.imag.fr



Those 3 sites are located into the 3 main datacenters where
the CIMENT supercomputers live, so there are always
close storage resources with the computing nodes (Fig-
ure 4). All resources of a given site are groupped into an
iRODS resourceGroup and a rule tells that if a data is to be
written from a computer of this site, then the data is written
by default on a resource randomly chosen inside this group.
So, data are always written to a local iRODS resource, us-
ing the LAN and not the WAN. Note that site C has only
1Gbe WAN connexions while A and B have 10Gbe WAN
connexions (Figure 3). So, to optimize, we’ve set up auto-
matic staging for site C: when a data is get from site C and
the meta-catalog tells that the file is located on a site A or
site B resource, then the file is automatically replicated to
a resource of site C so that if it is accessed again later, it is
not more transfered through the 1Gbe WAN link.

Capacity has now reached 700 TB and is constantly
evolving and increases with investment in new projects,
as iRODS offers a great scalability by simply adding new
storage resources. Each node has currently 2 RAID arrays
from 24 to 48 raw TB as illustrated at the figure 5

Figure 5: A storage node

iRODS nodes are running Debian GNU/Linux with Kanif
†† for easy synchronisation of the system administration.
CIMENT has set up a web interface where the user can
easily check the status of the ressources (figure 6).

Figure 6

3.3 CiGri infrastructure
The access to 6600 cores of the clusters of the Ciment
platform is achieved through the middleware CiGri. Cigri
launches embarrassingly parallel jobs on idle processors of
every computing clusters and then optimizes the resources
usage which are used for parallel jobs otherwise.

Each cluster of the University of Grenoble uses the re-
source manager OAR. Cigri acts, among other things, as
a metascheduler of OAR. It retrieves the clusters states
trough OAR and submits the jobs on free resources without
exhausting the local scheduling queues.

While it may work in normal mode, CiGri is mostly used
in best-effort mode and thus provides an automatic resub-
mission mecanism. CiGri offers a customizable notifica-
tion system with a smart events management. With those
mecanisms, the user can submit a big amount of small jobs,
called a campaign, and forget about it until all the jobs
of the campaign are terminated or CiGri notifies a serious
problem.

Roughly speaking, in order to run a campaign, the user
describes through a file (in the JSON format) the param-
eters of the campaign such as the accepted cluters, the
needed resources, the maximum duration, the location of
the codes, a prologue or epilogue script,... Codes and input
data are retrieved from iRODS using i-commands into the
prologue scripts and the jobs scripts (or using the iRODS
API if the jobs are written into a supported language). So,
there’s no direct connexion between CiGri and iRODS, but
the usage is totally complementary through the jobs scripts.
Moreover, the user defines also a file where each line rep-
resents a value of the parameter for the user’s code. Thus,
the number of line of these parameter file corresponds to
the number of jobs of the campaign.

Users may monitor their campaigns and act on it whith a
CLI or a REST API. Some statistics are provided, such as
the completion percentage (in the term of number of termi-
nated jobs), jobs execution rates, automatic re-submissions
rate. When a job fails with a non-zero exit status, the
user is notified by mail or jabber and requested for an ac-
tion before submitting further jobs on the same supercom-
puter: simple aknowledge, aknowledge and re-submission
or abort the campaign. Standard and error outputs of the
jobs may be easily retrieved from the CiGri host without
having to log on the underlying supercomputers. Users
may even not be authorized to log-on to a specific super-
computer but allowed to start and manage best-effort jobs
on it thanks to CiGri.
CiGri is now at the version 3, which represents a major
evolution in terms of modeling and technology (Rest API,
Ruby). It is structured around a PostgreSQL database and
high level components (Ruby scripting language, Apache
with SSL authentication, Sinatra,...).

3.4 Authentication and security
CIMENT has a centralized LDAP infrastructure. Users
have the same login on all supercomputers and on the CiGri
frontend. As iRODS does not offers a simple and direct
LDAP authentication mechanism, we use the simple pass-
word method with an automatic synchronisation from our
LDAP server to the iRODS database. We also have a script
that automatically initializes the iRODS unix environment
directly into the users home directory (.irods/.irodsEnv
and .irods/.irodsA files) on every supercomputer, so that
iRODS authentication becomes completely transparent to
the users.
Each site has a filtering router acting as a firewall. As we

††see http://taktuk.gforge.inria.fr/kanif/



want all communication schemes to be possible between
each irods resource (a file might be transfered from a re-
source to another regardless of the site), we had to open
some tcp and udp ports on those firewalls. The range of
ports may be defined by the administrator into the iRODS
servers configuration file, so that’s not an issue.

