Technical Report: QueryArrow: Bidirectional Integration
of Multiple Metadata Sources

Hao Xu!?
xuh@email.unc.edu
University of North Carolina at Chapel Hill

in collaboration with

Ben Keller Antoine de Torcy Jason Coposky
iRODS Consortium

Abstract

This paper describes QueryArrow, a generic software that provides a semantically unified query and
update interface to a wide range of metadata sources.

Introduction

The “Big metadata” challenge is analogous to the “Big data” challenge. Examples
include:

e Aggregating metadata stored in multiple, heterogeneous databases
e Managing access control of metadata items

e Metadata based indexing

e Metadata migration

A software solution for the “Big metadata” challenge is trickier compared to the “Big
data” challenge in the diverse range of types of data sources that it must interact
with, including, for example, relational databases, graph databases, streams
databases, and general web services. Different types of data sources have different
types of semantics, and different levels of capability, and support for features such
as regular expressions.

1 This research is partially supported by the National Science Foundation under Grant Number OCI
0940841 DataNet Federation Consortium. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

2 This research is partially supported by iRODS Consortium.

mailto:xuh@email.unc.edu

Table 1 Semantics of Query Results

duplication ordering infinite data

finite set no no no
finite multiset yes no no
list yes yes no
stream yes yes yes

Even within SQL-like queries, one can have multiple semantics such as set, multiset,
list, or stream, as summarized in Table 1. For example traditional SQL is based on a
combination of list, multiset, and set semantics, whereas a stream database can only
be based on stream semantics because of the potentially infinite nature of streams.

Many commercial or open source databases do not have a formal definition of the
semantics of their query language. Therefore, an ad hoc solution, where results are
aggregated from multiple metadata sources by issuing an individual query in the
query language of each database, runs the risk of semantic incompatibilities. For
example, if one database uses list semantics, while another uses set semantics, the
aggregated result will be incompatible. The ad hoc approach is also prone to error
caused by semantic changes when upgrading to a new version of a database.

Therefore, a strategy to mitigate this challenge is to formally define the semantics
that domain applications expect and create a software middleware to translate
queries and results between the domain applications and the databases. This allows
us to tackle big metadata challenges as follows:

e For aggregating metadata stored in multiple, heterogeneous databases, we can
issue all queries in a unified query language with formally defined semantics,
ensuring that the results are compatible.

e For managing access control of metadata items, we can define in the translation
step additional access control mechanisms, without requiring that the
underlying database support such mechanisms.

e For metadata based indexing, we can define the translation between traditional
databases and search engines.

e For metadata migration, when the semantics of the underlying database
changes, we can redefine the translation without changing the domain
application.

QueryArrow

Design Elements

The goal of QueryArrow is to provide generic software middleware that provides a
semantically unified query and update interface to a wide range of metadata
sources. To achieve this goal, QueryArrow must be generic:

[t must be representation independent. We distinguish how metadata is
represented in the database, such as tables, graphs, etc. from the information
content of the metadata. A central idea of QueryArrow is that we allow the
information content to be utilized and migrated independently from how it is
represented.

It must be configurable. Many metadata policies depend on the application
domain. In order for a QueryArrow instance to conform to such policies, it must
be configurable.

When integrated with data grid middleware such as the integrated Rule Oriented
Data System (iRODS), QueryArrow removes the current iRODS limitation3of one
relational database per zone for metadata query and update capabilities.

ireds Agent 1RHODS Cope
Genuery, Bpecilic f_"lu-‘-r_'-'ll.-". 1

CIAS Database Plugin

JEREN <P |
Cluery Arrowe 0AS
Posteres QAF Neod] QAP FlasticSearch QAP
S0L Cypabie EoL
Postgres e ElaskicSesarch

Figure 1 QueryArrow Architecture Diagram

3

Although other databases can be queried within iRODS via rules and

microservices, there is no systematic way for combining the results which provides
consistency guarantees.

