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7TH ANNUAL CONFERENCE SUMMARY 

The iRODS User Group Meeting of 2015 gathered together iRODS users, Consortium members, and staff to discuss 
iRODS-enabled applications and discoveries, technologies developed around iRODS, and future development and 
sustainability of iRODS and the iRODS Consortium. 

The two-day event was held on June 10th and 11th in Chapel Hill, North Carolina, hosted by the iRODS 
Consortium, with over 90 people attending.  Attendees and presenters represented over 30 academic, government, 
and commercial institutions. 
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ABSTRACT

In this paper, we describe the iRODS Cloud Infrastructure and Testing Framework, its design goals, current features,

history of development, and some future work.
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INTRODUCTION

The iRODS Cloud Infrastructure and Testing Framework aims to serve a variety of constituents. The target audiences

include core developers, external developers, potential users, current users, users’ managers, and grid administrators.

Testing provides confidence to the developers and the community that the codebase is stable and reliable. This

assures users and users’ managers that infrastructure built with iRODS can be trusted to enforce their organizations’

data management policies.

The Framework currently consists of three major components: Job queue management and automation (provided by

Jenkins1), business logic and deployment management (provided by Python and Ansible2 modules), and VM resource

management (provided by VMware’s vSphere3). The connective code is written in Python and included in three git

repositories.

These components work together to generate reproducible builds of any commit and to test those builds on a growing

matrix of operating systems, their versions, iRODS versions, and a large number of combinations of the different

types of plugins iRODS supports: databases, resource types, authentication types, and types of network connection.

MOTIVATION AND DESIGN GOALS

Software testing, in general, is a tool used to generate one thing: confidence. Everything else is secondary.

The way iRODS generates confidence is through the following design goals:

• Transparency (in both process and product)

• Use of existing industry best practices

1https://jenkins-ci.org/
2http://www.ansible.com/home
3http://www.vmware.com/products/vsphere

iRODS UGM 2015 June 10-11, 2015, Chapel Hill, NC
Authors retain copyright.
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• Coverage → Confidence in Refactoring

• Packaging → Ease of installation and upgrade

• Test framework idempotency

• Test independence

• Topology awareness

• Automation, Automation, Automation

Using open source best practices affords a great deal of transparency. The package managers built into iRODS users’

operating systems allow iRODS to manage dependencies very cleanly and to reduce the amount of code in the iRODS

core codebase. Having the ability to run a single test with the knowledge that it will leave the system in a clean state

allows for a tremendous reduction in the amount of time it takes to run through the “code-deploy-test” development

cycle. Ideally, the tests are smart enough to only run when the iRODS Zone being tested matches the right criteria

(standalone server or a full topology, with or without SSL, using the correct authentication scheme, etc.).

And finally, all of these goals only matter if everything the tests do can be automated. Without automation, testing

remains more than a full-time job. With automation, it can happen alongside code development and drive other best

practices.

zone bundle.json schema

iRODS 4.1 has incorporated schema-based configuration and validation4. The new izonereport iCommand, produces

a JSON representation of the entire topology of the local Zone, as well as configuration information for all the

included servers, databases, resources, and available plugins. Saved as a “zone bundle.json” file, this representation

serves multiple purposes.

First, this representation affords the development team a concrete view of a particular deployment. For debugging

purposes, this is paramount and significantly reduces the overhead, as well as the back and forth, of setting the

context for a support request when someone is having trouble. More generally, it gives the person having trouble a

chance to see the same overview before submitting it for help, which may be enough to assist them in identifying the

error themselves.

Second, this representation is the same format that the Framework uses to deploy a topology into the private cloud.

The VMs that are dynamically launched are configured to match those that are described in the Zone bundle. This

allows for much quicker turnaround between description of a problem and real, tangible Zones that can be manipulated

and tested directly.

A third potential benefit is the de facto shared interchange format for graphical representations of iRODS Zones.

As graphical tools for iRODS become more sophisticated, we envision both administration and support applications

getting heavy use out of this newly defined format.

Lastly, the move to schema-driven configuration management, in general, is a strong indicator of a mature product.

This representation of the full configuration of a Zone should unlock powerful automation capabilities.

PROGRESSION OVER TIME

The Framework has come a long way in the last few years. While the goals have been consistent, the implementation

and the technologies used have been under constant development.

4https://github.com/irods/irods_schema_configuration
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July 2011

Python→ Node.js→ RabbitMQ→ Celery → Eucalyptus

This initial effort was manually driven by a Python script that validated a configuration file and then used RabbitMQ

and a Celery message bus to deploy, test on, and then destroy Eucalyptus VMs. This was a lot of machinery to keep

up and running, and all the machines involved had to be running very consistent versions of Python, Erlang (for

RabbitMQ), and Celery. As the entire point of the Framework was to deploy both new and old operating systems,

this consistency proved overwhelming.

