

GETTING STARTED WITH iRODS 4.1

Training held at the iRODS User Group Meeting, 2015
June 9, 2015

TABLE OF CONTENTS

WELCOME! __ i	

iRODS HISTORY __ ii	

ABOUT THE iRODS CONSORTIUM __ iii	

ACKNOWLEDGEMENTS __ iv	

1. WHAT IS iRODS? ___ 1	

iRODS is Open Source __ 1	

iRODS is Middleware ___ 1	

An iRODS Zone __ 2	

iRODS Rules ___ 4	

iRODS Plugins ___ 4	

2. CASE STUDY: STOCKPHOTOSITE.COM (SPS) __________________________________ 5	

Addressing SPS’ Needs __ 5	

Planning an iRODS Deployment for SPS ___ 7	

3. ROLES ___ 8	

4. INSTALLING iRODS __ 9	

Hostnames ___ 9	

Ports ___ 11	

The iCAT Database __ 11	

Installing iRODS Software Packages __ 13	

Installation Checklist ___ 17	

5. USING iCOMMANDS __ 18	

Administrative Operations __ 18	

Logging In with Alice __ 21	

Basic Navigation ___ 22	

Working with Data Objects ___ 23	

Making Collections __ 29	

Wrapping Up ___ 29	

6. VIRTUALIZATION __ 30	

Resource Composition ___ 31	

How Composable Resources Communicate ___ 32	

Building a Tree __ 32	

Seeing the Tree __ 34	

Adding New Storage ___ 35	

Decommissioning Storage __ 35	

7. DATA DISCOVERY __ 36	

What is Metadata? ___ 36	

Types of Metadata ___ 37	

Why Metadata? __ 37	

Metadata Generation and Storage __ 38	

Metadata Schemes ___ 39	

Using Metadata in iRODS __ 40	

8. WORKFLOW AUTOMATION __ 44	

Rules ___ 44	

Microservices ___ 45	

The Example Rule: Harvesting and Applying Metadata _______________________________ 46	

The Rule Language __ 50	

APPENDIX A: iRODS RESOURCES ___ 59	

APPENDIX B: GLOSSARY OF iRODS TERMS _____________________________________ 60	

APPENDIX C: INSTALLATION PROMPTS __ 63	

 i

WELCOME!

This course is designed for those who are new to iRODS or who have limited experience with
iRODS but want to learn more. Experience with the Unix command line and familiarity with
the basic constructs of programming languages (e.g., variables, strings, loops) will be helpful to
training participants.

In this course, you will implement an iRODS Zone (i.e., deployment) to satisfy the
requirements of a hypothetical organization and set of users. The case study for this
hypothetical organization will enable participants to become familiar with core iRODS
functions. Through discussion and hands-on practice, you will:

• Gain an understanding of how iRODS is designed and works, and how it provides users
with capabilities for virtualization, data discovery, workflow automation, and secure
collaboration;

• Analyze user needs and determine how they can be operationalized in an iRODS
deployment;

• Learn how to install and configure iRODS;
• Gain an understanding of virtualization in iRODS, including how to create a tree of

resources to hold data;
• Gain an understanding of how data discovery can be improved with the use of

metadata, and how iRODS handles metadata; and
• Gain an understanding of how workflows can be automated in iRODS through the use

of rules and microservices.

You will leave this training with an installation of iRODS, a foundational understanding of the
overall technical structure and policy capabilities of iRODS, and the ability to execute core
commands.

 ii

iRODS HISTORY

The iRODS story began in 1995 with a data management project known as Storage Resource
Broker (SRB), led by Reagan Moore of the San Diego Supercomputer Center (SDSC). SRB is
data grid middleware with a logical distributed file system, based on a client-server architecture
that presents users with a single, global, logical namespace (i.e., file hierarchy). It was
developed through the cooperative efforts of General Atomics, the Data Intensive Cyber
Environments (DICE) group, and the SDSC at the University of California, San Diego (UCSD)
with the support of the National Science Foundation (NSF).

The integrated Rule-Oriented Data System (iRODS), developed by the DICE group beginning
in 2006, is SRB’s successor. iRODS is based on SRB concepts, but was completely re-written to
be fully open source and include a configurable rule engine.

In 2008, the DICE group expanded geographically, with some members accepting joint
appointments in the School of Information & Library Science (SILS) and the Renaissance
Computing Institute (RENCI) at the University of North Carolina at Chapel Hill (UNC).
RENCI became progressively more involved in iRODS, culminating with the formation of a
dedicated iRODS development team devoted to advancing iRODS to enterprise-grade quality.
In 2013, RENCI founded the iRODS Consortium to further the mission and sustainability of
iRODS technology.

 iii

ABOUT THE iRODS CONSORTIUM

The iRODS Consortium is a group of organizations formally committed to iRODS’ success
through

• support for the development and release of iRODS-based, data management,
middleware technologies,

• promoting advances in iRODS,
• collaboration with iRODS developers and the iRODS open source community,
• attendance at iRODS events, and of course,
• membership dues.

The iRODS Consortium is operated at the University of North Carolina at Chapel Hill (UNC)
by RENCI, a research institute of UNC, in partnership with the DICE Center. Consortium
governance is provided through an Executive Board and Planning Committee. A Technical
Working Group, composed of Consortium staff and satellite teams, contributes decision-
making and development time to the project. Current Consortium members include RENCI,
DICE, DataDirect Networks, Seagate, Wellcome Trust Sanger Institute, EMC, Cleversafe, IBM,
and NASA’s Atmospheric Science Data Center. Membership is open to anyone interested in
sustaining iRODS’ success and participating in the iRODS community.

Consortium members receive a variety of benefits, including prioritized access to support,
training, and consulting; and the opportunity to influence the developmental roadmap of future
software releases.

 iv

ACKNOWLEDGEMENTS

In addition to the organizations and funding agencies listed below, the Consortium would like
to specifically acknowledge Reagan Moore, Arcot Rajasekar, DICE, and RENCI.

Funded projects that supported the development of iRODS technology:

EarthCube Layered Architecture NSF 4/1/2012 – 3/31/2013

DFC Supplement for Extensible
Hardware

NSF 9/1/2011 – 8/31/2015

DFC Supplement for Interoperability NSF 9/1/2011 – 8/31/2015

DataNet Federation Consortium NSF 9/1/2011 – 8/31/2016

SDCI Data Improvement NSF 10/1/2010 – 9/30/2013

Subcontract: Temporal Dynamics of
Learning Center

NSF 1/1/2010 – 12/31/2010

National Climatic Data Center NOAA 10/1/2009 – 9/1/2010

NARA Transcontinental Persistent
Archive Prototype

NSF 9/15/2009 – 9/30/2010

Subcontract: Temporal Dynamics of
Learning Center

NSF 3/1/2009 – 12/31/2009

Transcontinental Persistent Archive
Prototype

NSF 9/15/2008 – 8/31/2013

Petascale Cyberfacility for Seismic
Community

NSF 4/1/2008 – 3/30/2010

Data Grids for Community Driven
Applications

NSF 10/1/2007 – 9/30/2010

Joint Virtual Network Centric Warfare DOD 11/1/2006 – 10/30/2007

 v

Petascale Cyberfacility for Seismic
Analysis

NSF 10/1/2006 – 9/30/2009

LLNL Scientific Data Management LLNL 3/1/2005 – 12/31/2008

NARA Persistent Archives NSF 10/1/2004 – 6/30/2008

Constraint-based Knowledge Systems NSF 10/1/2004 – 9/30/2006

NDIIPP California Digital Library LC 2/1/2004 – 1/31/2007

NASA Information Power Grid NASA 10/1/2003 – 9/30/2004

National Science Digital Library NSF 10/1/2002 – 9/30/2006

NARA Persistent Archive NSF 6/1/2002 – 5/31/2005

SCEC Community Modeling NSF 10/1/2001 – 9/30/2006

Particle Physics Data Grid DOE 8/15/2001 – 8/14/2004

Grid Physics Network NSF 7/1/2000 – 6/30/2005

Digital Library Initiative UCSB NSF 9/1/1999 – 8/31/2004

Digital Library Initiative Stanford NSF 9/1/1999 – 8/31/2004

Persistent Archive NARA 9/1999 – 8/2000

Information Power Grid NASA 10/1/1998 – 9/30/1999

Terascale Visualization DOE 9/1/1998 – 8/31/2002

Persistent Archive NARA 9/1998 – 8/1999

NPACI Data Management NSF 10/1/1997 – 9/30/1999

DOE ASCI DOE 10/1/1997 – 9/30/1999

Distributed Object Computation
Testbed

DARPA/
USPTO

8/1/1996 – 12/31/1999

Massive Data Analysis Systems DARPA 9/1/1995 – 8/31/1996

 vi

 1

1. WHAT IS iRODS?

iRODS is open-source, data management middleware that enables users to:

• access, manage, and share data across any type or number of storage systems located
anywhere, while maintaining redundancy and security, and

• exercise precise control over their data with extensible rules that ensure the data is
archived, described, and replicated in accordance with their needs.

iRODS empowers users by supporting:
• Virtualization, which provides a one-stop shop for all data regardless of the

heterogeneity of storage devices. Whether data is stored on a local hard drive, a remote
Ceph cluster, or Amazon’s S3 object store, iRODS’ virtualization layer presents data
resources in the classic files and folders format, within a single namespace.

• Data Discovery through the use of descriptive metadata,
• Workflow Automation through rules and microservices, and
• Secure Collaboration and data sharing between collaborating or distributed teams.

iRODS is Open Source
Open source software—such as iRODS—provides several benefits to users. First, because the
source code is publicly available, the user community can monitor the entire development
process. Second, developers within the user community can monitor and fix any errors in the
code, extend the existing code, and contribute new code. For example, if a developer would like
to add a custom authentication scheme, she can create a new plugin to handle this. Thus,
iRODS code keeps improving and new functionality is continually added through community
participation. Third, Consortium members have the opportunity to participate in the
development of standards, software release roadmaps, and architectural plans, as well as
provide oversight of development and testing efforts.

iRODS is Middleware
iRODS is a layer that sits above the file systems that contain data, and below domain-specific
applications. Because iRODS has a plugin framework and is technology-agnostic, it provides
insulation from vendor lock-in. System administrators can slide iRODS on top of an existing
heterogeneous data infrastructure and construct a flexible data grid. As middleware, iRODS
allows administrators to track and control access to the data under their care; and through
Zone Reports (i.e., snapshots of an iRODS zone accessed via the izonereport iCommand),
administrators can also monitor the status of the Zone (i.e., iRODS deployment).

 2

An iRODS Zone
Each iRODS deployment—or Zone—is composed of an iRODS Metadata Catalog (iCAT), an
iCAT-Enabled Server (IES), and optional Resource Servers. The iCAT is a relational database
that holds all the information about your data, users, and zone that the iRODS servers—IES
and any resource servers—need to facilitate the management and sharing of your data. The
iCAT contains the information about

• the zone for the purposes of sharing across zones,
• data and their metadata,
• the virtual file system,
• resource configuration, and
• user information.

Currently, PostgreSQL, MySQL, and Oracle are the database technologies that may be used to
implement an iCAT database.

All iRODS servers in a
zone—IES and resource
servers—run the same core
code and are peers. Each
server may have its own set
of policies, rules, and
plugins. However, the IES
holds the connection to and
communicates with the
iCAT. Resource servers must
communicate with the iCAT
through the IES. A zone may
have as many resource
servers as needed. Using
multiple resource servers can
enhance the performance,
security, and resilience of a
zone by providing
redundancy, both within a
single location and
distributed geographically.