QueryArrow is made up of three elements: the QueryArrow Service, the
QueryArrow Language, and the QueryArrow Plugins. The iRODS data grid utilizes
QueryArrow via a JSON-RPC mechanism, as shown in Figure 1.

e QueryArrow Service (QAS): Register databases and support execution of QAL

e QueryArrow Language (QAL): Provide a semantically unified configuration
language, query language, and data manipulation language.

® QueryArrow Plugins (QAP): Provide mappings between QAL and databases

A QueryArrow instance includes a QueryArrow Service and QueryArrow plugins.
Each plugin provides an interface with one database. QueryArrow communicates
with service consumers via JSON-RPC. The queries are issued from the client in the
QueryArrow Language and can be translated into both SQL and NoSQL query
languages. Each QueryArrow plugin translates queries to its database.

Currently, QueryArrow implements generic plugins for Postgres, Neo4j, SQLite,
CockroachDB (via Postgres API), and a domain specific plugin for ElasticSearch.

1tRODS Core
‘ AR
CIAS Datnbase Plugin

| ~ e

| QAL Transform QAP
-______.a-""-.r_l,-"' \“"Q':h--q______ ____F-""--.
— /
Postgres QAT Neody QAP ElasticBenrch QAT
S0 Cypher EQL |
Posbgres MNead) ElasticSearch
Figure 2 Policy Support

In addition, a transformation QAP plugin is implemented, as shown in Figure 2. This
QueryArrow plugin enables translation of the QueryArrow Language back into the
QueryArrow Language. The configuration fragment of QAL allows users to define
customized rules on their metadata and data. In particular, QueryArrow supports
the imposition of constraint policies. This enables the definition of policies such as
metadata access control, distribution, and retrieval optimization..

QAL

The following concerns about SQL are the main motivations for creating QAL:

e SQLis strong in query support but weak in data manipulation.

e SQL performance is dependent on an individual DB’s query optimizer. When
migrating data between different databases, there is a need to craft different
SQL for different databases to achieve optimal performance.

e SQL doesn’t support the notion of multiple databases.

e SQL has limited, unidirectional support for transforming queries via views
(needed for applying policies).

e SQL cannot be easily translated to other database paradigms.

QAL is based on theoretical results from the research community. It is based on
features from Relational Algebra, Process Algebra, and Substructural Logic. QAL
takes the core features of SQL based on relational algebra, and extends it with
process algebra, to provide a language that can be translated into both SQL and
NoSQL databases. QAL also supports translating different subexpressions of the
same query to different query languages and combining them in a semantically
consistent manner. In this section, we take a look at the syntax and information
semantics of QueryArrow and the formalization of QAL, and how it guarantees
semantic consistency.

Syntax
N namespace, P predicate, @ ink, & string, o variahle
o= i|&]|v terme
a = L ¥ S S I I o f SRR | alform
coon a | insert a | delete a
|~ | exista e | let v =g,. .. ,n=g¢c | limil ¢ ¢ | order by v (nsc| desc)
| e | zera| ele | e &
| redwrn oy ..y cormmmand
g = max o | min o | cownt e et on
o resrafe a ¢ | rewrife nserd a o
| reworete delete @ rewriting Tules
I = tenpord gquels fted? (ell | P, ., B, from & It
E = expord qualified? (all | P, .. B from N7 1 et
Figure 3 Syntax of QAL

The QAL syntax is summarized in Figure 3.
Semantics

An informal description of the semantics of queries and updates is given as follows:

e g:asimple query

insert a: a simple insert update
delete a : a simple delete update

cic,:run c;, then filter the results by ¢, . This corresponds to a conjunction in

relational algebra, and a sequencing combinator in process algebra.

¢ilc,:run ¢}, c,, then combine the results of the runs. This corresponds to a

disjunction in relational algebra, and a choice combinator in process algebra.

zero : empty results. This corresponds to false in relational algebra, and stop in

process algebra.

one : trivial query. This corresponds to true in relational algebra, and skip in

process algebra.

