
Pluggable Rule Engine Architecture
Hao Xu

DICE Center
University of North

Carolina at Chapel Hill,
NC 27599, USA

xuh@email.unc.edu

Jason Coposky
Renaissance Computing

Institute (RENCI)
100 Europa Drive Suite
540 Chapel Hill, North

Carolina 27517
jasonc@renci.org

Ben Keller
Renaissance Computing

Institute (RENCI)
100 Europa Drive Suite
540 Chapel Hill, North

Carolina 27517
kellerb@renci.org

Terrell Russell
Renaissance Computing

Institute (RENCI)
100 Europa Drive Suite
540 Chapel Hill, North

Carolina 27517
unc@terrellrussell.com

ABSTRACT

We describe a new development in the next release of iRODS. The pluggable rule engine architecture allows us

to easily create new rule engines as plugins and run multiple rule engines concurrently. The pluggable rule engine

architecture allows easy implementation and maintenance of rule engine plugin code and o↵ers significant performance

gains in some use cases. The pluggable rule engine architecture enables modular incorporation of features from other

programming languages, allows e�cient auditing of interactions between user-defined rules and the iRODS system,

and supports full interoperability between rules and libraries written in di↵erent languages. This design allows us

to easily incorporate libraries designed for di↵erent programming languages, for example, Python, C++, etc., into

the policy sets, significantly enhancing the capabilities of iRODS without syntactic overhead. This new architecture

enables a wide range of important applications including auditing, indexing, and modular distribution of policies. We

demonstrate how to create the Python rule engine plugin and how to create user defined policy plugins.

Keywords

Pluggable Policy, Rule Engine, Plugin Architecture

INTRODUCTION

In this paper, we are going to describe a new development in the next release of iRODS. The pluggable rule engine

architecture allows us to easily create new rule engines as plugins and run multiple rule engines concurrently. The

pluggable rule engine architecture allows easy implementation and maintenance of rule engine plugin code and o↵ers

significant performance gains in some use cases. The pluggable rule engine architecture enables modular incorporation

of features from other programming languages, allows e�cient auditing of interactions of user-defined rules and the

iRODS system, and supports full interoperability between rules and libraries written in di↵erent languages. This

design allows us to easily incorporate libraries designed for di↵erent programming languages, for example, Python,

C++, etc., into the policy sets, significantly enhancing the capabilities of iRODS without syntactic overhead. This new

architecture enables a wide range of important applications including auditing, indexing, and modular distribution

of policies.

Users of iRODS have expressed the following areas of improvement:

iRODS UGM 2015 June 10-11, 2015, Chapel Hill, NC
[Author retains copyright.]

Page 29



• customization of error handling in pre and post PEPs.

• calling microservices written in other languages directly.

• native performance for event tracking rules.

• modular distribution of policies.

• full auditing of data access operations.

• reduce manual change when upgrading.

• new policy enforcement points.

The pluggable rule engine architecture addresses these challenges.

THE DESIGN

In this section, we overview the key designs in the pluggable rule engine architecture.

iRODS Features

iRODS supports a wide range of plugin types. This allows the core iRODS to be independent from the components

that it uses. For example, the database plugin allows iRODS to use di↵erent databases without changing the core

code. Each plugin has a set of defined operations that it has to provide. The core interacts with plugins only through

those operations. One benefit of this design is that we can easily capture all state changing operations by looking at

plugin operations. And we can show that such capture is complete in the following sense. If we want to capture all

database operations, we only need to look at database plugin operations. Because of the ignorance of the underlying

implementation of these operations, the core cannot perform any additional operations than those provided by the

plugin architecture. Therefore, if we capture all operations in the plugin architecture, we capture all state changing

operations.

In iRODS, a pair of pre and post PEPs are automatically generated for every defined plugin operation. This way we

ensure that all policy enforcement points are present. Having the capability to write policies for every state changing

operation, we make the complete information about each operation available to the PEPs by making the argument

and environment in which the operation is called available to the PEPs. This way the PEPs can determine what to

do based on this information.