 3

Data Objects and Metadata
In iRODS, the term Data Object refers to the logical representation of data that maps to one or
more physical instances of the data at rest in storage resources, such as Amazon’s S3. Data
objects are organized into hierarchical Collections—the logical representations of physical
containers, similar to directories or folders that are found in a file system. As with file system
directories and folders, iRODS denotes levels of hierarchy with slashes (/) in the pathname.
For example, the root collection of tempZone is written as /tempZone. Each subcollection is
prefixed with /tempZone/. For example, /tempZone/home is a subcollection of
/tempZone; and /tempZone/home/alice is a subcollection of /tempZone/home. The
complete pathname of an iRODS data object includes the Zone (i.e., iRODS deployment) name
and the full pathname within that zone, e.g.,
/tempZone/home/alice/sciproject/results.txt.

iRODS users can store descriptive information about data objects—or metadata—in the iCAT.
Metadata improves search and therefore better enables data discovery. Users can search for
data objects using metadata descriptors as search terms. This allows for browsing and
serendipitous discovery, rather than relegating users to a targeted search for the file name,
which they may or may not know. Both automatic, system-generated metadata and user-
created metadata are supported in iRODS.

The Virtual File System and Resource Configuration
iRODS contains a virtual file system which maps logical directory paths stored in the iCAT to
actual physical storage (e.g., Ceph cluster) that contains the actual data objects. Composable
Resources allow you to manage storage and retrieval of data on storage devices. There are two
types of composable resources: Coordinating and Storage. Coordinating resources actively make
decisions about which physical device will receive or serve up a data object. Storage resources
are the logical representations of—or pointers to—physical storage devices. All resources are
composed of five parts: (a) the name you give the resource, (b) a host name (e.g.,
hostname.example.org), (c) a directory path to the exact location on the storage device
(e.g., /full/path/to/storage), (d) the storage resource type (e.g., Amazon S3), and (e) a
plugin-specific context string (e.g., the name of the file containing access credentials or any
persistent information the plugin may require).

Secure Collaboration
With iRODS, organizations can share data, or federate, by simply adding a few bits of
networking information to their iRODS configuration. Organizations are not required to
coordinate the configuration of their respective iRODS zones. Each organization in a

 4

collaborative partnership retains autonomous control over its data collections, including
maintaining security and data management policies distinct from fellow collaborators.

iRODS Rules
Your organization may have defined, formally or informally, policies and procedures for access
control, backup, data migration, data preparation, metadata extraction, and more. These
organizational policies can be implemented in iRODS through the use of rules, which can help
you customize and automate related data management tasks.

Rules are written in the iRODS’ rule language, which uses many familiar programming
constructs (e.g., loops, conditional statements), making it easy for your organization’s
developers to construct rules to satisfy your data needs.

Rules are executed based on conditions or, in iRODS parlance, Policy Enforcement Points
(PEPs). Consider, for example, a rule to transfer ownership of data objects to the project
manager when a user is deleted; the trigger—or PEP—is the deletion of the user. Similarly,
rules could be written to extract metadata or pre-process data whenever a file is uploaded to a
storage device. Or, upon access to particular data objects, a rule can create a log of the event,
send an email notification to the project manager, or perform some other task you need to
occur as a result of the data’s access.

Rules are carried out by the iRODS rule engine—a built-in interpreter for the iRODS rule
language. The rule engine governs the sequence of data management actions in your iRODS
zone. The IES and each resource server run an instance of the rule engine. Out of the box, the
rule engine comes loaded with an array of basic actions (e.g., error reporting, login protocols)
to get you up and running. As you begin to dig into iRODS, you can add rules of your own to
tailor a data management program that works for you.

iRODS Plugins
We’ve already discussed one type of plugin: Composable Resources; but there are many more.
Plugins—like rules—allow for the customization of an iRODS installation. Plugins are used to
implement core iRODS functions, such as authentication, communication over the Internet,
communication with storage devices, and more. The use of plugins enables zone
administrators to tailor iRODS to their needs, without having to recompile core code. Plugins
also make it possible to upgrade small portions of iRODS without interfering with core
functions.

 5

2. CASE STUDY: STOCKPHOTOSITE.COM (SPS)

Stockphotosite.com (SPS) is a fledgling startup that solicits and licenses stock photography.
You are the Data Center Administrator for SPS. In that capacity, you have recruited a small
network of freelance photographers who will upload images they capture to SPS, so they can be
purchased and downloaded by subscribers.

Before SPS goes live, you will need to develop a data management strategy. To develop this
strategy, you must take stock of what you have in-house and what your information needs are.

• You have several computers and two 50 TB network-attached storage (NAS) arrays for
supporting the site.

• You need to support search and preservation of the images; so you need to gather
information about each image, such as descriptions, photographer credits, copyright,
resolution, camera settings, color or black and white, file format, etc.

• You need to determine who can access the site and whether they are employees,
photographers, or subscribers.

• To ensure your site can grow over time, you will need to determine if and when data
should be archived or deleted, and when expanding your storage configuration will be
necessary. You can’t afford downtime; you are expecting to have subscribers accessing
the site 24/7 from around the world.

• Disk failures occur, so you will want to keep at least two copies of the data, located on
separate disks, at all times.

Addressing SPS’ Needs
How would you address SPS’ needs in the case study above? Get together in pairs or small
groups and discuss the questions below. The answers to some of the questions below cannot
be found in the above scenario. So you’ll have to use your imagination and flesh out the
scenario some more.

Data

• Where is SPS’ data located—one central location or distributed?
• What are the advantages and shortcomings of having the data in a central location; how

about distributed? What do you think is the best course of action?
• Will SPS need multiple copies of data objects or is a single copy sufficient? What do you

think is best?
• How much data does SPS currently have? Is this a stable quantity or could it increase

over time? How quickly could SPS generate new data?

 6

• What file formats will the data come in? Are these proprietary or open?
• Is any of the data proprietary or confidential?

Network

• What speed is the SPS network? How consistently is that speed maintained?
• What security is in place?

Resources

• Does SPS have a budget for ongoing software costs? For software engineers?
• What is SPS’ stance on open source? How does this factor in to their decision-making

process?
• What resources does SPS have in place to manage a data repository (e.g., technical staff,

support options, site licenses, hardware)?

Organization

• What is SPS’ organizational structure?
• Will you, the Data Center Administrator, have autonomous decision-making or will you

need to get executive buy-in?
• Who is accountable for and affected by any decisions?

Users

• What kinds of users will need access to the data? What types of access or privileges will
they need?

• How many users does SPS anticipate? Is this a stable quantity or could it increase over
time?

• Where are the users located? What time zone? Are they located near the data or
somewhere else?

Also consider the needs of specific classes of users:
• SPS photographers need to be able to document the photographs they upload. This

includes text descriptions of the images that must be entered manually, but some
descriptive information—metadata—does not require manual entry. Most digital
cameras tag images with metadata stored as Exchangeable image file format (Exif) data.
Exif data captures characteristics such as the date and time of the photograph, the make
and model of the camera, the geographic coordinates of the subject, the lens aperture,
the exposure time, and the focal length of the lens used to take the photograph.

 7

• Subscribers need to be able to search for photos by their description, geographic
location, image resolution, etc. They want easy, reliable access to the files they are
entitled to; they are not concerned about where the files are located in the storage array.

• You, as the Data Center Administrator, need to be able to verify that two copies of each
image are maintained without interfering with user access. You need to implement
archiving and retention policies, and you need to add new storage as existing resources
fill up.

The questions above can serve as an inventory-taking template for your own personal situation.
Just substitute “SPS” with your organization.

Planning an iRODS Deployment for SPS
As SPS’ Data Center Administrator, you need to consider the questions above and decide how
these requirements can be operationalized in an iRODS deployment. Get together in pairs or
small groups and discuss your requirements. You may need to scan later chapters of the
workbook.

Data, Network, Resource, and Organizational Needs
Start by considering the requirements you identified when reviewing the questions related to
Data, Network, Resources, and Organizational needs. For example, if SPS data is distributed
across storage devices, you may need multiple resource servers and a robust tree of composable
resources. If you think SPS will need multiple copies of data objects, you may want to look into
iRODS’ capabilities for replication: take a look at the Coordinating Resources table in the
Virtualization chapter of this workbook. If you are pro-open-source but your organization is
unfamiliar with the concept, how can you educate them on the benefits to ensure adoption of
iRODS?

Users Needs
User needs are very important. If the data management system won’t support user needs, it
will not be useful to them and the system may not be adopted. What requirements did you
identify when considering the User questions above? For example, if you anticipate that SPS
will cater to large numbers of subscribers from around the globe, you may want resource
servers to be located in the countries with the largest groups of subscribers. Will the
photographers want to be able to annotate their photos with descriptive information? What
other kinds of user needs do you think will be important to attend to?

 8

3. ROLES

Throughout the training, you will be assuming different user roles to interact with the Linux
VM and the iRODS software. The table below lists the different roles you will assume and
explains their purpose.

Role Linux, iRODS,

or Postgres?
Role Definition

learner Linux This is the user role on the Linux VM. You will be learner

throughout the day because you will always be using the Linux VM.
However, you also may masquerade, so to speak, as some of the
other roles.

postgres Linux This is the service account for the Postgres database we will create
for the iCAT.

irods Postgres This is the regular user account for the Postgres database.
irods Linux This is the Linux service account that is created by default when you

install iRODS. It runs the iRODS software and owns all physical data
objects. We will never masquerade as irods in the training and it is

best not to do so in any case.
rods iRODS This is the default administrator account—rodsadmin—in iRODS. It

has permissions to add users to iRODS, set up resources, etc.
alice iRODS A regular user account—rodsuser—in iRODS. A photographer at

SPS.
bobby iRODS A regular user account—rodsuser—in iRODS. A photographer at

SPS.

 9

4. INSTALLING iRODS

Before installing iRODS, we first need to satisfy assumptions about hostnames that iRODS
relies on, and then install and configure a database.

Hostnames
iRODS networking is built on top of hostnames. A hostname is a label that identifies a device
in a computer network. The hostname of a computer can be determined many different ways,
including:

• the command-line program hostname
• the C function gethostname()
• the Python function socket.gethostname()

FYI: To learn more about hostnames, domain names, and IP addresses, visit MIT’s “IP
Addresses, Host Names and Domain Names” page: https://ist.mit.edu/network/ip

iRODS makes three assumptions about all of the servers in a zone (both the iCAT server and
any resource servers):

• Each server has a unique hostname.
• Each server is able to resolve the hostname of all other servers (i.e., find the IP address

of a server, given its hostname).
• Each server is able to communicate with all other servers using the resolved IP

addresses.
Therefore, before installing iRODS, we must make sure these assumptions are satisfied.

Setting the Hostname
The iRODS zone we will be creating and using will consist of only an iCAT server—no resource
servers. Therefore, to satisfy the preceding networking assumptions we only need to set an
appropriate hostname on the iCAT server and make sure that the iCAT server knows its own
hostname. The hostname we will be using for the iCAT server is learner-vb.example.org.
This hostname is already set. To verify this, execute:

$ hostname

The command should print learner-vb.example.org to the terminal.