October 2012

Python→ Node.js→ ssh→ OpenStack

The second iteration of the Framework reduced the number of moving parts and moved to OpenStack (Diablo release)

for VM provisioning. This was still a manually driven process but allowed us to add two more operating systems to

our testing matrix pretty painlessly.

January 2013

Hudson→ Python→ OpenStack

The third version of the Framework served two major functions. It incorporated the RENCI-wide Hudson job manager

for automation, and it removed the dependency on Node.js. This version served as the new baseline for what iRODS

testing would look like for the next couple of years.

October 2013

Hudson→ Python→ vSphere long-running VMs

The fourth version was motivated by the ongoing problems we were having with the ability to add new operating

system images into the available pool managed by OpenStack. The iRODS development team was not managing

the OpenStack infrastructure itself, and so did not have full control over the environment. We opted to move our

work from the research side to the production side of the RENCI infrastructure and, in doing so, move to a group of

long-running VMs that would always be available.

CURRENT INFRASTRUCTURE

Earlier this year, the fifth version of the iRODS Cloud Infrastructure and Testing Framework came online.

Spring 2015

Jenkins→ Python→ Ansible→ vSphere dynamic VMs

This version improves both the reproducibility and robustness of the last two years of work. Moving to our own

installation of Jenkins means that all the servers are controlled by the iRODS development team. The biggest

difference in this version is the use of dynamically deployed (and then destroyed) vSphere VMs, which are configured

via Ansible modules. Using dynamic VMs ensures that every test run starts from the same initial conditions and

removes the need for “clean up” code that was required in the previous Framework iteration to return the long-running

VMs to a pre-test state.
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Jenkins

Jenkins is an open source continuous integration server that allows the iRODS development team to schedule and

coordinate the different build and test jobs that power the Framework.

Currently, Jenkins is scheduled to build and test the master branch every thirty minutes, if there have been new

commits. These tests include coverage of all the major features of iRODS that can be exercised on a single standalone

server.

Separately, Jenkins has a pipeline which runs multiple flavors of topology tests (tests that require an iRODS Zone

comprising multiple VMs) on multiple flavors of iRODS Zones. For each of these tests, several dynamic VMs are

created, networked together, and configured to run iRODS, all based on the contents of a Zone bundle.

Automatic testing of federated Zones is next on the list of things to add. Currently, all Federation testing on the

core iRODS code has been done manually. This takes a long time to configure properly and is hard to reproduce.

Python and Ansible

Ansible is an automation and management framework for executing code on multiple remote servers. It is written

in Python and allows users to execute bits of Python code (Ansible modules) on remote machines and gather the

results.

vSphere

VMware’s vSphere is a server virtualization platform that allows the iRODS development team to programmatically

stand up, interact with, and then tear down virtual servers (or virtual machines, or VMs). The RENCI infrastructure

is currently configured with enough compute, memory, and storage to provide the iRODS development team the

capability to have up to 100 VMs active and under management.

As the combination of iRODS configurations under testing continues to grow, the number of concurrent servers

required will grow as well.

Workflow

Jenkins5 launches a job named build-all. This job builds the iRODS packages on all of the currently supported

operating systems and architectures. The main work of this job is handled by a build.py6 script:

python build.py \

--build_name ${BUILD_TAG} \

--output_root_directory ${PACKAGES_ROOT_DIRECTORY} \

--git_repository ${PARAMETER_GIT_REPOSITORY} \

--git_commitish ${PARAMETER_GIT_COMMITISH}

When this job is complete, control is returned to Jenkins, which then fans out and launches many jobs, one for each

combination of standalone test that is currently supported:

5https://jenkins.irods.org/
6https://github.com/irods/irods_testing_zone_bundle
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standalone-test-centos6-mysql

standalone-test-centos6-oracle

standalone-test-centos6-psql

standalone-test-opensuse13-psql

standalone-test-ubuntu12-mysql

standalone-test-ubuntu12-psql

standalone-test-ubuntu14-mysql

standalone-test-ubuntu14-psql

test-jargon

The work of each of the standalone jobs is handled by a jenkins helper.py7 script which calls the following Python

functions, in order: deploy, enable ssl, test, gather, and destroy.

When these steps are complete, Jenkins has a full report of how each test progressed, the job’s return status, as well

as a set of gathered result files which are used to display the results graphically and aid in debugging failed tests.

There are currently 1,253 Python tests run on each combination of operating system and database.

The work of the test-jargon job is handled by a separate test.py8 script which runs the irods test jargon Ansible

module. The Jargon test results (currently 1,917 tests) are gathered and displayed in Jenkins.

Each vSphere VM that is started and stopped is handled by the Python provisioner written to interface with vSphere9.

The Framework creates and destroys VMs using an injected Python module (which uses pyVmomi10). This separates

the choice of VM provisioning technology from the use of the Framework.

Coverage

The current total coverage for the core iRODS codebase is 61.5%. This number represents the C++ line coverage in

the main iRODS repository, including the iRODS server(s), iCommands, and plugins.