Formally speaking, let Op denote the set of plugin operations, and Act denote the set of actions, with

Op ⇢ Act

Let f denote the function that generates an action from a plugin operation. For example, given a plugin operation,

the plugin architecture generates a PEP-added action Act comprising of pre and post operations PEPs as follows:

f : Op ! Act

f [op(args, env)] = pre
op

(args, env); op(args, env); post
op

(args, env)

Here the sequential combination operator can be thought of as the monadic bind operator. This formalism can be

used to adopt a wide-range of applications. One of the disadvantages of this design is that the semantics of f must be

fixed in an iRODS implementation, for example, how the error is handled. And the particular form f lacks principal

error handling semantics, i.e., one which fits all of our users’ use cases by just varying pre and post PEPs. For

example, should we make op to be skipped if pre
op

fails? Should we still call post
op

? This problem can be solved by

providing a generalization that can be customized by plugins.

Page 30



Pluggable Rule Engine Architecture

The pluggable rule engine architecture generalizes the current design and is fully backward compatible. The design

provides a global policy enforcement that can be further customized for di↵erent semantics.

An example is that you can have error handling semantics encapsulated in a plugin, and by installing that plugin,

you enable those error handling semantics. This requires the plugin architecture to load multiple rule engine plugins

at the same time, and in a way that one plugin may provide semantics for another plugin.

Given a set of plugin operations, the pluggable rule engine architecture generates a PEP-added action Act as follows:

f : Op ! Act

f [op(args, env)] = pep(op, args, env)

To recover the default behavior, we can define pep as

pep : Op⇥Args⇥ Env ! Act

pep[op, args, env] = pre
op

(args, env); op(args, env); post
op

(args, env)

We can define di↵erent error handling semantics as follows:

Skip post
op

if pre
op

fails:

pep1 : Op⇥Args⇥ Env ! Act

pep[op, args, env] = if(pre
op

(args, env) >= 0){op(args, env); post
op

(args, env)}

Run post
op

if pre
op

fails:

pep2 : Op⇥Args⇥ Env ! Act

pep[op, args, env] = if(pre
op

(args, env) >= 0){op(args, env)}; post
op

(args, env)

This way the rule engines form a hierarchy, with rule engines gradually refining the semantics of plugin operations.

We can define such a hierarchy so that it is fully compatible with the current semantics, with the current rule engine

at the bottom of the hierarchy, so that all existing rules run as expected. We can also, when new use cases arise,

define a di↵erent set of plugins that implement di↵erent semantics, without changing the core code. This gives our

users the flexibility to implement their policies.

Another challenge is the inter-rule-engine-call (IREC). Each rule engine provides a set of rules that it defines. Rules

defined in one rule engine should be able to call rules defined in another rule engine. This is done through a universal

callback function. The universal callback function is the only point of entry from the rule engine plugin to the iRODS

core system. It handles all operations including accessing state information, accessing session variables, and the

IREC. The general format of a callback is

fn(args)

where fn is a callback name and args is a list of arguments. In the case of IREC, fn is the name of the rule and

args are the arguments to the rule. Compared to exposing a server API to the rule engine plugin, this approach

has several advantages: First, this enables calling functions written in other programming languages as if they are

microservices. Second, it allows us to add new APIs without changing the rule engine plugin interface. Third, we

can add a pair of PEPs to this operation, which is su�cient for monitoring all interactions from the rule engine back

to the core.

Page 31



IMPLEMENTATION

The rule engine plugin architecture allows loading of multiple types of rule engine plugins, and multiple instances of

each type of rule engine plugin. All instances share the same plugin object, but with di↵erent contexts. This way we

don’t have to load a rule engine plugin multiple times.

The rule engine contains the following four operations given in C++:

template<typename T>

irods:error start(T&);

template<typename T>

irods::error stop(T&);

template<typename T>

irods::error rule_exists(std::string, T&, bool&);

template<typename T>

irods::error exec_rule(std::string, T&, std::list<boost::any>&, callback);

The start function is called when the rule engine plugin is started. This happens when an iRODS process starts.

The stop function is called when the rule engine is stopped. This happens when an iRODS process stops. The

parameter is an object that can be used to pass data to and from these functions as well as other functions in the

plugin operation. It can be thought of as the context. In fact, the state information can only be stored in this object.

When the rule engine plugin manager loads more than one instance of the same plugin, the only object that is newly

created is this object.

The rule exists function accepts a rule name, a context, and writes back whether the rule exists in this plugin.

The exec rule function accepts a rule name, a context, a list of arguments, and a callback object. The list of

arguments are boxed by boost::any, and stored in a std::list container. This allows us to load the function in a

dynamically linked library. The callback object is a C++ Callable, with the following interface method:

template<typename ...As>

irods::error operator()(std::string, As&&...);

The first parameter is fn. The second, third, etc. parameters are args.