 10

If the hostname were not set, you could set the hostname by executing:

$ sudo hostname learner-vb.example.org

To make the hostname change permanent across computer restarts, we need to edit the
contents of the file /etc/hostname so that the file contains only learner-
vb.example.org. We will use the editor nano. To edit /etc/hostname, execute:

$ sudo nano /etc/hostname

Then delete the current contents, enter the new hostname, and save and close the file.

Resolving (or Mapping) the Hostname to an IP Address
Computers in production network environments will be able to rely on an existing DNS
(Domain Name System) to resolve the hostnames of all the iRODS servers. Our test setup
does not have a DNS; however the iRODS team has already configured the training VM with
its hostname.

Should you wish to do this yourself in a later installation, you would need to edit the file
/etc/hosts. Execute:

$ sudo nano /etc/hosts

Each line in /etc/hosts consists of a leading IP address followed by a list of white-space-
separated hostnames that we want to resolve to that IP address. Find the line that starts with
127.0.0.1. It will look something like the following:

127.0.0.1 localhost

This IP address corresponds to a special loopback device that lets the computer send messages
to itself. Add the desired hostname learner-vb.example.org to the front of the list of
hostnames, which should resolve to 127.0.0.1.

The updated line should look something like this:

127.0.0.1 learner-vb.example.org localhost

After making this change, save and close the file.

 11

To check that we can now resolve the hostname, execute:

$ ping -c 3 learner-vb.example.org

The program should print something similar to the message below. The ping rates will differ.

PING learner-vb.example.org (127.0.0.1) 56(84) bytes of data.
64 bytes from learner-vb.example.org (127.0.0.1): icmp_seq=1 ttl=64 time=0.027
ms
64 bytes from learner-vb.example.org (127.0.0.1): icmp_seq=2 ttl=64 time=0.037
ms
64 bytes from learner-vb.example.org (127.0.0.1): icmp_seq=3 ttl=64 time=0.038
ms

—- learner-vb.example.org ping statistics —-
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.027/0.034/0.038/0.005 ms

If instead the output is

ping: unknown host learner-vb.example.org

the /etc/hosts file has not been configured correctly. Review the edits to /etc/hosts to
identify any errors that might have been made.

Ports
iRODS servers use a number of ports for network communication. By default, these are:

• 1247 and 1248 for normal operation
• 20000 - 20199 for transmitting large files

Note! The default Ubuntu 14 installation does not have a firewall, so iRODS will be able to
use these ports without any additional action.

The iCAT Database
iRODS stores most of its information (e.g. user names, file names and locations, metadata) in
the iCAT. iRODS assumes this database is created and managed by a third party. Therefore,
before installing iRODS, we have to create and configure the database iRODS will be using.

 12

For this training, we will be using PostgreSQL for our iRODS database. First let’s update
Ubuntu’s apt repository.

$ sudo apt-get update

Then let’s install the PostgreSQL server software.

$ sudo apt-get install postgresql

Next, we will switch user to the Linux user account—postgres—that controls the PostgreSQL
server software so that we can create the iCAT database:

$ sudo su - postgres

Start the PostgreSQL command console:

$ psql

Now we are in PostgreSQL, so we will switch to database query language.

Note! Because we are now using database query language, be sure to use semi-colons (;)
to end statements.

Let’s create the database to be used by iRODS:

> CREATE DATABASE "ICAT";

Create the PostgreSQL user account to be used by iRODS:

> CREATE USER irods WITH PASSWORD 'testpassword';

Give the iRODS PostgreSQL user account permission to use the database:

> GRANT ALL PRIVILEGES ON DATABASE "ICAT" to irods;

Log out of the PostgreSQL command console:

> \q

 13

Log out of the Linux user account—postgres—that controls the PostgreSQL server software:

$ exit

You are now once again learner.

Installing iRODS Software Packages
iRODS is split into two packages:

• the core server software
• the database plugin specific to the type of database used (PostgreSQL in our case)

To download the core server software execute:

$ wget ftp://ftp.renci.org/pub/irods/releases/4.1.0/ubuntu14/irods-icat-
4.1.0-ubuntu14-x86_64.deb

To download the PostgreSQL database plugin, execute:

$ wget ftp://ftp.renci.org/pub/irods/releases/4.1.0/ubuntu14/irods-
database-plugin-postgres-1.5-ubuntu14-x86_64.deb

To download the package you will need for the Workflow Automation section:

$ wget ftp://ftp.renci.org/pub/irods/training/training-example-1.0.deb

After doing so, there should be three new files in your current directory:
• irods-database-plugin-postgres-1.5-ubuntu14-x86_64.deb

• irods-icat-4.1.0-ubuntu14-x86_64.deb

• training-example-1.0.deb

Install the downloaded packages by executing:

$ sudo dpkg -i irods-icat-4.1.0-ubuntu14-x86_64.deb irods-database-plugin-
postgres-1.5-ubuntu14-x86_64.deb training-example-1.0.deb

 14

The install command will warn you about missing package dependencies with a message
similar to:

dpkg: error processing package irods-database-plugin-postgres (—install):
 dependency problems - leaving unconfigured
Processing triggers for man-db (2.6.7.1-1) ...
Processing triggers for ureadahead (0.100.0-16) ...
Processing triggers for libc-bin (2.19-0ubuntu6) ...
Errors were encountered while processing:
 irods-icat
 irods-database-plugin-postgres

Finish the installation of the iRODS packages by installing the required dependencies:

$ sudo apt-get -f install

Press Enter when the installer asks if you would like to continue.

Then you will be presented with, among other things, two messages to the screen:

===

Welcome to iRODS.

This installation of an iCAT server is currently incomplete and
needs a database plugin to be installed and configured before
it can be started and used.

Please consult the manual for further instructions.

===

and
===

iRODS Postgres Database Plugin installation was successful.

To configure this plugin, the following prerequisites need to be met:
 - an existing database user (to be used by the iRODS server)
 - an existing database (to be used as the iCAT catalog)
 - permissions for existing user on existing database

Then run the following setup script:
 sudo /var/lib/irods/packaging/setup_irods.sh

===

 15

The final installation step is running the setup script:

$ sudo /var/lib/irods/packaging/setup_irods.sh

The setup script will prompt for a number of pieces of information. Some prompts provide a
default value. The default value will be at the end of the prompt in square brackets.

Note! To select the default value, press the Enter key without typing any information. For
this installation, we will use the default value for each prompt that provides one. (See
Appendix C: Installation Prompts for a worksheet so you can plan your responses to the
prompts in future installations.)

iRODS service account name [irods]:

The Linux account that will run the iRODS server software. The account will be created
if it does not already exist.

iRODS service group name [irods]:

The primary group of the Linux account that will run the iRODS server software.

iRODS server's zone [tempZone]:

The name of the iRODS zone.

iRODS server's port [1247]:

The main iRODS port.

iRODS port range (begin) [20000]:

The beginning of the port range used when transferring large files.

iRODS port range (end) [20199]:

The end of the port range used when transferring large files.

iRODS Vault directory [/var/lib/irods/iRODS/Vault]:

The Vault (i.e., storage) location of the default unixfilesystem resource created
during installation.

iRODS server's zone_key [TEMPORARY_zone_key]:

A secret key used in server-to-server communication.

 16

iRODS server's negotiation_key [TEMPORARY_32byte_negotiation_key]:

A secret key used in server-to-server communication.

Control Plane port [1248]:

The port used for the control plane. The control plane receives status updates from all
servers, and issues commands to servers to pause, resume, shut down, etc.

Control Plane key [TEMPORARY__32byte_ctrl_plane_key]:

A secret key shared by all servers.

Schema Validation Base URI (or 'off')
[https://schemas.irods.org/configuration]:

The location of the schema files used to validate the server's configuration files.

iRODS server's administrator username [rods]:

The name of the iRODS administration account that will be created during setup.

iRODS server's administrator password:

There is no default value for the iRODS administration account password. For the
purposes of this class, use rods. In the future, however, you will want to use more
complex passwords.

Please confirm these settings [yes]:

Review the summary of your chosen settings. If you need to change them, type no to go
through the prompts again. Otherwise, press Enter to accept the settings and continue.

Database server's hostname or IP address:

There is no default value. Enter localhost.

Database server's port [5432]:

The database server listens for notifications from other applications on this port. The
default value, 5432, is correct for default PostgreSQL installations.

Database name [ICAT]:

This is the name of the database that we created in PostgreSQL during the iCAT
database installation.

Database username [irods]:

Enter irods. This must match the irods Linux account name to authenticate into
Postgres without changing Postgres settings.

 17

Database password:

There is no default value. Enter testpassword. This is the same password we set for
during the iCAT database installation.

Please confirm these settings [yes]:

Review the summary of your chosen settings. If you need to change them, type no to go
through the prompts again. Otherwise, press Enter to accept the settings and continue.

Once the script has received all of its input, it will complete the setup. A successful setup will
end with the following text:

Running update_catalog_schema.py...
Updating to Catalog Schema... 2
Updating to Catalog Schema... 3
Updating to Catalog Schema... 4
Done.

Installation Checklist
For future installations, this checklist may be helpful.

Before Installation
 Hostnames

 Set and confirm hostname to learner-vb.example.org.
 Set post-restart hostname to learner-vb.example.org.
 Add hostname to /etc/hosts.
iCAT Database
 Install PostgreSQL database server software.
 Create ICAT database.
 Create irods PostgreSQL user.
 Grant irods PostgreSQL user permissions on ICAT database.

iRODS Software Installation
 Download iRODS packages.

 Install iRODS packages.
 Install missing iRODS dependencies.
 Run iRODS setup script.

 18

5. USING iCOMMANDS

iCommands are Unix utilities that give iRODS users a command-line interface to operate on
data in the iRODS system. iCommands provide client-side communication with iRODS servers
to provide administrative, data management, and metadata management functions. There are
over 50 iCommands; and in this course, we will cover most of the basic iCommands.

All iCommands accept command line options (e.g., -a for all, -e for echo, -h for help) that
extend the command’s capabilities. However, a specific iCommand accepts only a subset of
these options. The options that an iCommand accepts are listed in its help entry.

FYI: To get help on a specific iCommand (such as ils for listing the contents of a
collection), you may
 ! visit this webpage: https://docs.irods.org/master/icommands/user/
 ! use the -h option with the command (e.g., ils -h), or
 ! use the ihelp command as the argument with the command you’d like to learn more
 about (e.g., ihelp ils).

Administrative Operations
In this workshop, you are interacting with iRODS through a Linux shell session. The session
needs many settings and other details to determine iRODS behavior and access to iRODS
resources. One way the shell manages these settings and details is through an area it maintains
called the environment. The shell builds the environment every time it starts a session by
accessing the settings and details that are contained in an environment file.

So to connect to an iRODS server using the rods administrator account, we will need to
execute the iinit command which will create the iRODS environment file
irods_environment.json, in the .irods subdirectory of your Linux home directory
(e.g., /home/learner/.irods/irods_environment.json).

You will need to have the following information handy when you run iinit:

• the hostname of the iRODS server (either an iCAT or an iRODS resource server) you
wish to log into: learner-vb.example.org

• the network port number of the iRODS server: 1247
• the name and password of the iRODS user: rods
• the name of the iRODS zone: tempZone

 19

Execute iinit.

$ iinit
One or more fields in your iRODS environment file
(irods_environment.json) are missing; please enter them.
Enter the host name (DNS) of the server to connect to:

On the same line, after the colon, enter: learner-vb.example.org

Enter the port number:

On the same line, after the colon, enter: 1247

Enter your irods user name:

On the same line, after the colon, enter: rods

Enter your irods zone:

On the same line, after the colon, enter: tempZone

Those values will be added to your environment file (for use by
other iCommands) if the login succeeds.