4 Results and feedback
4.1 Whisper Use Case
Whisper is one of the projects that have made it possible
to ensure that the seismic noise brought new observable.
This permits to carry out several scientific results includ-
ing imaging and monitoring. Concerning monitoring, fur-
ther studies provide news results about sligth variations of
seismics waves induce by earthquakes. Many articles are in
part due to this project as well as several post-docs and PhD
(see [3, 1, 6, 7, 8, 9]) and also whisper.obs.ujf-grenoble.fr,
rubric publication).

Most of the time, on the computer part, the approach with
researchers is as follows. After retrieving data from a data
center or directly between person, we have to assess how
this data can be processed. According to the computing
time and storage capacity, either we perform operations on
a dedicated bay (also host by Ciment), or either we use
the Ciment infrastructure. It depends also on the ease of
computer users and most of the time, at least the last treat-
ments (less computationally expensive) are made locally
(Some IT codes are also provided in order to retreive results
on distributed storage). For instance, with small datasets
(datas from La Reunion or the Alpes) we work only locally.
With larger dataset (China, USArray, Japan Network). We
use both local and distributed computation.

We focus now on the part of processing that use the data
grid environment of Ciment. But note before that an other
aspect, and not least, is the evolution of the specification.
Often, students and researchers have new requirements and
the IT codes evolves with these specification. We try to
be as generic as possible in order to, among other things,
to achieve a sufficient level of automatization. However,
sometimes we need to develop some parts specifically be-
cause of lack of time. These IT problems of specification
and development time are among the most complex to eval-
uate for this type of project.

A first step, for the IT part of the scientific workflow, be-
gins by storing data and also by checking their integrity.
We also require that data be in a seismic standard formats.
If conversion is necessary, it can be a large data intensive
computing and specific codes are developed. To minimize
concurrency, we have also to ensure that the data are well
distributed on iRODS. Indeed, it happened that the data are
too centralized on a resource, so that is truly diminished
processing capacity. Some python codes are dedicated to
this task and can replicate or spread randomly a Collection
from a set of ressources to another set.

Let us come back to the package of signal processing of
Whisper (the first part of the figure 2). Because each seis-

mogram can be treated separatly it is the simplest case for
data grid process. We treated for instance one year of the
Japansese seismic Network (HiNet, Tiltmeter and FNet)
around of the giant 2011 Tohoku-oki earthquake (6 months
before and 6 months after). Note that first we need to con-
vert 9 Terabytes of Japanese Data into around 20 terabytes
of a standard format (here mseed or sac). Then we try many
processing for the 20 TB (filter, whitening, clipping, ...)
and store the results in seismogram with a duration of one
day.

As almost all seismological data, the Japanese data are
identified by the dates, names of seismic station and sub-
networks. Therefore the choice of the modelization, in or-
der to retrieve and distribute the data, follows these seismo-
logical metadatas. More precisely, the modelization of the
distribution of the computation is made by setting a subset
of dates and a subset of stations (This corresponds also to a
normal use for researchers that wants to test some process-
ing rapidly with a subset of seismograms). Note also that
the distribution is constant with respect to transfer.

In order to get a set of seismograms from the iRODS
storage to a computational node, we add Python modules
to the Whisper package of seismogram processing. These
modules contains classes that permits to retrieve a subset of
seismograms (defined by the two subsets described above).
More precisely, a first step is either to test directly exis-
tence of data or either building of hash tables in order to
know the available seismograms. Then we provide an iter-
ator (in this case, a generator for Python) on available data
in order to use other methods that performs the i-command
’iget’. The same approach is made for the storage of the
results (with the ’iput’).

Schematically, the ’Main’ Python module of IT code
looks like:

. . .
g e t p a r a m e t e r
. . .
b u i l d t h e i g e t commands
pe r fo rm i g e t ( e n c a p s u l a t i o n )
. . .
Codes w h i s p e r
f o r se ismogram p r o c e s s i n g
. . . .
b u i l d t h e i p u t commands
pe r fo rm i p u t ( e n c a p s u l a t i o n )
. . .