Additional Cumulative

Standalone single server 59.2% 59.2% observed

Topology 2.3% 61.5% observed

Error checking ˜14% 75% estimated

Untested features ˜25% 100% estimated

The standalone coverage results are generated by running the entire test suite on a single iRODS iCAT server with

no additional Resource servers in the Zone. The standalone coverage is currently 59.2%.

The topology coverage results are generated by running the entire test suite on a Zone with four servers (1 iCAT and

3 Resource servers) two times (once each on the iCAT and then a Resource server) and then gathering and combining

the coverage logs from all the servers. The total topology coverage is currently 61.5% which means the topological

testing adds 2.3% of marginal code coverage.

These results include no unit tests at this time. All of the tests we run are functional tests from outside the system.

We estimate, by inspection, that less than half of the remaining lines are unexercised error cases due to our lack of

7https://github.com/irods/irods_testing_zone_bundle
8https://github.com/irods/irods_testing_jargon
9https://github.com/irods/irods_testing_provisioner_vsphere

10https://github.com/vmware/pyvmomi
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simulating database connection errors, passing malformed input to individual functions, etc. The remainder of the

lines are untested features that we estimate to be about 25% of the codebase.

Increasing coverage is always a goal, but it is not something that we have explicitly targeted to date. We expect this

to change in the next year.

FUTURE WORK

Looking ahead, we have a list of things we intend to add to the existing Framework.

Fall 2015

Jenkins→ Python→ Ansible→ zone bundle→ vSphere dynamic VMs

• Make tests “zone bundle aware” - This will allow the tests to know everything about the Zone in which they are

running and to intelligently skip certain tests. This will require pushing the zone bundle down through Ansible.

• Move to CMake - The current build system is a cobbled combination of bash, perl, python, and make. The

move to CMake will be more standardized and reduce the complexity for us as well as external developers.

• Separately versioned external/ - The irods/external/ directory is currently tied to the iRODS version. Sep-

arating this will allow external/ to move at its own speed, and give the Framework full capability to compile

past versions of iRODS without building external/ from source.

• Testing unpushed branches - Expanding the Framework’s functionality to include building and testing a devel-

oper’s local unpushed branch will reduce the number of complex “blind” commits that are too time-consuming

to test by hand.

• Enforced code review - We are planning to introduce code review (perhaps via Gerrit) to an internal server

before pushing to a public server to ensure a high-quality level of commit.

• Federation testing - This will increase visibility into and confidence around updating the iRODS wireline protocol

(planned for iRODS 5.0).

CONCLUSION

The iRODS Cloud Infrastructure and Testing Framework has been under development for over three years and has

been through five major versions.

As a system that tests a distributed system, the Framework may be useful to others. We are encouraged by the rapid

pace we have been able to recently add new features.

The current version builds and tests iRODS across a growing matrix of operating systems, their versions, iRODS

versions, and a large number of combinations of the different types of plugins iRODS supports: databases, resource

types, authentication types, and network types. The iRODS code is tested across both single machine deployments

as well as multi-machine topologies via zone bundle JSON files.

Through transparency and automation, the iRODS Cloud Infrastructure and Testing Framework provides confidence

in the claims that iRODS makes as a production-ready software technology.
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Data Intensive processing with iRODS and the middleware CiGri for the
Whisper project

Briand Xavier∗ Bzeznik Bruno†

Abstract
Like many projects in science of the universe, the seismological project Whisper is faced with massive data processing. This
leads to specific IT softwares for the project as well as suitable IT infrastructures. We present here both aspects.

We provide a flexible way to design a sequence of processing. We also deal with data-management and computational
optimization questions. On IT infrastructure, we present the platform CIMENT provided by the University of Grenoble. It
offers a data-grid environement with the distributed storage iRODS and the grid manager CiGri.

This is the partnership between these two IT components that has enabled a data-intensive processing and, also, permited
the Whisper project to bring new scientific results.

Keywords: Data-Intensive, Grid computing, Distributed storage, Seismic Noise, Whisper, CiGri, iRODS.

1 Introduction
The Whisper ∗ project is a an european project on seis-
mology whose goal is to study properties of the earth with
the seismic ambient noise such that evolution of seismic
waves speed. This noise is almost all the signal continu-
ously recorded by the seismic stations worldwide (Europe,
China, USA, Japan), except earthquakes. It offers new ob-
servables for the seismologists, new types of virtuals seis-
mograms that are not only located at the place of earth-
quakes and that are provided by the operation of correla-
tion which requires significant computations. For instance,
one can obtain wave paths that probes the deepest part of
the Earth [2, 12].

Accordingly, this is one of the first project in the seismo-
logical community that studies systematically the continu-
ous recordings, which represents a large amount of seismo-
logical data, of the order of several tens of terabytes. For
instance, one year of the Japanese Network is about 20 TB
or 3 months of the mobile network USArray represents 500
GB (it depends on the sampling of the recorders).