Enter your current iRODS password:

Remember we set the rods password as rods.

Note! When you type in the password rods on the same line after the colon, you will not
see dots or asterisks signifying the password. It will appear as though you are typing
nothing.

Note! The iinit command will cache your credentials in the file .irodsA. If you are on a
computer that is not your own, you will want to delete the password file iinit creates by
using the iexit full command, so that iRODS will ask you to provide your credentials
with each future login.

 20

Now let’s create accounts for two SPS photographers: Alice Jones and Bobby Smith. To perform
administrative functions such as adding, modifying, and removing users and storage resources,
we will use the iadmin command.

Use iadmin with the make user (mkuser) argument to create a user account (rodsuser) for
Alice and assign her the password passWORD. We are going to use lowercase for Alice’s
username. Then we will use moduser to change properties of a user account (e.g., the
password).

$ iadmin mkuser alice rodsuser

$ iadmin moduser alice password passWORD

If you wanted Alice to be an iRODS administrator, you would use rodsadmin in place of
rodsuser. An administrator with a rodsadmin account—such as rods—has permission to
run iadmin and perform other administrative activities. For now, leave Alice as rodsuser.

Let's create one more regular user account for Bobby with the same password we gave Alice.

$ iadmin mkuser bobby rodsuser

$ iadmin moduser bobby password passWORD

Let’s create a storage resource so that Alice can try out iCommands in the next subsection.
When we installed iRODS, the setup script created an initial iRODS storage resource,
demoResc.

Note! demoResc is not for production use, but we will use it for training purposes.

Let's use iadmin to create a second resource, newResc, of the type unixfilesystem, on the
host learner-vb.example.org, and mounted at /var/lib/irods/iRODS/new_vault.
This will be a single line of text on your screen; however, in the printed example below the \
signifies that the text wraps to a second line.

$ iadmin mkresc newResc unixfilesystem \
learner-vb.example.org:/var/lib/irods/iRODS/new_vault

 21

The iadmin command can also be used to remove a user (using rmuser as the argument) or
remove a resource (using rmresc as the argument). Use iadmin -h to learn more.
Now that we're done with administrative commands, let's log out of iRODS.

$ iexit full

To log in as Alice in the next section, we’ll need to throw away the environment file for rods.
To do this, execute:

$ rm ~/.irods/irods_environment.json

Logging In with Alice
Now, using the iinit command, let’s log in as Alice and change her password.

Execute iinit.

$ iinit
One or more fields in your iRODS environment file
(irods_environment.json) are missing; please enter them.
Enter the host name (DNS) of the server to connect to:

On the same line, after the colon, enter: learner-vb.example.org

Enter the port number:

On the same line, after the colon, enter: 1247

Enter your irods user name:

On the same line, after the colon, enter: alice

Enter your irods zone:

On the same line, after the colon, enter: tempZone

Those values will be added to your environment file (for use by
other iCommands) if the login succeeds.

Enter your current iRODS password:

 22

Remember we set Alice’s password as passWORD. We must log in with this first before we can
change it.

Note! When you type in Alice’s password on the same line after the colon, you will not see
dots or asterisks signifying the password. It will appear as though you are typing nothing.

Let's change Alice’s password using the ipasswd command. Remember Alice’s current iRODS
password was passWORD.

$ ipasswd
Enter your current iRODS password:
Enter your new iRODS password:
Reenter your new iRODS password:

Enter a new password for Alice. For the purposes of this training, use alicepass.

Basic Navigation
Unix commands such as cd, ls, and pwd are available in iRODS as iCommands. To identify
the current working collection use the ipwd command. The current working collection is the
default location for data to be read or written.

$ ipwd
/tempZone/home/alice

Now, let’s change to another collection using the icd command.
To change the collection to /tempZone/home/public, you would use icd with an absolute
path:

$ icd /tempZone/home/public

Or you could use a relative path:

$ icd ../public

To list the data objects and subcollections stored in a collection, we could use the ils (meaning
list) command. If executed with no arguments, it will list the objects in the present collection.

$ ils
/tempZone/home/public:

 23

You can see that public is empty. There are no data objects or subcollections in public.
To revisit Alice’s home collection you can use use the icd command by itself or followed by
Alice’s home collection.

$ icd

Or

$ icd ../alice

Working with Data Objects
Suppose Alice would like to copy her photos—or data objects—from a local directory to an
iRODS collection. For this, use the iput command:

$ iput -r /home/learner/training_jpgs

If Alice wanted to copy lemur.jpg from an iRODS collection to her local directory, she would
use iget:

$ iget /tempZone/home/alice/training_jpgs/lemur.jpg

Using the - command line option at the end will print the contents to stdout but will not
create a local copy.

$ iget /tempZone/home/alice/training_jpgs/sources.txt -

Let's give Bobby access to mouse.jpg, but first we need to give Bobby read access to Alice’s
training_jpgs collection that contains mouse.jpg. Let’s start by reviewing what
permissions are already in place with the ils command followed by the -A and -r options.
The -A option will show you the data objects' and collections' access control lists (ACLs) which
define who owns or who has read/write permissions to the data and collections. The -r option
here applies the ils command to the target and all its subcollections.

$ ils -A -r
/tempZone/home/alice:
 ACL - alice#tempZone:own
 Inheritance - Disabled
 C- /tempZone/home/alice/training_jpgs
/tempZone/home/alice/training_jpgs:
 ACL - alice#tempZone:own

 24

 Inheritance - Disabled
 beans.jpg
 ACL - alice#tempZone:own
 coffee.jpg
 ACL - alice#tempZone:own
 eggs.jpg
 ACL - alice#tempZone:own
 grapes.jpg
 ACL - alice#tempZone:own
 lemur.jpg
 ACL - alice#tempZone:own
 mouse.jpg
 ACL - alice#tempZone:own
 peanuts.jpg
 ACL - alice#tempZone:own
 platter.jpg
 ACL - alice#tempZone:own
 scooter.jpg
 ACL - alice#tempZone:own
 seal.jpg
 ACL - alice#tempZone:own
 sources.txt
 ACL - alice#tempZone:own
 waffle.jpg
 ACL - alice#tempZone:own

Bobby does not have access to training_jpgs. Alice owns the
/tempZone/home/alice/training_jpgs collection. Her ownership permission allows her
to grant permissions to others. So as Alice, let’s give Bobby write permissions using the
ichmod command followed by the -r command line option to apply the new permission
recursively.

$ ichmod -r write bobby training_jpgs

Write permissions in iRODS include read permissions; however, you can grant read-only
permissions by using read in place of write in the above command.

Let’s make sure that it worked. We’ll use ils again to review the permissions:

ils -A -r
/tempZone/home/alice:
 ACL - alice#tempZone:own
 Inheritance - Disabled
 C- /tempZone/home/alice/training_jpgs
/tempZone/home/alice/training_jpgs:
 ACL - alice#tempZone:own bobby#tempZone:read object
 Inheritance - Disabled
 beans.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own

 25

 coffee.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own
 eggs.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own
 grapes.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own
 lemur.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own
 mouse.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own
 peanuts.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own
 platter.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own
 scooter.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own
 seal.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own
 sources.txt
 ACL - bobby#tempZone:read object alice#tempZone:own
 waffle.jpg
 ACL - bobby#tempZone:read object alice#tempZone:own

If we want to remove a data object from a collection, the irm command will do that. By default,
irm moves the data object to a separate trash collection at /tempZone/trash.

$ irm /tempZone/home/alice/training_jpgs/peanuts.jpg

To empty the trash, we could use irmtrash. Using the -f command line option with irm will
remove the data object permanently. It cannot be recovered if you use -f.

Suppose you did not intend to throw peanuts.jpg away. Thankfully you did not use the
–f option, so you can use the imv command to recover the data object from the trash and
move it back to Alice’s collection.

$ imv /tempZone/trash/home/alice/training_jpgs/peanuts.jpg \
 /tempZone/home/alice/training_jpgs

Now let’s verify that peanuts.jpg was moved back to Alice’s collection:

$ ils /tempZone/home/alice/training_jpgs/peanuts.jpg

 26

Now, let's create a Replica (i.e., an identical, physical copy of a data object) using the irepl
command. First, let’s use ils to take a look at what’s inside
/tempZone/home/alice/training_jpgs and we’ll use the -L option to determine if
there are any replicas already in existence. Using the -L command line option (meaning very
long) with ils will show you where data objects are physically stored and if replicas exist.

$ ils -L /tempZone/home/alice/training_jpgs
/tempZone/home/alice/training_jpgs:
 alice 0 demoResc 1128069 2015-04-07.14:16 & beans.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/beans.jpg
 alice 0 demoResc 479299 2015-04-07.14:16 & coffee.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/coffee.jpg
 alice 0 demoResc 912548 2015-04-07.14:16 & eggs.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/eggs.jpg
 alice 0 demoResc 669306 2015-04-07.14:16 & grapes.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/grapes.jpg
 alice 0 demoResc 1312007 2015-04-07.14:16 & lemur.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/lemur.jpg
 alice 0 demoResc 392585 2015-04-07.14:16 & mouse.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/mouse.jpg
 alice 0 demoResc 1413230 2015-04-07.14:16 & peanuts.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/peanuts.jpg
 alice 0 demoResc 2555592 2015-04-07.14:16 & platter.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/platter.jpg
 alice 0 demoResc 1822077 2015-04-07.14:16 & scooter.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/scooter.jpg
 alice 0 demoResc 362833 2015-04-07.14:16 & seal.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/seal.jpg
 alice 0 demoResc 371 2015-04-07.14:16 & sources.txt
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/sources.txt
 alice 0 demoResc 1153142 2015-04-07.14:16 & waffle.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/waffle.jpg

There are no replicas. So let’s replicate peanuts.jpg to newResc using the irepl
command:

$ irepl -R newResc training_jpgs/peanuts.jpg

 27

Now, let’s verify that the replica was created (see the bolded output below):

$ ils -L training_jpgs
/tempZone/home/alice/training_jpgs:
 alice 0 demoResc 1128069 2015-04-07.14:16 & beans.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/beans.jpg
 alice 0 demoResc 479299 2015-04-07.14:16 & coffee.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/coffee.jpg
 alice 0 demoResc 912548 2015-04-07.14:16 & eggs.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/eggs.jpg
 alice 0 demoResc 669306 2015-04-07.14:16 & grapes.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/grapes.jpg
 alice 0 demoResc 1312007 2015-04-07.14:16 & lemur.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/lemur.jpg
 alice 0 demoResc 392585 2015-04-07.14:16 & mouse.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/mouse.jpg
 alice 0 demoResc 1413230 2015-04-07.14:16 & peanuts.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/peanuts.jpg
 alice 1 newResc 1413230 2015-04-07.14:37 & peanuts.jpg
 newResc generic
/var/lib/irods/new_vault/home/alice/training_jpgs/peanuts.jpg
 alice 0 demoResc 2555592 2015-04-07.14:16 & platter.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/platter.jpg
 alice 0 demoResc 1822077 2015-04-07.14:16 & scooter.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/scooter.jpg
 alice 0 demoResc 362833 2015-04-07.14:16 & seal.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/seal.jpg
 alice 0 demoResc 371 2015-04-07.14:16 & sources.txt
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/sources.txt

Suppose you wish to remove a replica. The itrim command is suited to the job. Let’s remove
the replica of peanuts.jpg from demoResc. If we add the -N command line option, we can
specify the number of replicas to keep. To keep only 1 replica, follow -N with number 1. To
keep 3, follow it with 3, and so on. If you do not specify a number, iRODS will trim replicas
down to 2 by default.