Note that these commands of transfer between iRODS
and computational nodes can become very difficult to
achieve because of the concurrency of the queries. To
take into account this obstacle, one develops a module that
provides lot of encapsulations of the i-commands (number
of try, waiting time, resubmission, with error, ’else’ com-
mand, etc...). The IT infrastructure provide also wery use-
full encapsulations.

We have also to adapt our process for the grid com-
putation with CiGri. We first define a file of parameters



’param.txt’ where each line correponds to the parameters
of one job on the grid, for instance:

c a t param . t x t

t r a c e s 1 6 0 _ 0 _ 8 _ 0 160 0 8 0
t r a c e s 1 6 0 _ 0 _ 8 _ 1 160 0 8 1
. . .
t r a c e s 1 6 0 _ 1 _ 8 _ 0 160 1 8 0
t r a c e s 1 6 0 _ 1 _ 8 _ 1 160 1 8 1
. . .

Here we divide the dates in 160 sublists and the stations
in 8 sublists. The line "traces160_0_8_1 160 0 8 1" cor-
reponds to a job named ’traces160_0_8_1’ where we take
the sublist of dates of index 0 and the sublist of stations of
index 1 (each sublist have the same length +/-1). (There
are also other parameters for components and networks not
described here.)

For each of the 1280 jobs, a script is launched by CiGri
, say ’start.bash’, that take for arguments a line of the file
parameter. The script, among other things, load necessary
library like appropriate python, here ’main.py’ and run the
code (This is a diagrammatic view).

c a t s t a r t . bash

# ! / b i n / bash
s e t −e
. . .
module l o a d py thon
. . .
NumberDate=$2
IndexDa te =$3
NumberS ta t ion =$4
I n d e x S t a t i o n =$5
. . .
cd DirToCompute / Codes
py thon main . py NumberDate

IndexDa te NumberS ta t ion I n d e x S t a t i o n
. . .
cd
rm − r f DirToCompute

Then one defines the json jdl file (job description lan-
guage), say ’processingSeismogram.jdl’.

c a t p r o c e s s i n g S e i s m o g r a m . j d l

{
" name " : " t e s t _ p r o c e s s i n g " ,
" r e s o u r c e s " : " c o r e =1" ,
" e x e c _ f i l e " : "$HOME/ s t a r t . bash " ,
" p a r a m _ f i l e " : " param . t x t " ,
" t y p e " : " b e s t−e f f o r t " ,

" c l u s t e r s " : {

" c1 " : {

" p r o l o g u e " : [
s e c u r e _ i g e t −f / I r o d s C o l l / s t a r t . bash ,
s e c u r e _ i g e t −f / I r o d s C o l l / param . t x t ,
mkdir −p DirToCompute ,
s e c u r e _ i g e t − r f Codes DirToCompute ,
. . . o t h e r l i n e s o f commands ] ,
" p r o j e c t " : " w h i s p e r " ,
" w a l l t i m e " : " 0 0 : 2 0 : 0 0 "
} ,

" c2 " : {
" p r o l o g u e " : [
. . . l i n e s o f commands ] ,
" p r o j e c t " : " w h i s p e r " ,
" max_jobs " : " 4 5 0 " ,
" w a l l t i m e " : " 0 0 : 3 0 : 0 0 "
} ,

. . .
}
. . .
}

Here the campaign named ’test_processing’ take only
one core. It run the file ’start.bash’ with the parameter file
’param.txt’ in mode besteffort. It uses the clusters named
’c1’ and ’c2’ for the project ’whisper’ with the duration de-
fined by ’walltime’. In the prologue, we retrieve script and
the parameter file on iRODS as well as the code ’Codes’
on iRODS. One can add other parameters for each clusters
such that the maximum number of jobs runing at the same
time (the variable ’max_jobs’).

Concerning the package for the correlations (the second
part of the figure 2), we also add similar modules to re-
trieve on iRods the subsets of seismograms that have been
treated. In order to compute all the correlations that corre-
sponds to all the couple of seismograms we have two types
of processes. For a fix subset of dates, either we retrieve
one subset of stations and compute all the existing couples
for this subset, or either we retrieve two disjoint subsets of
stations and compute all the correlations where each seis-
mogram is in a different sublist. This distribution for the
computation of the correlations offers a good granularity.

With this kind of distribution for the stations, the trans-
fer bewteen iRODS and the computational node becomes
proportional to the distribution, i.e. the number of sublists
of stations. Therefore we have to maximize the distribu-
tion of the dates and minimize it for the stations in order
to obtain a reasonable walltime. Note that it is possible to
improve the transfert. However, a fairly simple improve-
ment have to effect that the distribution become dependent
on the distributed architecture of computation. In order to
keep genericity of the codes we do not change this aspect.