In addition, the calculation operations downstream may
produce even more data than the observation data. To give
an order of magnitude, more than 200 TB have to be pro-
cessed by the Whisper project at the same time. A classical
processing produces 8 TB in 5 days. Another computation
’read’ 3 or 4 TB and ’produced’ 1 TB in 6 hours. Many
tests of the signal processing are done and computational
data are deleted as and when required.

Nowadays, the earth sciences or more generally, sciences
of the universe are widely engaged in data-intensive pro-
cessing. This leads to design scientific workflow, towards
data-intensive discovery and e-Science.

Reflected by the Whisper project, we have to organize
the science objectives with the computer constraints. We
have to take into account the duration of postdocs and PhD
theses, as well as the availability of computer infrastruc-
tures and their ease of access. This leads to many ques-
tions about software development, including the genericity
of computer code and the technical support. But it also in-
fluences in terms of choice of appropriate infrastructures.

Even if this project has its own ressources, such a prob-
lem of data-intensive processing requires specific tools able
to organize distributed data management and access to
computational ressources: a data grid environment.

The University of Grenoble offers, thanks to the High
Performance Computing (HPC) centre CIMENT, this kind
of environment with the data management system iRODS
and the middelware CiGri.

It is thanks to the close collaboration between IT
ressources of Whisper and the infrastructures of the Uni-
versity that this project has been implemented as we show
below.

∗Cnrs, Isterre, Whisper, Verce, email xav.briand@gmail.com
†CIMENT, Université Joseph Fourier, Technical header of CIMENT
∗FP7 ERC Advanced grant 227507, see whisper.obs.ujf-grenoble.fr
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2 Software for data-intensive pro-
cessing

A part of the Whisper project is specificaly dedicated to the
IT codes. This includes the design of a specification, an
implementation and some optimisations of the sequence of
data-management as well as of the computations †. This
project uses its own IT resources (servers, dedicated bay)
as well as the common IT infrastructure of the university.
We developed also adaptations for the IT infrastructures
and we provide technical support for researchers.

Most of the IT codes are written with the Python lan-
guage and make intensive use of the scientific libraries
Scipy (fortran and C embeded) and Obspy ‡ (essentially
the ’read’ function) which is dedicated to the seismologi-
cal community.

The IT codes consist of several tools described schemat-
ically in figure 2 and grouped into three parts. The first one
concerns the signal processing, the second part permits the
computation of the correlations and the last part consists of
codes for the analysis of the correlations.

The first package provides a flexible way to process raw
data, to specify a pipeline of pre-processing of signal. The
user starts by specifying a directory, a set of seismic sta-
tions and a set of dates. Then the codes scans the directory
and extracts all pieces of seismograms (also called traces)
and rearranges them in a specific architecture of files in or-
der to calculate the correlations to the next step. We use
here intensively the function ’read’ of the library Obspy
which allows to open most of the seismogram file formats.
The user also defines his own sequence of processings. He
can use the functions predefined but also the Python li-
braries he needs and, moreover, he can add eventually his
own functions.

The second package concerns correlations. Roughly
speaking, a correlation is an operation with two seismo-
grams (for a given time window) that provides the coherent
part of the two seismograms (associated to the 2 stations)
which is the seismic waves that propagate between the 2
stations. (Moreover, in some favorables cases, it converges
to the Green’s function). Thus, the code computes all the

correlations and provides an architecture of files that corre-
sponds to all the couples of seismograms (for each date).

Figure 1: Step of the correlations

Note that the space complexity is linear for seismograms
processing but quadratic for the correlations. We have
therefore to store the seismograms processing before com-
pute the correlation in order to benefit of the good complex-
ity. These quadratic space complexity can be critical and
lot of effort was made in order to optimize the computa-
tion in two direction. First we improve the computation of
the fast fourier transform by pre-calculating some "good"
combinations of small primes numbers. With this method,
we improve of forty percent the time computation in the
favorable cases.

Nevertheless, the main optimization was made by testing
the behaviour of the carbage collector of Python in order to
follow the cache heuristics. More precisely, we do not use
the ’gc’ module or the ’del’ statement but we try to sched-
ule and localize the line of code in order to find the good
unfolding that uses the architecture optimally.

The last part of computer codes concerns the analysis
of correlations (the virtual new seismograms) with meth-
ods such as beamforming, doublet or inversion. We also
compute correlations of correlations C3 (also new seismo-
grams). For example, we study the variations in velocity of
seismic waves as we illustrate below in figure 9.

These codes permit to process a dataset on a computer
laptop. Nevertheless, to take advantage of IT infrastructure
at the University of Grenoble, adjustments have been made
for the grid computing as we shall see later.

Figure 2: Main sequences of processings of the Whisper Codes

†see code-whisper.isterre.fr/html/ (part of the design)
‡see www.obspy.org
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3 IT infrastructure for grid comput-
ing

3.1 CiGri and iRODS synergy
The data-intensive processing needs obviously an IT in-
frastructure in order to couple storage and computation. In
our cases, most of the processings are embarrassingly par-
allel. The amount of data and the location of available com-
pute nodes suggests the use of a distributed storage system
and a grid manager.