 28

Currently, we have two replicas of peanuts.jpg—one on demoResc and one on newResc.
To specify that we wish the replica to be trimmed from demoResc, we will need to use the -S
option followed by demoResc. The –S option specifies the resources of the replica to be
trimmed.

$ itrim -N 1 -S demoResc training_jpgs/peanuts.jpg

Now let’s verify that the replica of peanuts.jpg on demoResc has been successfully
trimmed by using ils -L again.

$ ils -L training_jpgs
/tempZone/home/alice/training_jpgs:
 alice 0 demoResc 1128069 2015-04-07.14:16 & beans.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/beans.jpg
 alice 0 demoResc 479299 2015-04-07.14:16 & coffee.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/coffee.jpg
 alice 0 demoResc 912548 2015-04-07.14:16 & eggs.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/eggs.jpg
 alice 0 demoResc 669306 2015-04-07.14:16 & grapes.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/grapes.jpg
 alice 0 demoResc 1312007 2015-04-07.14:16 & lemur.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/lemur.jpg
 alice 0 demoResc 392585 2015-04-07.14:16 & mouse.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/mouse.jpg
alice 1 newResc 1413230 2015-04-07.14:37 & peanuts.jpg
 newResc generic
/var/lib/irods/new_vault/home/alice/training_jpgs/peanuts.jpg
 alice 0 demoResc 2555592 2015-04-07.14:16 & platter.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/platter.jpg
 alice 0 demoResc 1822077 2015-04-07.14:16 & scooter.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/scooter.jpg
 alice 0 demoResc 362833 2015-04-07.14:16 & seal.jpg
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/seal.jpg
 alice 0 demoResc 371 2015-04-07.14:16 & sources.txt
 demoResc generic
/var/lib/irods/iRODS/Vault/home/alice/training_jpgs/sources.txt

We have trimmed the replica only from demoResc. The data object peanuts.jpg now only
appears on newResc.

 29

Making Collections
Alice might want to organize her photos into different collections—perhaps putting black and
white photos in one collection and color in another. You can make collections with the imkdir
command followed by the collection name. The collection name you specify can be relative to
your current working collection:

$ imkdir bw_photos

or absolute, as shown below:

$ imkdir /tempZone/home/alice/bw_photos

To remove a collection, use the irm command with the -r command line option, followed
by the collection you wish to remove. The -r command line option will apply the remove
command recursively.

$ irm -r bw_photos

Or by referencing the full path:

$ irm -r /tempZone/home/alice/bw_photos

Wrapping Up
We have covered several fundamental iCommands, but there are dozens more that cover
copying data between collections, moving data between resources, computing checksums, etc.

FYI: Remember, you can learn more about any iCommand using the -h command line
option, or by visiting https://docs.irods.org/master/icommands/user/

 30

6. VIRTUALIZATION

In computer science, virtualization is the process of providing one abstract interface—or virtual
access point—through which multiple services or entities communicate. These services or
entities can include servers, storage devices, networks, and operating systems.

iRODS has a modular architecture with 6 pluggable interfaces that allow different services (i.e.,
iRODS plugins) to communicate with iRODS core code. Because these plugins are separate
from core code, new functionality can be added without having to edit or recompile core code.

Interfaces and Plugins

Interface Plugins

Authentication Native iRODS password access
OSAuth
Pluggable Authentication Module (PAM)
Grid Security Infrastructure (GSI)*
LDAP via PAM

Database Oracle*
PostgreSQL*
MySQL*

Network Transmission Control Protocol (TCP)
Secure Socket Layer (SSL)

API An avenue through which new functionality can be added to an iRODS
deployment.

Microservices There are over 350 available, covering a variety of functions.

Composable
Resources

There are two kinds of Composable Resources in iRODS: Coordinating
and Storage. Both are discussed in more detail later in this chapter.

* External plugins that may be installed. The other plugins listed above are installed by default with
the iRODS installation.

Through these interfaces, chiefly composable resources, iRODS users can take advantage of
storage virtualization. iRODS users are provided with a uniform interface that supports the
implementation of consistent data management policies and practices regardless of different
types or numbers of storage. For example, data could be stored on Amazon S3, a Unix file
system, and Web Object Scaler (DataDirect Network’s block storage appliance), yet data
retrieval, sharing, and replication could be handled in the same way regardless of device
differences.

 31

FYI: In iRODS version 4.2, the iRODS team hopes to add two more forms of virtualization:
an indexing framework as virtualization for metadata, and policy virtualization through a
pluggable rule engine. Development toward the pluggable rule engine will target
programming and scripting languages popular in the iRODS community.

Resource Composition
Recall that Composable Resources are plugins that allow you to create rich decision trees for
managing storage and retrieval of data, independent of storage device. There are two types of
Composable Resources: Coordinating and Storage. One way to think about composable
resources is to consider coordinating resources as the branch nodes of your decision tree and
storage resources as the leaves. (See the iRODS Zone figure on p. 8.)

A Coordinating Resource manages the flow of data to and from Storage Resources. In the iCAT
database, they are composed of three parts: (a) the name you give the resource, (b) the
resource type (e.g., Replication), and (c) a plugin-specific context string (e.g., in the case of a
Passthru resource, the read and write weights—see below).

Coordinating Resources

Replication A replication resource keeps its children in sync with identical copies—or
replicas—of data objects.

Round Robin A round robin resource will rotate through its children for each upload to the
system.

Load
Balanced

A load balanced resource attempts to balance storage and retrieval across
children to avoid taxing the servers (e.g., available space, CPU usage, network
traffic).

Compound A compound resource manages two children, in the roles of Cache and Archive.
The cache resource provides a standard UNIX file system interface (i.e., POSIX)
to an archive that may not natively support this type of access.

Random With a multitude of resources, a random resource can be quite successful in
distributing replicated data objects evenly across disparate storage devices.

Passthru The passthru resource allows administrators to prioritize one or more Storage
Resources (and thus storage devices) over others with a set of weighting scores
for reads and writes.

 32

Storage Resources are the logical representations of—or pointers to—physical storage devices.
They are composed of five parts: (a) the name you give the resource, (b) a host name (e.g.,
host.example.org), (c) a directory path—or Vault—to the exact location on the storage
device (e.g., /full/path/to/storage), (d) the resource type (e.g., Amazon S3), and (e) a
plugin-specific context string (e.g., the name of the file containing access credentials or any
persistent information the plugin may require).

Storage Resources

Unix File System This type of storage resource communicates with a storage device
through the standard POSIX interface

S3* Amazon’s cloud storage service

Web Object Scaler
(WOS)*

DataDirect Networks’ block storage appliance

Ceph RADOS* Designed for efficient cacheless access to a Ceph RADOS block storage
cluster

HPSS* IBM’s High Performance Storage System

Universal Mass
Storage

For use with Compound resources, such as tape-based archives

* External plugins that may be installed.

How Composable Resources Communicate
When a request for data is made, each storage resource communicates with its parent
coordinating resource about whether it is able to provide the requested data. The coordinating
resource then decides which particular storage resource is the best option for serving up the
data. This is determined based on the nature of the coordinating resource.

For example, the Replication Coordinating Resource weights a vote from a storage resource
more heavily if it possesses a local copy. The replication coordinating resource is designed to
honor “locality of reference,” and then point the client to the closest data.

Building a Tree
Recall, that we created a unixfilesystem storage resource called newResc for Alice to play
with. Now we’re going to set up automatic replication between newResc and two other
resources, which will be named storageResc1 and storageResc2.

 33

To set up automatic replication, we will need to use the iadmin command, so we will need to
iexit full out of Alice’s account and log in as rods, the administrator account.

 $ iexit full

To log in as rods, we’ll need to throw away Alice’s environment file. To do this, execute:

$ rm ~/.irods/irods_environment.json

Now let’s log in to the rods account:

$ iinit
One or more fields in your iRODS environment file
(irods_environment.json) are missing; please enter them.
Enter the host name (DNS) of the server to connect to:

On the same line, after the colon, enter: learner-vb.example.org

Enter the port number:

On the same line, after the colon, enter: 1247

Enter your irods user name:

On the same line, after the colon, enter: rods

Enter your irods zone:

On the same line, after the colon, enter: tempZone

Those values will be added to your environment file (for use by
other iCommands) if the login succeeds.

Enter your current iRODS password:

Remember we set the rods password as rods.

 34

Now we are ready to create some resources. First, we need to create storageResc1 and
storageResc2, which will also be unixfilesystem resources.

$ iadmin mkresc storageResc1 unixfilesystem learner-
vb.example.org:/var/lib/irods/storageVault1

$ iadmin mkresc storageResc2 unixfilesystem learner-
vb.example.org:/var/lib/irods/storageVault2

Now we will create a replication coordinating resource named replResc.

$ iadmin mkresc replResc replication

Once replResc exists, we need to connect newResc, storageResc1, and storageResc2 as
children of replResc.

$ iadmin addchildtoresc replResc newResc
$ iadmin addchildtoresc replResc storageResc1
$ iadmin addchildtoresc replResc storageResc2

When writing data (usually via an iput), the default replication coordinating resource
populates one of the children resources with the data object, and then replicates the data object
to the remaining children.

Seeing the Tree
The composable resources can always be visualized with the ilsresc command.

$ ilsresc
demoResc
replResc:replication
├── newResc
├── storageResc1
└── storageResc2

 35

Adding New Storage
After we have created the resource tree, we need to tell the replication resource to make sure
all of its children have copies of all of the same files. The rebalance command accomplishes
this process on a replication resource. This may take some time, but can be stopped and
restarted safely, because it is making new replicas in the background.

$ iadmin modresc replResc rebalance

Decommissioning Storage
As our needs change, we may wish to decommission storage resources to use for other
purposes. The following commands will remove storageResc1 from the resource tree so it
can be repurposed.

$ iadmin rmchildfromresc replResc storageResc1
$ itrim -M -r -S storageResc1 /tempZone
$ iadmin rmresc storageResc1

The first command above severs the parent-child relationship between replResc and

storageResc1, making storageResc1 a free-standing storage resource (but still fully
functional and available to store and retrieve data objects). Next, all the replicas on

storageResc1 (-S storageResc1) are recursively (-r) trimmed. This is done in admin
mode (-M) so other users' data objects are trimmed as well. Once there is no data stored on

storageResc1, it can be safely removed as a storage resource under iRODS management. The
disk can be retired with no effect on the running system.

 36

7. DATA DISCOVERY

iRODS employs a metadata catalog—iCAT—that permits users and administrators to access
and contribute descriptive information about their data. This descriptive information—or
metadata—improves search and therefore better enables data discovery. Users can search for
data objects using metadata descriptors as search terms. This allows for browsing and
serendipitous discovery, rather than relegating users to a targeted search for a file name they
may not know.

Both automatic, system-generated metadata and user-created metadata are supported in
iRODS. For example, iRODS can automatically derive the data object’s creation date,
modification date, the last date it was accessed, etc.; and an individual user can contextualize
her data by providing the creator’s name, subject or topic of the data, project name, etc. Once
that metadata is affiliated with any of the data objects, users can search on it.