Moreover, special attention was given to selecting the
size of files to transfer with iRODS. We do not store each
correlation separately, we group them into dictionary to
achieve file sizes between 100MB and 500MB most of the
time. This order of magnitude seems appropriate for the in-



frastructure iRODS. For simplicity, we build the grouping
according to the parameters of the distribution. This allows
to improve the transfer performance. However, unlike a flat
architecture, this forced us to develop codes to retrieve the
data. Analysis of some subset of correlations (the 3rd step
of the figure 2) may request transfer much more than de-
sired.

The mode besteffort also increases the transfert of data
because some job are killed and are submitted in an other
place. Moreover in some cases, such that a big walltime,
we add new steps of iRODS storage for the process in order
to store certain intermediate calculation (It is not the case
for the correlations because of the good granularity). Note
that this may represent a significant development effort.

We focus now on the Japanese computation. With the
optimizations described in section 2 and the data-grid en-
vironment, the computation of 350 millions individual cor-
relations of the Japanese Network (especially the dense Hi-
Net Network). are done at most a few days. This is a big
change that can test many treatments in order to find infor-
mation in the noise. More precisely the seismogram pro-
cessing of the Japanese network take half day here (depend
obiously on the resampling). Depending on the types of the
correlations (stacking, overlap) and also of the availability
of the grid (we suppose an usual case here), the computa-
tion of all the correlations take between 9h and 20h. The
’iget’ i-commands corresponds approximatively to 11TB
(with the best-effort mode, some transfers are carried out
several times) whereas the ’iput’ i-command corresponds
here to 3.3TB.

We illustrate with the figure 7, one of the analysis of the
correlations that represents an image of change of the ve-
locity of seismic waves.

Figure 7

4.2 Infrastructure Ciment experiences
With the Whisper project, as with some few other projects,
we had the opporunity to test and improve the CIMENT
IT infrastructure for a data-intensive case. In this kind of
projects, data management and input/output data flows are
a big part of the process regarding the actual computing

time for the analysis. With a grid of several thousands
cpu-cores, such a project may act as a real distributed
attack against our storage infrastructures! So, as a first
consequence of the deployment of such computing jobs,
we had to implement new "limiting" functionnalities into
our infrastructure softwares or configurations. For exam-
ple, CiGri is able to limit the number of submitted jobs
for a given campaign on a given cluster if we know that
the jobs concurrency can overload our Irods infrastructure.
As another example, iRODS may be configured to limit
the number of simultaneous connections. But in this case,
the i-command returns with an error and the job may be
aborted. There’s a "–retry" optionnal argument, but with
a high level of concurrency, it increases the load and may
completely exhaust the servers with a ton of retry queries.
We then developped a wrapper for the i-commands, called
secure-i-commands that implements a retry on some spe-
cific error cases with an incremental delay to prevent from
flooding the irods servers. Of course, this can be improved
as this leads to a waste of computing resources because
they are reserved and not used while waiting. But this is
at least a security improvement in case the highler level
decision processes does not work as expected because of
their high complexity.
Regarding the iRODS choice, it was made on the features:
we need a distributed file system suitable for a distributed
and heterogeneous grid infrastructure composed of several
supercomputers having gateways to reach each-other; and
we need a unique namespace. We also need the sites to
be independent of the others. It means that a site can be
out of service, the data available in another site should still
be available. The only case when the entire infrastruc-
ture is broken is when the centralized meta-catalog is not
reachable. But this part of the infrastructure is located in
a highly available datacenter and we may also implement
a HA meta-catalog. As it is not posix compliant, iRODS
allows more control for the admins and the users. For ex-
ample, replication can be completely controlled. In our
case, we do an automatic replication (staging) of the files
when they are got from site A or B to site C, for network
optimization. But the user may also want to replicate on
every sites to get better performances with big jobs cam-
paigns spread on every clusters of the grid. Also better than
a posix filesystem, the users can add custom meta-data to
the files and collections allowing them to retrieve data by
making some queries with an SQL-like syntax.
Another interesting aspect of iRODS for a project like
Whisper is that we can register into iRODS data that are
stored on a dedicated posix filesystem. For example, the
Japanese raw data were stored on external storage disks
that we copied through USB directly onto a server ded-
icated to the project. We then added this server as an
iRODS resource and then registered the data to make them
available to the whole grid. In this example, we also used
the access rules to set up a read/write policy for the only
concerned users.