The IT infrastructure used here is provided by the CI-
MENT § platform. CIMENT is the High Performance
Computing (HPC) center of the Grenoble University. It
offers a partial pooling of computing resources (10 com-
puting clusters, 6600 cores and some GPUS) and many
documentations for users. Moreover, the computational re-
sources are integrated in a local grid of supercomputers.
Associated with a distributed storage, it provides a local
data grid environement.

The distributed storage accessible by all the computing
nodes of all the clusters is managed by iRODS ¶. Nowa-
days it represents approximately 700 TB. The grid comput-
ing is managed by the CiGri ‖ middleware, that is part of
the OAR ∗∗ [4, 7] project (the Resource and Job Manage-
ment System on which CiGri relies). CiGri and iRODS to-
gether build a complementary solution for embarrassingly
parallel computations with large input/output distributed
data sets.

Furthermore, whith unitary parametric jobs that are rea-
sonnably short in time, CiGri can deal with the best-effort
mode provided by OAR. In this mode, grid jobs are sched-
uled on free resources with a zero priority and may be
killed at any time when the local demand of resources in-
creases. This CIMENT organization (independant comput-
ing clusters glued together with a best-effort grid middle-
ware and a distributed storage), in place for more than a
decade, has proven to be very efficient, allowing near one
hundred percent usage of computing resources thanks to
small jobs being managed at the grid level.

Furthermore, as the results of the grid jobs are stored into
the distributed storage with a unique namespace, iRODS
also acts to the user as a centralized controller with a total
observation and thus allows the user to monitor its calcula-
tion.

3.2 iRODS infrastructure
The Integrated Rule-Oriented Data System (iRODS) is a
data managment system offering a single namespace for
files that are stored on differents resources that may be on
different locations. The administrator can set up rules (mi-
croservices) to perform some automatic actions, for exam-

ple the storage of a checksum or an automatic replication to
the nearest resource (staging). The user can control himself
replications and create user-defined metadata. iRODS ex-
poses a Command Line Interface (the i-commands), an API
useable from several programming languages (C, python,
PHP,...), a fuse interface, a web gui, and a webdav inter-
face. The meta-catalog is an SQL database, which makes it
very efficient for managing additionnal meta-data or mak-
ing advanced queries (see [6] for an illustration of use).
It is not "block-oriented", and thus relies on underlying
Posix filesystems. Performance is not the main goal, but
when the files are distributed on different resources, the
only bottleneck is the meta-catalog (which is centralized).

Figure 3: iCAT and storage nodes

The iRODS storage infrastructure of CIMENT consists
of a unique zone with the iCat server and a dozen of nodes
as illustrated on figure 3. The nodes are groupped inside 3
different locations, called site A, site B and site C, having
heterogeneous WAN connexions. Each site has it’s own
10Gbe local network switch.

Figure 4: iRODS resources close to supercomputers

Those 3 sites are located into the 3 main datacenters where
the CIMENT supercomputers live, so there are always

§see ciment.ujf-grenoble.fr
¶see irods.org
‖see ciment.ujf-grenoble.fr/cigri/dokuwiki
∗∗see oar.imag.fr
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close storage resources with the computing nodes (Fig-
ure 4). All resources of a given site are groupped into an
iRODS resourceGroup and a rule tells that if a data is to be
written from a computer of this site, then the data is written
by default on a resource randomly chosen inside this group.
So, data are always written to a local iRODS resource, us-
ing the LAN and not the WAN. Note that site C has only
1Gbe WAN connexions while A and B have 10Gbe WAN
connexions (Figure 3). So, to optimize, we’ve set up auto-
matic staging for site C: when a data is get from site C and
the meta-catalog tells that the file is located on a site A or
site B resource, then the file is automatically replicated to
a resource of site C so that if it is accessed again later, it is
not more transfered through the 1Gbe WAN link.

Capacity has now reached 700 TB and is constantly
evolving and increases with investment in new projects,
as iRODS offers a great scalability by simply adding new
storage resources. Each node has currently 2 RAID arrays
from 24 to 48 raw TB as illustrated at the figure 5

Figure 5: A storage node

iRODS nodes are running Debian GNU/Linux with Kanif
†† [7] for easy synchronisation of the system administra-
tion. CIMENT has set up a web interface where the user
can easily check the status of the resources (figure 6).

Figure 6

3.3 CiGri infrastructure
The access to 6600 cores of the clusters of the CIMENT
platform is achieved through the middleware CiGri. CiGri
launches embarrassingly parallel jobs on idle processors of
every computing clusters and then optimizes the resources
usage which are used for parallel jobs otherwise.

Each cluster of the University of Grenoble uses the re-
source manager OAR. CiGri acts, among other things, as
a metascheduler of OAR. It retrieves the clusters states
trough the OAR RESTful API (figure 7) and submits
the jobs on free resources without exhausting the local
scheduling queues.