What is Metadata?
“Metadata is often called data about data or information about information” [1, p. 1]. It
describes the data in some way, such as providing information about the content, context of its
origin or use, quality, condition, and associations to other data and objects in the world [2].

Unlike a hodgepodge of tags, metadata is structured [1, 3]. When metadata is employed, an
applicable scheme is also usually employed that defines descriptive elements and their
ontological associations. For example, some data repositories use Dublin Core, a metadata
scheme developed to describe web-based documents. Dublin Core elements include abstract,
language, license, subject, creator, date, format, and publisher.

“Metadata can describe resources at any level of aggregation. It can describe a collection, a
single resource, or a component part of a larger resource (for example, a photograph in an
article)” [1]. Metadata can be embedded in a data object, or stored in a database and linked to
the object it describes.

Metadata is used to facilitate data discovery—to improve search and retrieval. For example,
suppose you upload a dataset to an online data repository for the purpose of sharing it with
other professionals with similar research interests. If the system you upload it to doesn’t
support metadata, you can’t include vital information about the creator of the dataset, the date
when it was created, its purpose, its subject, any papers or findings associated with the data,
any revisions made to the data, etc. Instead, users wishing to obtain your data will have to

 37

know the file name in order to search for it. If they don’t know what you named it, they won’t
find your data. Someone browsing a variety of datasets and hoping to find one that covers the
same subject as your dataset, or wishing to locate the data based on a paper they read that used
the data, or hoping to find a dataset similar to theirs, but created more recently than theirs,
will be out of luck. However, if you upload the data to a repository that supports metadata—as
iRODS does—then users will be able to browse for or conduct a more targeted search for data
like your own.

Types of Metadata
Metadata scholars often classify metadata into three categories: descriptive, structural, and
administrative [1].

• Descriptive metadata is intended to support data discovery and identification. Elements
may include title, abstract, keywords, etc.

• Structural metadata describes the structure of the data object. For example, elements may
allow metadata authors to describe components of the data object such as its title page,
chapters, errata, how pages are ordered, number of pages, etc.

• Administrative metadata is intended to facilitate management and processing of the data.
Elements could allow for identifying how the data was created, its file type, resolution,
copyright information, licensing information, access privileges, etc.

Cornell University Library provides a nice chart describing these classifications of metadata:
https://www.library.cornell.edu/preservation/tutorial/metadata/table5-1.html. Other
classifications of metadata exist. Gilliland [4, p. 9] includes additional categories of
preservation, use, and technical.

Why Metadata?
In addition to supporting data discovery, metadata also

• organizes and provides contextual and historical information about data objects,
• identifies structural relationships within and between data objects [4],
• identifies semantic relationships or differences between objects,
• “certifies the authenticity and degree of completeness of the content” [4, p. 6],
• distinguishes between different versions of data objects,
• provides legal support in the form of rights management, licensing, and reproduction

information,
• enables users to assess authoritativeness and trustworthiness of the data through

elements created to identify provenance, and

 38

• facilitates interoperability, legacy resource integration, lineage tracking, and
identification of persistent digital identifiers (e.g., Digital Object Identifiers, DOIs) to
support preservation and archiving [1, p.1]

Metadata Generation and Storage
Metadata can be generated manually or automatically. In the case of manual generation, usually
content contributors, librarians, or other information professionals create metadata for data
objects. Manually generated metadata may be richer because manual methods exploit human
understanding and judgment. For example, if a photographer is uploading her photos to a
photo sharing website, she may be better at generating a rich description of the contents of the
photo than a machine. She knows the story behind the photo, what objects within the photo
are important to highlight, and how the photo fits into a larger context. A computer would
have a harder time determining these things. However, manual generation is more time
consuming than autogenerated metadata. It may be more costly if a librarian or other
information professional is kept on staff to handle metadata. If busy data creators are expected
to create metadata, it may be difficult to get them to adopt the practice and follow a standard
scheme. Humans also make errors, such as typos and misspellings.

Automatically generated metadata is derived, extracted, or harvested.

• Derived: The system knows certain things about any file it stores, such as creation date,
file size, etc. This information is derived from the system and applied to the data object
as metadata.

• Extracted: In the case of extracted metadata, an indexing algorithm is used to pull
information contained within the data object such as term frequency, subject/topic,
noun phrases for author or title, etc. For example, if the data object is a journal article,
the algorithm can employ natural language processing techniques to count the terms,
identify co-located terms to suggest a subject or topic, or extract named entities such as
the author’s name.

• Harvested: Metadata is aggregated from other sources, such as a metadata registry (e.g.,
Open Metadata Registry), database (e.g., The OAIster Database), or resource header
(i.e., META tags) [3].

Automatic metadata generation also provides several benefits: speedy ingestion/extraction,
costs incurred may be far less expensive (i.e., the cost of a few hours of a programmer’s time),
and no need to corral people into creating metadata and adhering to a standard. There are also
drawbacks: computers don’t possess human understanding or judgment beyond that written
into the program, algorithms are designed to handle typical cases and may not be well suited to

 39

handle unusual cases, and computers make errors too (e.g., the determination of subject or
topic is at best an estimation that one hopes reflects the truth).

Metadata Schemes
Metadata schemes are “sets of metadata elements designed for a specific purpose” [1, p. 2]. In
addition to specifying metadata elements, schemes may also specify:

• rules for how content is formulated (e.g., how to identify a title),
• rules for content representation (e.g., capitalization rules),
• allowable content values (e.g., a controlled vocabulary used for the values of a subject

or topic element),
• ontological and syntactical requirements for the associations or linkages between

elements (e.g., whether an element is a class, property, data type, etc.), and
• encoding requirements (e.g., Standard Generalized Mark-up Language—SGML,

Extensible Mark-up Language—XML) [1, p. 2].

References
[1] NISO, Understanding Metadata. Bethesda, MD: NISO Press, 2004.

[2] D. Hart and H. Phillips, “Metadata Primer — A ‘How To’ Guide on Metadata
Implementation,” National States Geographic Information Council, 1998. [Online]. Available:
http://www.lic.wisc.edu/metadata/metaprim.htm.

FYI: More resources on metadata:
• Open Archives Initiative (OAI) Protocol for Metadata Harvesting -

http://www.openarchives.org/pmh/
• OAI for Beginners: https://www.oaforum.org/tutorial/
• OAIster Database: http://www.oclc.org/oaister.en.html?urlm=168646
• Open Metadata Registry: http://metadataregistry.org

There are a variety of schemes, such as Dublin Core, the Text Encoding Initiative (TEI),
and Metadata Object Description Schema (MODS). For more extensives lists of schemes,
consult:

• DCC: List of Metadata Standards
http://www.dcc.ac.uk/resources/metadata-standards/list

• Putting Things in Order: a Directory of Metadata Schemas and Related Standards
http://www.jiscdigitalmedia.ac.uk/guide/putting-things-in-order-links-to-
metadata-schemas-and-related-standards/

 40

[3] J. Greenberg, “Metadata and digital information,” in Encyclopedia of Library and Information Science,
M. J. Bates, M. N. Maack, and M. Drake, Eds. New York, NY: Marcel Dekker, Inc., 2009.

[4] J. Gilliland, “Setting the stage,” in Introduction to Metadata, M. Baca, Ed. Los Angeles, CA:
Getty Research Institute, 2008, pp. 1–19.

Using Metadata in iRODS
In iRODS, metadata can be used to describe data objects, collections, resources, and users.
Metadata is stored as strings in the form of attribute-value-unit (AVU) triples, similar to those
found in Resource Description Format (RDF). AVU triples are used for both derived metadata
and user-defined metadata. For example, the photos in Alice’s collection already have some
metadata associated with them—metadata that could be extracted from the data object and
stored as an AVU triple. Let’s look at seal.jpg. The size of the file is 354 KB. Its dimensions
are 1,664 X 1,664 pixels.

Attribute Value Unit

size 354 KB

dimensions 1,664 x 1,664 pixels

User-defined metadata about the contents of seal.jpg might look something like this:

Attribute Value Unit

animal seal

photo_color gray and brown

zoo St. Louis Zoo Missouri

In many metadata schemes, metadata attributes are defined by name-value pairs, similar to
key-value pairs. As you can see from the user-defined example, an attribute-value pair is
possible. Units are not required and can be empty strings. Units can also be used for some
other descriptor, such as Missouri above.

The imeta Command
In iRODS, the main command line utility for handling metadata is imeta. It is used to
determine, modify, list, search by, and delete iRODS metadata. Let’s use imeta with Alice’s
account, because she needs to add metadata to her photos. So iexit full from the rods
account, delete the rods environment file, and iinit for Alice. Do you remember how to do

 41

this on your own? Give it a try. If you get stuck, take a look at Logging into Alice in Chapter
5: Using iCommands.

Let’s add an AVU to the collection training_jpgs that we created earlier with a recursive
put. To create metadata for this collection we’ll use the add subcommand and the -C option,
which signifies that we are adding metadata to a collection. (The -d option is used for adding
metadata to a data object, -R for resources, and -u for users.)

$ imeta add -C training_jpgs collection_type jpg_photos

Order matters: Attributes are first, values second, and units third. So in the above example, the
attribute we’re adding is collection_type and the value we’re adding is jpg_photos. We
are not adding a unit.

Now, let’s list the metadata using the ls subcommand for training_jpgs to see if
collection_type and jpg_photos were added correctly.

$ imeta ls -C training_jpgs
AVUs defined for collection training_jpgs:
attribute: collection_type
value: jpg_photos
units:

Let’s add the AVUs to individual data objects; but first, let’s change our working collection to
training_jpgs.

$ icd training_jpgs

Now, let’s add the metadata. The first two AVUs will not have units, but the third will.
Remember -d is for adding metadata to a data object.

$ imeta add -d seal.jpg subject wildlife
$ imeta add -d seal.jpg author AJones
$ imeta add -d seal.jpg size 354 kilobytes

To make sure these were added successfully, let’s list the metadata for seal.jpg.

$ imeta ls -d seal.jpg
AVUs defined for dataObj seal.jpg:
attribute: subject

 42

value: wildlife
units:
——
attribute: author
value: AJones
units:
——
attribute: size
value: 354
units: kilobytes

This confirms that the metadata has been added.

Recall that imeta also allows users to search on metadata. You may place conditions on
attributes and values by using a comparison operator. For example, using the qu subcommand
(meaning query), let’s search for an object that has an author of AJones.

$ imeta qu -d author = 'AJones'
collection: /tempZone/home/alice/training_jpgs
dataObj: seal.jpg

The data object that has AJones listed as the author is seal.jpg in the training_jpgs
collection.

Let’s add metadata to another photo:

$ imeta add -d grapes.jpg subject food
$ imeta add -d grapes.jpg author AJones
$ imeta add -d grapes.jpg color_bw color

You may also search using wildcards. In iRODS, the percent symbol (%) is used as the wildcard
character. Let’s try this out. We’ll search for data objects that contain any value for the
attribute author, using the qu subcommand and the % wildcard.

$ imeta qu -d author like '%'

collection: /tempZone/home/alice/training_jpgs
dataObj: grapes.jpg

collection: /tempZone/home/alice/training_jpgs
dataObj: seal.jpg

 43

From this search, two data objects were returned: grapes.jpg and seal.jpg. Both have an
author attribute.

We can also search for collections based on their metadata. Let’s search for collections that
have an attribute of collection_type. Remember, for this we need to use the -C option.