~c:run c.If the result is empty, then behave as one . Otherwise, behave as zero

exists c: run c. If the result is empty, then behave as zero . Otherwise, behave as

one.
return v;...v, . Project the results.
limiti c: run c. Return first i results.
order by v (asc|desc) . Sort results.

letv,=g,...,va =g, c. Run aggregate functions on results.

An informal semantics of configuration is given as follows:

rewrite a c rewrite a as c.

rewrite insert a ¢ rewrite inserta as c.

rewrite delete a ¢ rewrite delete a as c.

import ... This imports predicates from other namespaces.

export ... This exports predicates to other namespaces.

Examples of QAL

In the examples, query expressions define how iRODS persistent state attributes are
manipulated. Note that in iROdata_coll_id is the collection id that contains the data
object.

Return all data objects ids and their names. The query expression finds the
data_name for a given data_id and returns data_name, data_id.

DATA_NAME(x, y) return x y

Return all data objects names in collection c. The query expression finds the
coll _id for a given collection name, finds the data_ids which have a
data_coll id = coll _id, and finds the data_names from the data_ids.

COLL_NAME(x, "c") DATA_COLL_ID(y, x) DATA_NAME(y, z)
return z

Return all data objects names in collection “c” or “c2”. The query expression
finds the coll id for collection name “c”, adds the coll id for the
collection name “c2”, finds the data_ids which have a data_coll id =
coll _id, and finds the data_names from the data_ids.

(COLL_NAME(x, "c") | COLL_NAME(x, "c2"))
DATA_COLL_ID(y, x) DATA_NAME(y, z) return z

Return all data objects that do not belong to collection c. The query expression
finds the data_ids that have a data_coll _id equal to a given coll id,
and finds the data_name from the data_id, where the coll id is not
the coll id of a collection whose name is “c”.

DATA COLL _ID(y, x) DATA NAME(y, z) ~COLL NAME(x, "c")
return z

insert a new data object named a. The query expression creates a new
data_id, and creates a new data object in database with the data_id
and data_name.

nextid(x) insert DATA_OBJ(x) DATA_NAME(x, "a")

delete all data objects named a. The query expression finds the data_id
corresponding to the data name “a”, and deletes the entry for the
data location.

DATA NAME(x,"a") delete DATA OBJ(x)
Translation examples of QAL

Return all data objects ids and their names.

DATA NAME(x, y) return x y

SQL translation for iRODS data grid:

select data_id, data_name from r_data_main

Cypher translation:

match (var@:DataObject)
return var@.data_id, var@.data_name

ElasticSearch translation:

{
"query":{
"bool":{"must":[{"term":{"obj_type":"DataObject"}}]}
}
}
QAL Rules

In contrast to existing iRODS rule engines, which allows defining procedural rules,
QAL allows defining constraint rules. Whereas procedural rules are sufficient for
tasks such as generating audit logs, constraint rules are necessary for tasks such as
metadata access control, in which case simply logging that metadata access control
has been checked is insufficient to guarantee that metadata access control is
enforced correctly.

QAL implements constraint rules by defining rewriting rules for queries and
updates. Combined with formal semantics, QAL enables stating properties of the
system in formal logic and writing proofs that such properties are maintained by the
rules.

In this section we show two example of using QAL to address some of the challenges
in Section 1, and showcase how the generality of QAS allows us to rapidly
implement solutions to these challenges. We look at metadata access control and
metadata indexing.

Baseline System

The Setup is

e Unmodified iRODS 4.2 database in Postgres

e A mapping generated from the iRODS schema definition.

