
The Development of a Native Cross-Platform
iRODS GUI Client

Ilari Korhonen

June 11, 2015



Introduction

I Ilari Korhonen, working as a Systems Designer at the IT Services
department, University of Jyväskylä, Finland

I Doing research IT infrastructure development at JYU

I JYU is a mid-sized university with about 15,000 students in 7
faculties and has a strong focus on research as well as education



iRODS at JYU

I My mission: a campus-wide iRODS data grid infrastructure
for research data storage applicable to all fields of science

I Vast amount of requirements from different fields of science
as well as legislation

I Physics, chemistry, biology, etc. produce large amounts of
data in many different formats – both open and proprietary

I Social sciences, biology, psychology, etc. deal with sensitive
data subject to legislation

I In almost all of the use cases proper metadata management is
crucial



Research Data at JYU



Research Data at JYU



Research Data at JYU



Research Data at JYU



Research Data at JYU



Requirements for iRODS Deployment

I Secure data and metadata transfer

I Integration with external authentication (LDAP/Kerberos)

I Metadata extraction and management of some of the most
crucial data formats in use

I Audit Trails for management of sensitive data

I High Availability and Scalability (no less than our EMC NAS)

I Ease of use – even for users with less techical skillsets



iRODS Clients

I iRODS has many different (kinds of) client applications

I The reference implementation being the iRODS icommands
command line tools package

I The iDrop project at DICE has implemented a Java client and
a web interface built on their Jargon Java iRODS library

I DICE has also lately implemented a WebDAV interface on top
of Jargon to replace Davis – which is no longer supported.

I Also other projects have existed but are no longer being
supported or even compatible with the current iRODS version



Project Kanki - Why?

I Goal: To build a fully native, cross-platform iRODS client
application with a rich graphical user interface

I Kanki – e.g. a rods in Finnish, cold or frost in Japanese

I We really needed something to integrate seamlessly with
iRODS 4.x to fully leverage the new modular architecture

I The ability to be able to use the iRODS 4.x auth and network
transport modules out-of-the-box is great!

I Also, we did seem to have some special requirements for
metadata management – for which we can now build custom
metadata editors



The Benefits of a Desktop Client App

I Web applications still have a lot of limitations

I The numerous incompatiblities between different browsers –
especially with the certain unmentionable one

I For example dealing with large iRODS data objects can be
problematic because of memory issues



Why Go Native?

I Many reasons, one above all else – performance

I Also, seamless intergration with iRODS 4.x features as well as
the features of upcoming releases!

I E.g. Kerberos authentication and SSL transports work great



What About Portability?

I With native development portability issues are a reality

I This can be mitigated by using only std C++ and portable
frameworks instead of OS interfaces

I A single codebase is ideal – which can be achieved

I The Qt framework has proven to be an exellent choice for
cross-platform development



About Qt

I Originally developed by Haavard Nord and Eirik Chambe-Eng
the two of which founded TrollTech, Inc. in Norway

I Stands for Q Toolkit – apparently Q was considered to be a
pretty letter in Haavard Nord’s emacs font

I May 20, 1995 Qt 0.90 was uploaded to sunsite.unc.edu.

I Today Qt is actually Finnish owned and is the leading
platform for cross-platfrom GUI development

I Many mobile and embedded platforms are supported as well



Some Points About Qt Development

I Qt heavily leverages threads so code should be thread-safe

I A thread safe calling convention called signal-slot interface

I To make the call interface easier, it is supported by extensive
precompiler macros

I Qt 4 introduced a MVC (Model-View-Controller) architecture

I Abstract models can be extended to build custom models and
associated with many different kinds of view objects (which
Qt has many of)

I Also there is a UI compiler for building UI objects from XML



Project Kanki - So Far

I An object-oriented interface for iRODS

I Has all of the basic iRODS features implemented in the GUI

I A metadata editor with schema management with namespace
separation and attribute management

I Compiles against iRODS 4.0 on both Linux and OS X (will do
it with iRODS 4.1 next week)

I Windows support possible when it will be added to iRODS 4.x

I Still work in progress but soon to be released as beta

I A source release has been discussed and is probably out by the
end of summer.



Object-Oriented C++ Interface for iRODS

Kanki::RodsGenQuery metaQuery(this->conn);

int status = 0;

if (this->objDatum->objType == DATA_OBJ_T) {

metaQuery.addQueryAttribute(COL_META_DATA_ATTR_NAME);

metaQuery.addQueryAttribute(COL_META_DATA_ATTR_VALUE);

metaQuery.addQueryAttribute(COL_META_DATA_ATTR_UNITS);

}

else if (this->objDatum->objType == COLL_OBJ_T) {

metaQuery.addQueryAttribute(COL_META_COLL_ATTR_NAME);

metaQuery.addQueryAttribute(COL_META_COLL_ATTR_VALUE);

metaQuery.addQueryAttribute(COL_META_COLL_ATTR_UNITS);

}

// add a query condition for object name

metaQuery.addQueryCondition(this->objDatum->objType == DATA_OBJ_T ? COL_DATA_NAME : COL_COLL_NAME,

Kanki::RodsGenQuery::isEqual, this->objDatum->objName);

// if we are querying a data object also specify collection path

if (this->objDatum->objType == DATA_OBJ_T)

metaQuery.addQueryCondition(COL_COLL_NAME, Kanki::RodsGenQuery::isEqual, this->objDatum->collPath);

// execute genquery and get status code from iRODS API

if ((status = metaQuery.execute()) < 0) {

// error reporting code

}

else {

std::vector<std::string> names = metaQuery.getResultSet(0);

std::vector<std::string> values = metaQuery.getResultSet(1);

std::vector<std::string> units = metaQuery.getResultSet(2);

}



To Do – Features To Be Added

I Full drag & drop integration to and from the desktop and
inside the iRODS grid browser window

I A search interface with arbitrary criteria based on iRODS
object attributes as well as AVU metadata

I Metadata validation against the configured schema

I Custom editors for metadata attributes

I A Rule Exec interface for submitting user rules to iRODS

I iRODS Access Control List Editor

I Synchronization of local directories to iRODS collections

I If you have suggestions?



Demo and Questions?

Contact Information:

I Ilari Korhonen, University of Jyväskylä (IT Services), Finland

I email: ilari.korhonen@jyu.fi

Thank you for your interest!