$ imeta qu -C collection_type like '%'
collection: /tempZone/home/alice/training_jpgs

To modify a data object’s AVU with imeta, we must specify the object’s name, the attribute
name, the attribute’s associated value, and the desired new value. To change the author
attribute from AJones to BSmith for grapes.jpg, we’ll use the mod subcommand and the
v: prefix for changing the value of author.

$ imeta mod -d grapes.jpg author AJones v:BSmith

To ensure AJones was changed to BSmith, let’s list the metadata for grapes.jpg.

$ imeta ls -d grapes.jpg
AVUs defined for dataObj grapes.jpg:
attribute: subject
value: food
units:

attribute: color_bw
value: color
units:

attribute: author
value: BSmith
units:

 44

8. WORKFLOW AUTOMATION

Without a tool like iRODS, processing large data sets must be done manually and can be
tedious, complex, and time-consuming. With iRODS, you can save time and energy by creating
powerful, customized workflows to process and perform computations on data objects. For
example, when iRODS receives new data, the rule engine could be prompted to perform
computations on the data, trigger actions within a High Performance Computing (HPC)
system, or extract metadata from the data.

Rules
In iRODS, workflow automation is achieved through rules—scripts written in the iRODS rule
language. The iRODS rule language contains its own native syntax, but provides a C-like
structure which includes the basic capabilities of a procedural programming language:
comments, native types, numeric and string operations, and function definitions. Advanced
features such as regular expressions, list operations, dictionaries, and Language Integrated
General Query (LIGQ) are supported. A hypothetical rule, HelloWorld, is shown below. This
rule would print the text Hello World to the screen.

HelloWorld {
 writeLine("stdout", "Hello World");
}

Rules are executed by the iRODS rule engine—a built-in interpreter for the iRODS rule
language. They may be triggered by

• the irule command,
• Policy Enforcement Points (PEPs), or
• invoking the delay directive in the case of Delayed Execution Rules.

The irule Command
A user may manually execute a rule that operates on data that she has access to by using the
irule command; for example, to verify the checksums of data of a certain age.

Policy Enforcement Points
Policy Enforcement Points are special types of rules that invoke an interpreted rule script only
when certain criteria are met within the iRODS Agent (i.e., an instance of a process that
handles API requests), such as when a data object is successfully placed within iRODS
management. A PEP may launch rules that reside in the default rule base, known as core.re,

 45

and are referenced by the name of the PEP, such as acPostProcForPut, which we will cover
later in this section.

The delay Directive
Delayed Execution Rules are those rules that invoke the delay keyword (i.e., reserved word),
which places the rule script in the delayed execution queue rather than immediately executing
the rule. Rules may be executed on a delay manually by using the delay directive with the
irule command to place the rule in a periodic queue that is monitored by the iRODS rule
server.

Microservices
Rules may be extended by calling microservices. A microservice is the invocation of a plugin
containing a C++ function which performs an advanced operation, such as accessing external
libraries that are not available in the rule language like curl (used to access an HTTP resource),
or performing operations that are computationally intensive such as image processing.
Examples of microservices may include metadata extraction, image analysis, or the validation
and verification of data at rest.

A hypothetical rule HelloWorld2 that invokes a hypothetical microservice
(msihello_world) is shown below:

HelloWorld2 {
 msihello_world(*msg);
}
INPUT *msg = "my message"
OUTPUT ruleExecOut

Microservices come in two forms:

• a packaged form such as an rpm (i.e., RedHat Linux’s package management sytem), or
• a raw, shared object which may have been custom built.

The process for installing microservices and the location of the install depend on the type of
microservice and the type of iRODS installation.

• Packaged microservice plugins must be installed by a user with administrative privileges,
via a package management system. Packaged microservice plugins may only be installed
in a binary installation of iRODS, and may not be installed in a run-in-place installation
of iRODS.

 46

• Custom-built microservice plugins must be copied to
$IRODS_HOME/plugins/microservices. If iRODS was installed via a run-in-place
installation, $IRODS_HOME (a command line variable signifying the installation
location) will be wherever the code was built. For a packaged installation of iRODS,
$IRODS_HOME will be /var/lib/irods/.

Once a microservice is installed it will be immediately available for use by the next client
connection to iRODS.

The Example Rule: Harvesting and Applying Metadata
The example rule: training_acPostProcForPut.re was installed with the training-
example-1.0.deb package. It harvests and applies metadata to any data object at rest, owned
by any user. This rule could help Alice save time by automating metadata annotation for her.
We will use this rule to explore some of the basic components of the iRODS rule language.

An implementation of the rule we are going to look at (in this case, a PEP named
acPostProcForPut) already exists in the rule base (core.re); however we need the PEP to
perform different behavior, so new behavior has been written which will override the existing
acPostProcForPut with our example rule. This PEP is triggered after a data object is at rest
(i.e., when all the bits have been uploaded and the data object is registered in iRODS), and this
suits our purposes because after StockPhotoSite (SPS) data objects have been uploaded to
iRODS, we will want the metadata to be harvested and applied to data objects for later
discovery by SPS users.

There are two ways to insert the example PEP’s behavior into iRODS.

• The file /etc/irods/core.re could be edited with the new behavior (but this is
inadvisable: core.re may change from release to release, so it might be overwritten
during an upgrade), or

• We can write the rule into an accessory rule file (i.e., a file that contains a rule or rules
but is not core.re) in /etc/irods and then tell iRODS to read this file by editing
the re_rulebase_set section of the /etc/irods/server_config.json file.
When we do this, the rule in our accessory rule file, which we’ll call
training_acPostProcForPut.re, will take precedence over the existing PEP in
core.re.

 47

Let’s try this out. First, let’s open /etc/irods/server_config.json in an editor.

$ sudo nano /etc/irods/server_config.json

Then edit the /etc/irods/server_config.json file to include
training_acPostProcForPut.re before the default core.re:

"re_rulebase_set": [
{
 "filename": "training_acPostProcForPut"
},
{
 "filename": "core"
}
]

Save the file and the rule will be activated!

Now let’s see the rule in action. First, let’s return to our home collection:

$ icd

FYI: Typing icd without any arguments returns you to your home collection.

Now let’s upload a file to our home collection:

$ iput ~/training_jpgs/seal.jpg

Now let’s look at the metadata that has been applied to seal.jpg:

$ imeta ls -d seal.jpg
AVUs defined for dataObj seal.jpg:
attribute: Format
value: Joint Photographic Experts Group JFIF format
units:

attribute: ImageDepth
value: 8
units:

attribute: Height
value: 1664

 48

units:

attribute: CompressionType
value: JPEG
units:

attribute: Width
value: 1664
units:

attribute: Colorspace
value: sRGB
units:

acPostProcForPut
In training_acPostProcForPut.re several of the programming concepts introduced
earlier are used. Rather than giving the example rule a unique name, the name of the existing
PEP was used because the example rule will override the behavior of acPostProcForPut.

Starting at the top with the rule name, the scope block is opened for the rule itself.

acPostProcForPut {

First, any data objects that do not have an image type extension will be filtered out. This filter
is accomplished with an if statement that includes a test of a string value. This string value is
acquired from a session variable (i.e., global variables made available by the rule engine that
contain values about the data object in flight). In this instance $filePath is the physical path
on disk of this instance of the data object at rest. If one wished to operate on the logical path in
iRODS, $objPath would be required.

if($filePath like "*.jpg" || $filePath like "*.jpeg" ||
 $filePath like "*.bmp" || $filePath like "*.tif" ||
 $filePath like "*.tiff" || $filePath like "*.rif" ||
 $filePath like "*.gif" || $filePath like "*.png" ||
 $filePath like "*.svg" | $filePath like "*.xpm") {

FYI: You have learned that iRODS variables are prefaced with an asterisk (*) yet the ones
above are prefaced with a dollar sign ($). The reason why we are now using $variable is
because we have switched from using user-defined variables (*variable) to system-
defined session variables.

 49

Once it has been decided to operate on a data object, a custom microservice must be called that
harvests the image metadata and encodes it into a string for later usage. The variable
$filePath is used again because the microservice uses external libraries for extracting the
metadata, and these libraries expect to read a file from disk.

 msiget_image_meta($filePath, *meta);

The metadata-encoded string is passed to another system microservice which repackages it into
an internal data structure used by iRODS for the application of metadata.

 msiString2KeyValPair(*meta, *meta_kvp);

And finally we will call a system microservice to associate the given metadata data structure to
the data object that just harvested the metadata.

 msiAssociateKeyValuePairsToObj(*meta_kvp, $objPath, "-
d");

Once this is done, the scope block is closed on the if statement used to filter out image files,
and then the scope block for the rule itself is closed.

 } # if
} # acPostProcForPut

Should this rule fail for any reason, the acPostProcForPut in the core.re file that was
overridden will be subsequently triggered in an attempt to properly handle this event.

The Final Product

acPostProcForPut {
 if ($filePath like "*.jpg" || $filePath like "*.jpeg" || $filePath
like "*.bmp" ||
 $filePath like "*.tif" || $filePath like "*.tiff" || $filePath
like "*.rif" ||
 $filePath like "*.gif" || $filePath like "*.png" || $filePath
like "*.svg" ||
 $filePath like "*.xpm") {
 msiget_image_meta($filePath, *meta);
 msiString2KeyValPair(*meta, *meta_kvp);
 msiAssociateKeyValuePairsToObj(*meta_kvp, $objPath, "-d");
 } # if
} # acPostProcForPut

 50

The Rule Language
In order to dig into workflow automation, you will need to understand the fundamentals of the
rule language and its syntax.

Syntax
As with any other programming language, rule syntax varies with the constructs (e.g.,
parameters, flow control, etc.) you wish to add to the rule.

The basic syntax of a rule:

ruleName { actions }

An example of this type of syntax:

HelloWorld { writeLine("stdout", "Hello World"); }

The syntax of a rule with parameters:

ruleName(parameter, …, parameter){ actions }

An example of a rule with parameters:

HelloWorld(*name){
 writeLine("stdout", "Hello *name");
}

Syntax for rules that contain parameters and control flow keywords (e.g., if, foreach):

ruleName(parameter, …, parameter) {
 control-flow-keyword(expression) { actions }
}

An example of this type of syntax:

HelloWorld(*name){
 if(*name=="Jason") {
 writeLine("stdout", "Hello *name");
 }
 else { writeLine("stdout", "Hello World"); }
}

 51

Comments
A hash sign (#) is used for annotating code with comments. Comments may be placed on their
own line or on the same line as code, as shown in this example:

*A=1; #here are my comments
	

Multiline comments are not supported.

Naming Rules (and Functions)
Rule names (and function names) must consist of letters and numbers, and must begin with a
letter. No whitespaces should appear in the rule name (or function name). Underscores,
however, may be used. The first two examples below show a valid rule (or function) name. The
final two are not valid.

Valid: RuleName

Valid: rule_name

Invalid: Rule Name

Invalid: 2rulename

Variables
Variable names start with an asterisk (*). A variable may be assigned a value using the equal
sign (=) as the assignment operator. The syntax for variable assignment is:

*variableName=value;

Hypothetical examples:

*A=10;

*B=errorcode(msihello_world());

*C="this is a string";

 52

Boolean Literals and Operators
Boolean literals and operators that are used in the rule language include:

true # true
false # false
! # not
&& # and
|| # or

	

Numeric Literals
Numeric literals include integers and doubles (i.e., double-sized floating points):

1 # integer
1.2 # double

In the iRODS rule language, an integer can be converted to a double. However, a double can be
converted to an integer only if the fraction is zero. The rule engine provides two functions that
can be used to truncate the fraction of a floating point: floor()for rounding down and
ceiling() for rounding up. Integers and doubles can be converted to Booleans using the
bool() function which converts 1 to true and 0 to false.