The baseline system imports relations from a source for use within rewrite rules.
Example rewrite rules are shown for query, insert and delete.

import all from ICAT
export META

rewrite META(x, m)
OBJT_METAMAP_OBJ(x, m)

rewrite insert META(Xx, m)
insert OBJT_METAMAP_OBJ(x, m)

rewrite delete META(x, m)
delete OBJT_METAMAP_OBJ(x, m)

Metadata Access Control

e Neo4j database schema for storing metadata access control information. Here x
is an object id, m is a metadata attribute, user is a user id, and acc is an access
control.

META_ACCESS_OBJ(x, m, user, acc).
e Make accessible a new predicate that has metadata access control

import all from ICAT
import META_ACCESS OBJ from Neo4j
export META

Given the client_user_name and client_zone, return the user_id.

rewrite CLIENT ID(u)
USER_NAME(u, client user_name) USER_ZONE_NAME(u, client_zone)
Get the user_id of the current client, then check whether has access to the metadata.

rewrite META(x, m)
CLIENT _ID(user)
OBJT_METAMAP_OBJ(x, m)
META_ACCESS_OBJ(x, m, user, acc) Neod4j.eq(acc, 1200)

Insert metadata if the current client has access to the object and set access to the
metadata for the current client.

rewrite insert META(x, m)
CLIENT ID(user)
OBJT_ACCESS_OBJ(x, user, acc) eq(acc, 1200)
insert OBJT_METAMAP_OBJ(x, m) META ACCESS_OBJ(m, X, user, 1200)

If the current client has access to the metadata, delete the metadata and access to
the metadata for all users.

rewrite delete META(x, m)
CLIENT_ID(user)
META_ACCESS_OBJ(m, x, user, acc) Neod4j.eq(acc, 1200)
(delete OBJT_METAMAP_OBJ(x, m) |
META_ACCESS_OBJ(m, X, user2, acc2) delete META ACCESS OBJ(m, X,
user2, acc2))

Metadata Indexing
e ElasticSearch for storing metadata matching regex searchable. *

e Make accessible a new predicate that has metadata indexing

Query ElasticSearch and query the iCAT catalog and combine the
results.

rewrite META 2(x, m)
ES_META.OBJT_METAMAP_OBJ(x, m) | OBJT_METAMAP_OBJ(x, m)

Apply a regular expression match on the metadata. If it matches insert into
ElasticSearch, otherwise insert into iCAT catalog.

rewrite insert META_2(x, m)
(~ RegexDB.like regex(m, "searchable.*") insert
OBJT_METAMAP_OBJ(x, m) |
RegexDB.like_regex(m, "searchable.*") insert
ES_META.OBJT_METAMAP_OBJ(x, m))

Formalization

An ongoing task is creating a formally defined semantics for QAL. This enables us to
provide three types of guarantees:

e Ensure semantic consistency of translated queries of different databases. This
ensures representation independence.

e Transform queries to semantically equivalent queries and optimize their
performance in future work. This allows us to optimize a query in a
representation independent manner.

e Explore proving correctness of policies defined in QAL. This allows us to prove
that the system is configured correctly for the domain application in a
representation independent manner.

The key challenge of such a formalization is to provide a way to map multiple
semantics into a generic query. For example, consider a query that retrieves data
from two different types of databases and combines the results. The QAL query
must be divided into two parts, with each part translated to one type of database. To
give semantics to this query means that we must simultaneous map semantics of
both types of databases to the same generic query. To solve this problem, both the

syntax and semantics of a QAL query is defined in a parametric manner. The
semantic function which maps a QAL term to an object in the domain of QAL
semantics then is also parametric. Currently, we have defined this general semantic
function and showed that the semantics form a near-semiring. This gives us
preliminary algebraic laws to transform QAL queries for optimization. We have also
defined semantics of a subset of SQL based on tables and unnamed columns. This
allows us to define a translation of QAL to SQL. The next step is to prove that this
translation preserves semantics and extend this approach to other query languages.

Summary

This paper described QueryArrow, generic middleware software that provides a
semantically unified query and update interface to a wide range of metadata
sources.