One may have noticed that the callback interface expects raw values whereas the exec rule function expects a list

of values boxed by boost::any. Why do we design them like this? Ideally we would like to always use raw values to

maximize e�ciency, but this would require templates. We can accept raw parameters for the callback interface because

it is statically compiled. But to allow the exec rule to be loaded from a dynamic library, we cannot use templates.

Because C++ templates are expanded at compile time, we cannot put a template function in a dynamically linked

library that is linked to the main program at runtime. Wouldn’t this be ine�cient if the rule engine plugin simply

wants pass the list of incoming arguments to the callback? The answer is to use the unpack construct as follows:

irods::error exec_rule(std::string _rn, T& _re_ctx, std::list<boost::any>& _ps, callback _cb) {

cb(rn2, irods::unpack(_ps));

}

The unpack constructor is implemented so that the time complexity is O(1).

The default implementation comes with a default rule engine. The default rule engine only has the pep rule and

provides an implementation of the generalized PEP. It provides extended namespace support for the translation

Page 32



to the default semantics. Formally speaking, it implements the following function, given a list of n namespaces

ns
i

, i 2 {1, . . . , n} (configured in server config.json)

pep : Op⇥Args⇥ Env ! Act

pep[op, args, env] = ns1preop(args, env); . . . nsnpreop(args, env);

op(args, env);ns
n

post
op

(args, env); . . . ns1postop(args, env)

Here, for simplicity, we omitted error handling semantics.

By default, we have only one namespace which is ns1 = ””, which implements the default semantics. We can

implement di↵erent semantics outlined in the previous section by changing this plugin. We can add more namespaces

and keep the default semantics. For example, we can add in another namespace for auditing ns2 = ”audit ” or

indexing ns3 = ”index ”. The rules listen to the audit namespace. For example pre and post file read PEPs are

provided as follows:

audit pep resource read pre

audit pep resource read post

Rule engine plugins can be written to listen to those namespaces and provide the specific functionalities in a modular

fashion. When a set of specialized plugins are installed, we can switch on/o↵ a feature by just changing which

namespaces are available.

APPLICATIONS
Python Rule Engine

We have created a proof of concept Python rule engine plugin. It allows users to implement PEPs directly in Python.

This provides an avenue for the rapid expansion in the functionality of iRODS deployments, by taking advantage of

the vast ecosystem of existing Python libraries as well as the large community of Python developers.

The plugin translates calls to exec rule into calls to Python functions, whose implementations are loaded from

/etc/irods/core.py, a Python code file. Users of the plugin are only required to write Python code, and are able

to use all features of the Python programming language, including importing arbitrary Python modules.

Because of the pluggable rule engine architecture, this means iRODS users will be able to implement all PEPs directly

in Python, or to call out to Python from other rule engine plugins, e.g. to extend the functionality of existing iRODS

rules.

Event Tracking

The audit plugin provides an asynchronous tracking mechanism for every operation and their arguments and environ-

ments in iRODS, thereby providing a complete log. It runs at native code speed. Because the PEPs are dynamically

generated, it supports any future plugin operation automatically. It allows the log to be sent to a remote system and

processed asynchronously1.

The rules listen to the audit namespace. To illustrate the implementation, a pre and post file read rule can be

provided as follows:

1currently under development

Page 33



audit_pep_resource_read_pre (...) {

writeLine("serverLog", ...);

}

audit_pep_resource_read_post (...) {

writeLine("serverLog",...);

}

In our implementation, these rules are implemented directly in C++ and therefore incur minimum overhead over

normal operations.

CONCLUSION

We described a new development in the next release of iRODS. The pluggable rule engine architecture allows us

to easily create new rule engines as plugins and run multiple rule engines concurrently. The pluggable rule engine

architecture allows easy implementation and maintenance of rule engine plugin code and o↵ers significant performance

gains in some use cases. The pluggable rule engine architecture enables modular incorporation of features from other

programming languages, allows e�cient auditing of interactions of user-defined rules and the iRODS system, and

supports full interoperability between rules and libraries written in di↵erent languages. This design allows us to easily

incorporate libraries designed for di↵erent programming languages, for example, Python, C++, etc., into the policy

sets, significantly enhancing the capabilities of iRODS without syntactic overhead. This new architecture enables a

wide range of important applications including auditing, indexing, and modular distribution of policies.

Page 34


	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Untitled