Arithmetic Operators
Ordered by preference, arithmetic operators in the rule language include:

- # negation
^ # power
* # multiplication
/ # division
% # modulus
- # subtraction
+ # addition
> # greater than
< # less than
>= # greater than or equal to
<= # less than or equal to

 53

Arithmetic Functions
Arithmetic functions include:

exp(num) # returns the exponent
log(num) # returns the logarithm
abs(num) # returns the absolute value
floor(num) # rounds the number down
celing(num) # rounds the number up
average(num,…) # returns the average
max(num,…) # returns the maximum value
min(num,…) # returns the minimum value

Strings
Strings are data types used to represent text, e.g., "this is a string". All strings must be
quoted; double quotes or single quotes are accepted.

'this is also a string'

Escape Characters Used in String Processing
In the rule language, a backslash (\) is used to escape single quotes ('), double quotes ("),
dollar signs ($), and asterisks (*). Other escape sequences include

\n # to insert a new line
\r # to insert a carriage return
\t # to insert a tab

If you need to quote a string that is already double quoted, you must use a backslash to escape
the inside quotes. For example, suppose you wanted to write a string to Standard Output
(stdout) that had double quotes:

Alice said the photo was "abstract"

You would need to use a backslash for the quotes surrounding the word abstract.

writeLine("stdout", "Alice said the photo was \"abstract\"";)

Single quotes inside of double quotes do not need to be escaped with a backslash.

writeLine("stdout", "Alice said the photo was 'abstract'";)

 54

Converting to and from a String
Data types such as BOOLEAN, INTEGER, DOUBLE, and DATETIME may be converted to a
string using the str() function. For example, str(357) would convert the integer 357 to a
string.

The DATETIME type may also be converted to a string by using the timestrf() function.
This function takes a parameter that allows you to specify the format of the datetime string
that results. The format parameter uses the same directives as the standard C library (see
http://www.cplusplus.com/reference/ctime/strftime/). If the parameter is not set, then the
string will use the default format of

%b %d %Y %H:%M:%S

where %b is the full month name (e.g., August), %d is the day of the month (e.g., 15), %Y is the
year (e.g., 2015), %H is the hour in 24 hour format (e.g., 14), %M is the minute (e.g., 59), and
%S is the second from 00-61 (e.g., 56). Here is an example of timestrf:

timestrf(*getTime, "The current time is %I:%M %p.")

If the current time is obtained via the function time() and the value of 2:25pm is
stored in the hypothetical *getTime variable, this will return "The current time
is 02:15 PM." The %I is for the hour in 12 hour format and the %p is AM or PM
designation.

Strings can also be converted to BOOLEAN (bool()), INTEGER (int()), DOUBLE
(double()), or DATETIME (datetimef()).

String Operations
Operators exist in the rule language for infix concatenation ("++"), wildcard expression
matching (like), and regular expression matching (like regex). Below are some examples:

Concatenation using ++ :

"This " ++ " is " ++ " a string."

The output would be: This is a string.

 55

Wildcard expression matching using like:

"This is a string." like "This is*"

This would return true.

Regular expression matching using like regex:

"This is a string." like regex "This.*string[.]"

This would return true.

String Functions
In the rule language, functions exist for

• extracting a part of a string (substr()),
• determining the character length of a string (strlen()),
• splitting a string into separate strings (split()),
• trimming the string from the left side of the string (triml()), and
• trimming the string from the right side of the string (trimr()).

Extracting a substring using substr(string, starting_point,
number_of_characters_to_trim):

substr("This is a string.", 5, 2))

Starting at the 5th character—in this case it is whitespace, this extracts the next two
characters from the string: is

Determining character length using strlen():

strlen("This is a string")

There are 17 characters in this string, including whitespace. So this would return 17.

Splitting a string using split(string, split_point):

split("This is a string.", " ")

This will split the string at each space, resulting in the following strings: This, is, a,
and string.. Notice how the last string (string.) includes the period. If you wanted
this removed, you would need to trim it.

 56

Trimming a string from the left using triml(string, leftmost_trim_point):

triml("This is a string.", " ")

This will shave off the first whitespace from the left and all characters after the
whitespace, returning This

Trimming a string from the right using trimr(string, rightmost_trim_point):

trimr("This is a string.", "i")

This will shave off the rightmost i character and all characters to the right of the i
character, returning This is a str

Capturing and Generating Errors
Errors can be captured from a microservice by using the errorcode()and the errormsg()
functions. These functions can help you prevent a rule from failing when a microservice fails.
To use errorcode(), place the name of the microservice in the parentheses.

errorcode(microservice_name)

An error code—defined within the microservice by the programmer who authored the
microservice—will be returned to indicate if the microservice failed. A string error message,
similarly defined in the microservice, can also be returned by using the errormsg() function.
The syntax is similar, but after the name of the microservice, you will need to reference the
variable in the microservice that contains the actual error message.

errormsg(microservice_name, *message_variable)

The errormsg() function captures the error message and avoids default logging of the error
message.

To generate error codes and messages when writing a rule, use fail() and failmsg(). To
use fail(), insert the numeric error code in the parentheses.

fail(-1)

To use failmsg(),insert an error code followed by an error message.

failmsg(-1, "This is an error message")

 57

As with any function, you can also use variables in the parentheses for your codes and
messages.

Dictionaries
A dictionary is essentially a look-up table that contains key-value pairs. The values (or
elements) in a dictionary do not have to be accessed through a sequential numeric index,
unlike an array. For example, you could have a dictionary for staff and office numbers. So the
value “Alice Jones” could be associated with her office number 20. In a dictionary, offices 1 –
19 do not have to be present. To define a key-value pair, you can use this syntax:

*office_number.AJones = "20"

The value (20) must be a string, and in this case that is sufficient because you wouldn’t need
to perform a calculation on the office number.

The if Statement
A logical if statement is used is to execute some action IF a certain condition(s) applies.
Logical if syntax is:

if (expression) then { actions }
else { actions }

Below is a hypothetical example of an if statement:

if (*A==1) { *B = "Monday"; }
else { *B = "Tuesday"; }

else if may be used for more than 2 possible actions.

if (*A==1) { *B = "Monday"; }
else if (*A==2) { *B = "Tuesday"; }
else { *B = "Wednesday"; }

Iteration with foreach
With a foreach statement, you can take an action on each element in a list or dictionary. The
syntax for using foreach with a list or dictionary is

foreach(*element in list_or_dictionary) { actions }

 58

An example of using foreach with a list:

foreach(*photo in list('seal.jpg', 'grapes.jpg', 'eggs.jpg') {
 writeLine("stdout", *photo);
}

An example of using foreach with a dictionary:

*OfficeNumbers.Alice = "20";
*OfficeNumbers.Laura = "30";

foreach (*StaffName in *OfficeNumbers) {
 writeLine("stdout", "The office number for *StaffName is
" ++ *OfficeNumbers.*StaffName);
 }

 59

APPENDIX A: iRODS RESOURCES

irods.org
http://irods.org/

iRODS download page
http://irods.org/download/

iRODS github site
https://github.com/irods

iRODS documentation
http://irods.org/documentation/
http://irods.readthedocs.org/

iRODS blog
http://irods.org/controlyourdata/

iRODS articles
http://irods.org/documentation/articles/

iRODS LinkedIn Group
https://www.linkedin.com/groups?gid=8162245

iRODS Twitter
https://twitter.com/irods

 60

APPENDIX B: GLOSSARY OF iRODS TERMS

Agent
An Agent is an instance of a server process that handles application programming interface
(API) requests. Each time a client connects to an iRODS server, the server spawns an agent
and a network connection is established between the agent and the requesting client.

Collection
A Collection is the logical representations of physical containers, similar to directories or
folders that are found in a file system. A Collection can have sub-collections, and hence
provides a hierarchical structure.

Composable Resources
Composable Resources are plugins that allow you to manage storage and retrieval of data on
storage devices. There are two types of composable resources: Coordinating and Storage.

Control Plane
The control plane receives status updates from all servers, and issues commands to servers to
pause, resume, shut down, etc. For more information about the control plane, see Jason
Coposky’s Developer Update from March 2015: http://irods.org/post/irods-development-
update-march-2015

Coordinating Resource
A Coordinating Resource is a type of Composable Resource that actively makes decisions about
which physical storage device will receive or serve up a Data Object.

Data Object
A Data Object is the logical representation of data that maps to one or more physical instances
of the data at rest in Storage Resources.

Delayed Execution Rule
A Delayed Execution Rule is a rule that invokes the delay keyword (i.e., a reserved word),
which places the rule script in the delayed execution queue rather than immediately executing
the rule.

Grid
The hardware, operating system, and other machinery that supports a Zone.

 61

iCAT
The iCAT, or iRODS Metadata Catalog, is a database (e.g. PostgreSQL, MySQL, Oracle) that
stores metadata about the Data Objects in an iRODS Zone. There is one iCAT per iRODS
Zone.

iCAT Enabled Server (IES)
A Resource Server within an iRODS Zone that holds the connection to (i.e., communicates
with) the iCAT.

iCommands
iCommands are Unix utilities that give users a command-line interface to operate on data in
iRODS.

Microservice
A microservice is a small, well-defined procedure that performs a server-side task and is either
compiled into the iRODS server code or packaged independently as a shared object. Rules
invoke Microservices to implement data management policies.

Policy Enforcement Point (PEP)
A hook within the code of the iRODS Agent that invokes an interpreted rule script via the
iRODS rule engine for the purpose of influencing a data management operation.

Replica
An identical, physical copy of a Data Object.

Resource Server
A server within an iRODS Zone that does not hold the connection to the iCAT, but is
employed for distributed data management.

Storage Resource
A Storage Resource is the logical representation of—or pointer to—a physical storage device.
They include the hostname and the directory path to the location of the Data Object on the
storage device.

 62

Vault
The physical location of Data Objects on a storage device. For example, Vaults can be located
on a Unix file system, a Ceph cluster, or on Amazon S3.

Workflow
Some form of computation or action performed on Data Objects.

Zone
An iRODS deployment, specifically the logical aspect of iRODS serviced by the iRODS Remote
Procedure Call (RPC) application programming interface (API).

Zone Report
A snapshot of an iRODS Zone, retrieved by using the izonereport iCommand.

 63

APPENDIX C: INSTALLATION PROMPTS

Prompt Default Value Your Value

iRODS service account name irods

iRODS service group name irods

iRODS server's zone tempZone

iRODS server's port 1247

iRODS port range (begin) 20000

iRODS port range (end) 20199

iRODS Vault directory /var/lib/irods/iRODS/Vault

iRODS server's zone_key TEMPORARY_zone_key

iRODS server's
negotiation_key

TEMPORARY_32byte_negotiation
_key

Control Plane port 1248

Control Plane key TEMPORARY__32byte_ctrl_plane
_key

Schema Validation Base URI
(or 'off')

https://schemas.irods.org/
configuration

iRODS server's
administrator username

rods

iRODS server's
administrator password

Database server's hostname
or IP address:

Database server's port 5432

Database name ICAT

Database username irods

Database password

 64