Open problems and future works

• Irods has a different transfert policy for "small" files
(under 32MB). In this case, files are transiting through
the server used by the client instead of a direct con-
nection between the original resource and the client.
In a high load context, with a lot of small file trans-
fers, it leads to an overload of the concerned server. A
possible solution to that problem could be to share the
load among the servers of a given site. For that, we
can imagine using a virtual ip address making a round
robind on all the ip addresses of the servers of the site.

• We issued some network overloads: automatic stag-
ing, as set up for a site that has a lower bandwidth
than the others may result in a lot of background irods
processes doing the replication even when connection
rate limit is set up on the servers and even when iget
commands are aborted. Under some circumstances,
it may completely overload a 1Gb/s ethernet link be-
tween 2 sites. Another overload encountered was
when the user activates the -Q (use RBUDP (data-
gram) protocol for the data transfer) option. Even
from a single node, this option can cause dramatic
overload of network interfaces. Maybe iRODS should
implement better rate limit control.

• We made some preliminary tests of the python bind-
ings of the iRODS API (called Pyrods). We noticed
that when you have a lot of small operations to do
from a python code (like in the Whisper project), ei-
ther creating a lot of small files, or meta-data, Py-
rods may be 10 times faster than a shell loop with i-
commands inside. We are now making code examples
for the other users to be able to take benefits from this
method that would have been useful for the Whisper
project.

5 Conclusion
Despite the problems that have been solved or not, we are
currently able to process terabytes of data within a few
hours.

Note also that the local data grid (iRODS+CiGri) and
more generally the platform of Ciment as well as the OAR
tools permit for the Whisper project to produce significant
new results for seismological community in a reduced de-
lay.

Lot of improvements that involve automatization of the
processing, and also concerning the scientific workflow
have constantly been made. We may say that Whis-
per+CiGri+iRODS is a great success!

References
[1] P Boué, P Poli, M Campillo, H Pedersen, X Briand,

P Roux, Teleseismic correlations of ambient seismic
noise for deep global imaging of the Earth. Geophysi-
cal Journal International 194 (2), 844-848.

[2] Nicolas Capit, Georges Da Costa, Yiannis Georgiou,
Guillaume Huard, Cyrille Martin, Grégory Mounié,
Pierre Neyron, Olivier Richard, A batch scheduler with
high level components. Cluster computing and Grid
2005 (CCGrid05), Cardiff, Royaume-Uni, 2005.

[3] JH Chen, B Froment, QY Liu, M Campillo. Distribu-
tion of seismic wave speed changes associated with the
12 May 2008 Mw 7.9 Wenchuan earthquake. Geophys-
ical Research Letters 37 (18).

[4] Gen-Tao Chiang, Peter Clapham, Guoying Qi, Kevin
Sale and Guy Coates, Implementing a genomic
data management system using iRODS in the Well-
come Trust Sanger Institute. BMC Bioinformat-
ics,12(1):361+, September 2011.

[5] Benoît Claudel, Guillaume Huard, Olivier Richard,
TakTuk, Adaptive Deployment of Remote Executions.
Proceedings of the International Symposium on High
Performance Distributed Computing (HPDC) (2009)
91-100.

[6] G. Hillers, M. Campillo, K.-F. Ma. Seismic velocity
variations at TCDP are controlled by MJO driven pre-
cipitation pattern and high fluid discharge properties.
Earth and Planetary Science Letters, Volume 391, 1
April 2014, Pages 121-127.

[7] Obermann, A., T. Planès, E. Larose, and M. Campillo.
Imaging preeruptive and coeruptive structural and me-
chanical changes of a volcano with ambient seismic
noise. J. Geophys. Res. Solid Earth, 118, 6285-6294.

[8] P. Poli, M. Campillo H. A. Pedersen, Body-wave imag-
ing of Earth’s mantle discontinuities from ambient
seismic noise. Science 338 (6110), 1063-1065.

[9] Macquet M., Paul A., Pedersen H., Villase nor A.,
Chevrot S., Sylvander M. and the PYROPE working
group. Ambient noise tomography of the Pyrenees and
surrounding regions : inversion for a 3-D Vs model in
a very heterogeneous crust. accepted in Geophysical
Journal International.