Figure 7: Cigri communications

While it may work in normal mode, CiGri is mostly used
in best-effort mode and thus provides an automatic resub-
mission mecanism. CiGri offers a customizable notifica-
tion system with a smart events management. With those
mecanisms, the user can submit a big amount of small jobs,
called a campaign, and forget about it until all the jobs
of the campaign are terminated or CiGri notifies a serious
problem.

Figure 8: Cigri jobs campaign submission

Roughly speaking, in order to run a campaign, the user
describes through a file (in the JSON format) the param-
eters of the campaign such as the accepted cluters, the
needed resources, the maximum duration, the location of
the codes, a prologue or epilogue script,... Codes and input
data are retrieved from iRODS using i-commands into the
prologue scripts and the jobs scripts (or using the iRODS
API if the jobs are written into a supported language). So,
there’s no direct connexion between CiGri and iRODS, but
the usage is totally complementary through the jobs scripts.

††see http://taktuk.gforge.inria.fr/kanif/
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Moreover, the user defines also a file where each line rep-
resents a value of the parameter for the user’s code. Thus,
the number of line of these parameter file corresponds to
the number of jobs of the campaign (figure 8).

Users may monitor their campaigns and acts on it whith
a CLI or a REST API. Some statistics are provided, such as
the completion percentage (in the term of number of termi-
nated jobs), jobs execution rates, automatic re-submissions
rate. When a job fails with a non-zero exit status, the user
is notified by mail or jabber and requested for an action be-
fore submitting further jobs on the same supercomputer:
simple acknowledge, acknowledge and re-submission or
abort the campaign. Standard and error outputs of the jobs
may be easily retrieved from the CiGri host without having
to log on the underlying supercomputers. Users may even
not be authorized to log-on to a specific supercomputer but
allowed to start and manage best-effort jobs on it thanks to
CiGri.

CiGri is now at the version 3, which represents a major
evolution in terms of modeling and technology (Rest API,
Ruby). It is structured around a PostgreSQL database and
high level components (Ruby scripting language, Apache
with SSL authentication, Sinatra,...).

3.4 Authentication and security
CIMENT has a centralized LDAP infrastructure. Users
have the same login on all supercomputers and on the CiGri
frontend. As iRODS does not offers a simple and direct
LDAP authentication mechanism, we use the simple pass-
word method with an automatic synchronisation from our
LDAP server to the iRODS database. We also have a script
that automatically initializes the iRODS unix environment
directly into the users home directory (.irods/.irodsEnv
and .irods/.irodsA files) on every supercomputer, so that
iRODS authentication becomes completely transparent to
the users.

Each site has a filtering router acting as a firewall. As we
want all communication schemes to be possible between
each iRODS resource (a file might be transfered from a re-
source to another regardless of the site), we had to open
some tcp and udp ports on those firewalls. The range of
ports may be defined by the administrator into the iRODS
servers configuration file, so that’s not an issue.

4 Results and feedback
4.1 Whisper Use Case
Whisper is one of the projects that have made it possible
to ensure that the seismic noise brought new observable.
This permits to carry out several scientific results including
imaging and monitoring. Concerning monitoring, further
studies provide news results about sligth variations of seis-
mics waves induced by earthquakes. Many articles are in
part due to this project as well as several post-docs and PhD
(see [5, 2, 8, 11, 12, 9, 13, 14, 3] and also whisper.obs.ujf-
grenoble.fr, rubric publication).

Most of the time, on the computer part, the approach with
researchers is as follows. After retrieving data from a data
center or directly between persons, we have to assess how
this data can be processed. According to the computing
time and storage capacity, either we perform operations on
a dedicated bay (also host by CIMENT), or either we use
the CIMENT infrastructure. It depends also on the ease
of computer users and most of the time, at least the last
treatments (less computationally expensive) are made lo-
cally (Some IT codes are also provided in order to retreive
results on distributed storage). For instance, with small
datasets (datas from La Reunion or the Alpes) we work
only locally. With larger dataset (China, USArray, Japan
Network). We use both local and distributed computation.

We focus now on the part of processing that use the data
grid environment of CIMENT. But note before that an other
aspect, and not least, is the evolution of the specification.
Often, students and researchers have new requirements and
the IT codes evolves with these specification. We try to
be as generic as possible in order to, among other things,
to achieve a sufficient level of automatization. However,
sometimes we need to develop some parts specifically be-
cause of lack of time. These IT problems of specification
and development time are among the most complex to eval-
uate for this type of project.

A first step, for the IT part of the scientific workflow, be-
gins by storing data and also by checking their integrity.
We also require that data be in a seismic standard formats.
If conversion is necessary, it can be a large data intensive
computing and specific codes are developed. To minimize
concurrency, we have also to ensure that the data are well
distributed on iRODS. Indeed, it happened that the data are
too centralized on a resource, so that is truly diminished
processing capacity. Some python codes are dedicated to
this task and can replicate or spread randomly a Collection
from a set of resources to another set.

