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Introduction

I Ilari Korhonen, working as a Systems Designer at the IT Services
department, University of Jyväskylä, Finland

I Doing research IT infrastructure development at JYU

I JYU is a mid-sized university with about 15,000 students in 7
faculties and has a strong focus on research as well as education



iRODS at JYU

I My mission: a campus-wide iRODS data grid infrastructure
for research data storage applicable to all fields of science

I Vast amount of requirements from different fields of science
as well as legislation

I Physics, chemistry, biology, etc. produce large amounts of
data in many different formats – both open and proprietary

I Social sciences, biology, psychology, etc. deal with sensitive
data subject to legislation

I In almost all of the use cases proper metadata management is
crucial
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Requirements for iRODS Deployment

I Secure data and metadata transfer

I Integration with external authentication (LDAP/Kerberos)

I Metadata extraction and management of some of the most
crucial data formats in use

I Audit Trails for management of sensitive data

I High Availability and Scalability (no less than our EMC NAS)

I Ease of use – even for users with less techical skillsets



iRODS Clients

I iRODS has many different (kinds of) client applications

I The reference implementation being the iRODS icommands
command line tools package

I The iDrop project at DICE has implemented a Java client and
a web interface built on their Jargon Java iRODS library

I DICE has also lately implemented a WebDAV interface on top
of Jargon to replace Davis – which is no longer supported.

I Also other projects have existed but are no longer being
supported or even compatible with the current iRODS version



Project Kanki - Why?

I Goal: To build a fully native, cross-platform iRODS client
application with a rich graphical user interface

I Kanki – e.g. a rods in Finnish, cold or frost in Japanese

I We really needed something to integrate seamlessly with
iRODS 4.x to fully leverage the new modular architecture

I The ability to be able to use the iRODS 4.x auth and network
transport modules out-of-the-box is great!

I Also, we did seem to have some special requirements for
metadata management – for which we can now build custom
metadata editors



The Benefits of a Desktop Client App

I Web applications still have a lot of limitations

I The numerous incompatiblities between different browsers –
especially with the certain unmentionable one

I For example dealing with large iRODS data objects can be
problematic because of memory issues



Why Go Native?

I Many reasons, one above all else – performance

I Also, seamless intergration with iRODS 4.x features as well as
the features of upcoming releases!

I E.g. Kerberos authentication and SSL transports work great



What About Portability?

I With native development portability issues are a reality

I This can be mitigated by using only std C++ and portable
frameworks instead of OS interfaces

I A single codebase is ideal – which can be achieved

I The Qt framework has proven to be an exellent choice for
cross-platform development



About Qt

I Originally developed by Haavard Nord and Eirik Chambe-Eng
the two of which founded TrollTech, Inc. in Norway

I Stands for Q Toolkit – apparently Q was considered to be a
pretty letter in Haavard Nord’s emacs font

I May 20, 1995 Qt 0.90 was uploaded to sunsite.unc.edu.

I Today Qt is actually Finnish owned and is the leading
platform for cross-platfrom GUI development

I Many mobile and embedded platforms are supported as well



Some Points About Qt Development

I Qt heavily leverages threads so code should be thread-safe

I A thread safe calling convention called signal-slot interface

I To make the call interface easier, it is supported by extensive
precompiler macros

I Qt 4 introduced a MVC (Model-View-Controller) architecture

I Abstract models can be extended to build custom models and
associated with many different kinds of view objects (which
Qt has many of)

I Also there is a UI compiler for building UI objects from XML



Project Kanki - So Far

I An object-oriented interface for iRODS

I Has all of the basic iRODS features implemented in the GUI

I A metadata editor with schema management with namespace
separation and attribute management

I Compiles against iRODS 4.0 on both Linux and OS X (will do
it with iRODS 4.1 next week)

I Windows support possible when it will be added to iRODS 4.x

I Still work in progress but soon to be released as beta

I A source release has been discussed and is probably out by the
end of summer.



Object-Oriented C++ Interface for iRODS

Kanki::RodsGenQuery metaQuery(this->conn);

int status = 0;

if (this->objDatum->objType == DATA_OBJ_T) {

metaQuery.addQueryAttribute(COL_META_DATA_ATTR_NAME);

metaQuery.addQueryAttribute(COL_META_DATA_ATTR_VALUE);

metaQuery.addQueryAttribute(COL_META_DATA_ATTR_UNITS);

}

else if (this->objDatum->objType == COLL_OBJ_T) {

metaQuery.addQueryAttribute(COL_META_COLL_ATTR_NAME);

metaQuery.addQueryAttribute(COL_META_COLL_ATTR_VALUE);

metaQuery.addQueryAttribute(COL_META_COLL_ATTR_UNITS);

}

// add a query condition for object name

metaQuery.addQueryCondition(this->objDatum->objType == DATA_OBJ_T ? COL_DATA_NAME : COL_COLL_NAME,

Kanki::RodsGenQuery::isEqual, this->objDatum->objName);

// if we are querying a data object also specify collection path

if (this->objDatum->objType == DATA_OBJ_T)

metaQuery.addQueryCondition(COL_COLL_NAME, Kanki::RodsGenQuery::isEqual, this->objDatum->collPath);

// execute genquery and get status code from iRODS API

if ((status = metaQuery.execute()) < 0) {

// error reporting code

}

else {

std::vector<std::string> names = metaQuery.getResultSet(0);

std::vector<std::string> values = metaQuery.getResultSet(1);

std::vector<std::string> units = metaQuery.getResultSet(2);

}



To Do – Features To Be Added

I Full drag & drop integration to and from the desktop and
inside the iRODS grid browser window

I A search interface with arbitrary criteria based on iRODS
object attributes as well as AVU metadata

I Metadata validation against the configured schema

I Custom editors for metadata attributes

I A Rule Exec interface for submitting user rules to iRODS

I iRODS Access Control List Editor

I Synchronization of local directories to iRODS collections

I If you have suggestions?



Demo and Questions?

Contact Information:

I Ilari Korhonen, University of Jyväskylä (IT Services), Finland

I email: ilari.korhonen@jyu.fi

Thank you for your interest!


