iRODS in RADII: Resource Aware Datacentric Collaboration Infrastructure

Tahsin Kabir (<u>tahsin@cs.unc.edu</u>) Research Assistant at RENCI

iRODS in RADII

- Brief about RADII project
- Why are we using iRODS in RADII?
- Demo of RADII data management policy to iRODS rule and their execution
- Resource aware experiments on iRODS

RADII

- RADII: Resource Aware Data-centric Collaboration Infrastructure
 - Middleware to facilitate data-driven collaborations for domain researchers and a *commodity* to the science community
 - PI: I.Baldin, Co-PIs: C. Castillo, C. Schmitt, A.Rajasekar
 - Students Involved: Tahsin Kabir, Fan Jiang
 - Reducing the large gap between procuring the required infrastructure and manage data transfers efficiently
 - Integration of data-grid (iRODS) and NIaaS (ORCA) technologies on ExoGENI infrastructure
 - Novel tools to *map* data processes, computations, storage and organization entities onto infrastructure with intuitive GUI based application
 - Novel data-centric resource management mechanisms for provisioning and de-provisioning resources <u>dynamically</u> through out the lifecycle of collaborations

RADII

Figure: High level diagram of RADII's capabilities

Why iRODS in RADII?

- RADII Policies to iRODS Rule Language
 - Easy to map policies to iRODS Dynamic PEP
 - Reduced complexity for RADII
- Distributed and Elastic Data Grid
- Resource Monitoring Framework
- Geo-aware Resource hierarchy creation via composable iRODS
- Metadata tagging

RADII Data Management Policy

```
"tag": "red",
"create": [
 { "user": "rods", "site": "SL" },
 { "user": "bob", "site": "UNC"}
],
"retrieve": [
 { "user": "adam" }
],
"update": [
 { "user": "bob" },
 { "user": "rods" }
],
"delete": [
 { "user": "rods" }
```

- A file created with the tag **red**
 - if the user is *rods*, store it in site SL
 - if the user is *bob*, store it in site UNC
- Files tagged **red** can only be
 - read by user *adam*
 - updated by user *bob* and *rods*
 - deleted by user *rods*

RADII Data Management Policy to iRODS Rule

. . .

```
"tag": "red",
"create": [
 { "user": "rods",
    "site": "SL" },
  { "user": "bob",
  "site": "UNC"}
"retrieve": [
 { "user": "adam"}
"update": [
  { "user": "bob" },
  { "user": "rods" }
"delete": [
 { "user": "rods" }
```

acRADIIGetOpType(*op_type){
 *op_type = "null";
 msiGetValByKey(\$KVPairs,"mode_kw",*mode_kw);
 msiGetValByKey(\$KVPairs,"flags_kw",*flags_kw);
 if("*mode_kw" like "384" && "*flags_kw" like "578"){
 *op_type = "update";
 } else if ("*mode_kw" like "384" && "*flags_kw" like "0") {
 *op_type = "retrieve";
 }
}

.

. . .

acRADIIRetrieveUpdate {
 *meta = "null";
 acRADIIGetMeta(*meta);
 acRADIIGetOpType(*op_type);
 if(*op_type like "retrieve") {
 acRADIIRetrieve(*meta,*userNameClient);
 } else if (*op_type like "update") {
 acRADIIUpdate(*meta,*userNameClient);
 }
}

Demo

Demo of rule injection and enforcement

Resource Awareness

- iRODS RMS provides node specific resource utilization
- End-to-End parameters such as throughput, current network flow is important for judicious placement, replication and retrieval decision
- Created end-to-end Throughput, Latency and instantaneous transfer RX/TX per second monitoring.
- The best server selection based on end-to-end utility value:

 $Util_{AB} = Throughput_{AB} + CPU_B + Sto_B + NIn_B$

 $+NOut_B + TX_{AB} + RX_{AB} + Latency_{AB}$

Experiment Topology

Figure: Experimental Setup Topology

Experimental Setup

- The sites were : UCD, SL, UH, FIU
- Parallel and multithreaded file ingestion from each of the clients
- Total 400GB file ingestion from each client
- One copy at the edge node and another replication based on utile value.

Title	File Size Range	Weight on Number of Files
Very Small	1KB - 5MB	40
Small	5MB - 50MB	40
Medium	50MB - 500MB	20
Large	500MB - 5GB	20

 Table 1: File Size Distribution Table

Edge Put and Remote Replication Time

Figure: Edge Node Put Time

Figure: Remote Replication Time

Combined Store Response Time

Read Response Time

Other Graphs: CPU for Store Exp.

Figure: Average CPU usage on each of the sites for store experiment

Other Graphs: CPU for Read Exp.

Figure: Average CPU usage on each of the sites for read experiment

Other Graphs: Mem and Runq

Figure: Memory util. over time for each site

Figure: Runq util over time for each site

Other Graphs: Storage and CPU

Figure: Memory util. over time for each site

Figure: CPU util. over time for each site