Let us come back to the package of signal processing
of Whisper (the first part of the figure 2). Because each
seismogram can be treated separatly it is the simplest case
for data grid process. We treated for instance one year of
the Japanese seismic Network (HiNet, Tiltmeter and FNet)
around of the giant 2011 Tohoku-oki earthquake (6 months
before and 6 months after). Note that first we need to con-
vert 9 Terabytes of Japanese Data into around 20 terabytes
of a standard format (here mseed or sac). Then we try many
processing for the 20 TB (filter, whitening, clipping, ...)
and store the results in seismogram with a duration of one
day.

As almost all seismological data, the Japanese data are
identified by the dates, names of seismic station and sub-
networks. Therefore the choice of the modelization, in or-
der to retrieve and distribute the data, follows these seismo-
logical metadatas. More precisely, the modelization of the
distribution of the computation is made by setting a subset
of dates and a subset of stations (This corresponds also to a
normal use for researchers that wants to test some process-
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ing rapidly with a subset of seismograms). Note also that
the distribution is constant with respect to transfer.

In order to get a set of seismograms from the iRODS
storage to a computational node, we add Python modules
to the Whisper package of seismogram processing. These
modules contains classes that permits to retrieve a subset of
seismograms (defined by the two subsets described above).
More precisely, a first step is either to test directly exis-
tence of data or either building of hash tables in order to
know the available seismograms. Then we provide an iter-
ator (in this case, a generator for Python) on available data
in order to use other methods that performs the i-command
’iget’. The same approach is made for the storage of the
results (with the ’iput’).

Schematically, the ’Main’ Python module of IT code
looks like:

. . .
g e t p a r a m e t e r
. . .
b u i l d t h e i g e t commands
pe r fo rm i g e t ( e n c a p s u l a t i o n )
. . .
Codes w h i s p e r
f o r se ismogram p r o c e s s i n g
. . . .
b u i l d t h e i p u t commands
pe r fo rm i p u t ( e n c a p s u l a t i o n )
. . .

Note that these commands of transfer between iRODS
and computational nodes can become very difficult to
achieve because of the concurrency of the queries. To
take into account this obstacle, one develops a module that
provides lot of encapsulations of the i-commands (number
of try, waiting time, resubmission, with error, ’else’ com-
mand, etc...). The IT infrastructure provide also wery use-
full encapsulations.

We have also to adapt our process for the grid com-
putation with CiGri. We first define a file of parameters
’param.txt’ where each line correponds to the parameters
of one job on the grid, for instance:

c a t param . t x t

t r a c e s 1 6 0 _ 0 _ 8 _ 0 160 0 8 0
t r a c e s 1 6 0 _ 0 _ 8 _ 1 160 0 8 1
. . .
t r a c e s 1 6 0 _ 1 _ 8 _ 0 160 1 8 0
t r a c e s 1 6 0 _ 1 _ 8 _ 1 160 1 8 1
. . .

Here we divide the dates in 160 sublists and the stations
in 8 sublists. The line "traces160_0_8_1 160 0 8 1" cor-
reponds to a job named ’traces160_0_8_1’ where we take
the sublist of dates of index 0 and the sublist of stations of
index 1 (each sublist have the same length +/-1). (There
are also other parameters for components and networks not
described here.)

For each of the 1280 jobs, a script is launched by CiGri
, say ’start.bash’, that take for arguments a line of the file
parameter. The script, among other things, load necessary
library like appropriate python, here ’main.py’ and run the
code (This is a diagrammatic view).

c a t s t a r t . bash

# ! / b i n / bash
s e t −e
. . .
module l o a d py thon
. . .
NumberDate=$2
IndexDa te =$3
NumberS ta t ion =$4
I n d e x S t a t i o n =$5
. . .
cd DirToCompute / Codes
py thon main . py NumberDate

IndexDa te NumberS ta t ion I n d e x S t a t i o n
. . .
cd
rm − r f DirToCompute

Then one defines the json jdl file (job description lan-
guage), say ’processingSeismogram.jdl’.

c a t p r o c e s s i n g S e i s m o g r a m . j d l

{
" name " : " t e s t _ p r o c e s s i n g " ,
" r e s o u r c e s " : " c o r e =1" ,
" e x e c _ f i l e " : "$HOME/ s t a r t . bash " ,
" p a r a m _ f i l e " : " param . t x t " ,
" t y p e " : " b e s t−e f f o r t " ,

" c l u s t e r s " : {

" c1 " : {
" p r o l o g u e " : [
s e c u r e _ i g e t −f / iRODSColl / s t a r t . bash ,
s e c u r e _ i g e t −f / iRODSColl / param . t x t ,
mkdir −p DirToCompute ,
s e c u r e _ i g e t − r f Codes DirToCompute ,
. . . o t h e r l i n e s o f commands ] ,
" p r o j e c t " : " w h i s p e r " ,
" w a l l t i m e " : " 0 0 : 2 0 : 0 0 "
} ,

