High Availability iRODS System (HAIRS)

Yutaka Kawai, KEK
Adil Hasan, ULiv
Outline

- Introduction
- iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Future works (apply to RNS application)
- Summary
Introduction

- Replication enables high availability (HA) system for catalog service
 - Replicate by back-end, i.e. iRODS
 - Replicate by front-end;
 - i.e. AMGA (ARDA[^1] Metadata Grid Application)
 - Metadata Catalogue of EGEE’s gLite 3.1 Middleware
 - Back-end : Oracle, PostgreSQL, MySQL, SQLite
 - http://amga.web.cern.ch/amga/

- The current iRODS HA is implemented by replicating ICAT DB with PgPool tool[^2]
 - A problem when iRODS server fails
 - Solve the problem by using Director
The Current iRODS HA

- ICAT DB replication by Pgpool

Change the server info in .irodEnv

iRODS Client

A

iRODS Server

B

ICAT

ICAT

Pgpool

PostgreSQL

December 2nd, 2009

Interoperability of Digital Repositories @ London, UK -- Yutaka Kawai, KEK
Problem of the current HA

- Even if the iRODS server fails, clients still continue to access the same server without noticing the failure.

> iRODS Client

> ?

Need to change server info in .irodEnv

iRODS Server

ICAT

Pgpool

PostgreSQL
Solution by using Director

- Place a Director between Client and Server
 - Monitor the iRODS server statuses
 - Load balance to the iRODS servers
How to Implement Director?

- **UltraMonkey** \(^{[3]}\)
 - Linux based director
 - Low cost but not so high speed
 - Need some steps to setup

- **Hardware Director**
 - High cost and high speed
 - Easy to setup (?)
 - Cisco, HP, etc.
UltraMonkey

- UltraMonkey consists of 3 components
 - Linux Virtual Server (LVS) : Load balancing
 - Idirectord : Monitoring real servers
 - Linux-HA (LHA) : Monitoring directors

- LVS and Idirectord are used here
 - LVS : Provide Virtual IP for load balance
 - Idirectord : Monitoring iRODS service
 - LHA : Future use for director redundancy
Virtual IP for load balance

- iRODS Client
 - VIP 192.168.1.200
 - 192.168.1.0/24
 - Linux Director
 - Gateway of Real Servers is Director
 - iRODS Real Severs
 - 192.168.2.0/24
 - .101
 - .102

iRODS Client can specify only this VIP in .irodsEnv

December 2nd, 2009
Monitoring iRODS service

- Director monitors iRODS real servers
 - Polling server status via iRODS control port

```
<MsgHeader_PI>
  <type>RODS_VERSION</type>
  <msgLen>182</msgLen>
  <errorLen>0</errorLen>
  <bsLen>0</bsLen>
  <intInfo>0</intInfo>
</MsgHeader_PI>
<Version_PI>
  <status>-4000</status>
  <relVersion>rods2.1</relVersion>
  <apiVersion>d</apiVersion>
  <reconnPort>0</reconnPort>
  <reconnAddr></reconnAddr>
  <cookie>0</cookie>
</Version_PI>
```
Outline

- Introduction
- iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Future works (apply to RNS application)
- Summary
Large File Transfer

- iRODS uses parallel ports to transfer a large file.
 - Smaller than 32MB file is transferred through iRODS control port #1247.

- iRODS catalog server directs a server to open parallel ports to transfer a large file
 - iRODS clients can directly connect with the server through the parallel ports.
Process of Large File Transfer

- Steps to transfer a large file in iRODS
Large File Transfer w/ Director

- Need to confirm whether Director interferes in transferring a large file or not

- The physical storage should be located out of the local network of iRODS real servers
 - Director handles only iRODS catalog server IP
 - Director cannot manage all of the parallel ports
Process using Director

- Works as same as normal case
 - Only one additional step between (1) and (2)
Outline

- Introduction
- iRODS HA system with Director
- Large File Transfer
- Speed Performance
- Future works (apply to RNS application)
- Summary
Speed Performance

- **Test Program**
 - concurrent-test in iRODS package
 - iput, imeta, iget, imv
 - 1000 entries
 - Servers are VMs (Xen) on same physical machine
 - Client is located on the different machine

- **No Director**
 - 552.2 sec = 0.552 sec/entry

- **Use Director**
 - 618.4 sec = 0.618 sec/entry
 - About 10% slower

This result is reasonable to consider tradeoff between speed and availability
Use Director and Load balance to 2 iRODS servers

- 697.8 sec = 0.698 sec/entry
- The concurrent-test is not suitable under such a Load balanced system.
- Need a program using multi-clients/threading.
Outline

► Introduction
► iRODS HA system with Director
► Large File Transfer
► Speed Performance
► Future works (apply to RNS application)
► Summary
What is RNS?

- **RNS**: Resource Namespace Service
 - RNS offers a simple standard way of mapping names to endpoints within a grid or distributed network \[^4\]
 - The latest version is available here; https://forge.gridforum.org/sf/go/doc8272

- Java based RNS application is being developed by Osaka University and Tsukuba University
 - This application is similar to iRODS
 - The other kind of RNS application is Grid Shell of Genesis II by The Virginia Center for Grid Research (VCGR) \[^5\].
Apply to RNS application??

- Derby can do replication?
 - http://wiki.apache.org/db-derby/ReplicationWriteup
 - No load-sharing in the above example
Issues in RNS application

- Several issues to be solved
 - Derby is not enough to work replication as same as using PostgreSQL w/Pgpool
 - Need some developments to replace Derby by PostgreSQL
 - The catalog implementation in the current RNS application has specific IP addresses
Opinions in this study

- **Network limitation**
 - Director works as NAT. Difficult to place iRODS catalog servers in different subnets.
 - But the problem depends on NAT technology. We hope some NAT vendor can implement extensions.

- **Speed Performance**
 - The “concurrent-test” consumes overhead. The result 10% slow is in one of the worst cases. We may see less than 10% in actual uses.

- **PostgreSQL only?**
 - How about other DB services? They have the same tools as PgPool?
 - Back-end replication is enough? Front-end replication should be considered for iRODS?
Summary

- iRODS HA system
 - The current approach using only PgPool
 - The new approach using Director
 - The new one can solve the current problem

- Large File Transfer
 - iRODS large file transfer works well when using Director

- Speed Performance
 - Director results in the speed performance of concurrent-test getting slower 10%

- Future works
 - Apply this solution to other catalog services
References