" c2 " : {
" p r o l o g u e " : [
. . . l i n e s o f commands ] ,
" p r o j e c t " : " w h i s p e r " ,
" max_jobs " : " 4 5 0 " ,
" w a l l t i m e " : " 0 0 : 3 0 : 0 0 "
} ,

. . .
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}
. . .
}

Here the campaign named ’test_processing’ take only
one core. It run the file ’start.bash’ with the parameter file
’param.txt’ in mode besteffort. It uses the clusters named
’c1’ and ’c2’ for the project ’whisper’ with the duration de-
fined by ’walltime’. In the prologue, we retrieve script and
the parameter file on iRODS as well as the code ’Codes’
on iRODS. One can add other parameters for each clusters
such that the maximum number of jobs runing at the same
time (the variable ’max_jobs’).

Concerning the package for the correlations (the second
part of the figure 2), we also add similar modules to re-
trieve on iRODS the subsets of seismograms that have been
treated. In order to compute all the correlations that corre-
sponds to all the couple of seismograms we have two types
of processes. For a fix subset of dates, either we retrieve
one subset of stations and compute all the existing couples
for this subset, or either we retrieve two disjoint subsets of
stations and compute all the correlations where each seis-
mogram is in a different sublist. This distribution for the
computation of the correlations offers a good granularity.

With this kind of distribution for the stations, the trans-
fer bewteen iRODS and the computational node becomes
proportional to the distribution, i.e. the number of sublists
of stations. Therefore we have to maximize the distribu-
tion of the dates and minimize it for the stations in order
to obtain a reasonable walltime. Note that it is possible to
improve the transfert. However, a fairly simple improve-
ment have to effect that the distribution become dependent
on the distributed architecture of computation. In order to
keep genericity of the codes we do not change this aspect.

Moreover, special attention was given to selecting the
size of files to transfer with iRODS. We do not store each
correlation separately, we group them into dictionary to
achieve file sizes between 100MB and 500MB most of the
time. This order of magnitude seems appropriate for the in-
frastructure iRODS. For simplicity, we build the grouping
according to the parameters of the distribution. This allows
to improve the transfer performance. However, unlike a flat
architecture, this forced us to develop codes to retrieve the
data. Analysis of some subset of correlations (the 3rd step
of the figure 2) may request transfer much more than de-
sired.

The mode besteffort also increases the transfert of data
because some job are killed and are submitted in an other
place. Moreover in some cases, such that a big walltime,
we add new steps of iRODS storage for the process in order
to store certain intermediate calculation (It is not the case
for the correlations because of the good granularity). Note
that this may represent a significant development effort.

We focus now on the Japanese computation. With the
optimizations described in section 2 and the data-grid en-
vironment, the computation of 350 millions individual cor-
relations of the Japanese Network (especially the dense Hi-

Net Network). are done at most a few days. This is a big
change that can test many treatments in order to find infor-
mation in the noise. More precisely the seismogram pro-
cessing of the Japanese network take half day here (depend
obiously on the resampling). Depending on the types of the
correlations (stacking, overlap) and also of the availability
of the grid (we suppose an usual case here), the computa-
tion of all the correlations take between 9h and 20h. The
’iget’ i-commands corresponds approximatively to 11TB
(with the best-effort mode, some transfers are carried out
several times) whereas the ’iput’ i-command corresponds
here to 3.3TB.

We illustrate with the figure 9, one of the analysis of the
correlations that represents an image of change of the ve-
locity of seismic waves in Japan (the giant 2011 Tohoku
earthquake, see [3]).

Figure 9

4.2 Infrastructure CIMENT experiences
With the Whisper project, as with some few other projects,
we had the opportunity to test and improve the CIMENT
IT infrastructure for a data-intensive case. Note also that
the data-grid environment is used by many other scientifics
projects such that research in Particle Physics [1] or ge-
nomics research [10]. For this kind of project, data man-
agement and input/output data flows are a big part of the
process regarding the actual computing time for the anal-
ysis. With a grid of several thousands cpu-cores, such a
project may act as a real distributed attack against our stor-
age infrastructures! So, as a first consequence of the de-
ployment of such computing jobs, we had to implement
new "limiting" functionnalities into our infrastructure soft-
wares or configurations. For example, CiGri is able to
limit the number of submitted jobs for a given campaign
on a given cluster if we know that the jobs concurrency can
overload our iRODS infrastructure. As another example,
iRODS may be configured to limit the number of simul-
taneous connections. But in this case, the i-command re-
turns with an error and the job may be aborted. There’s a
"–retry" optionnal argument, but with a high level of con-
currency, it increases the load and may completely exhaust
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the servers with a ton of retry queries. We then developped
a wrapper for the i-commands, called secure-i-commands
that implements a retry on some specific error cases with
an incremental delay to prevent from flooding the iRODS
servers. Of course, this can be improved as this leads to
a waste of computing resources because they are reserved
and not used while waiting. But this is at least a security
improvement in case the highler level decision processes
does not work as expected because of their high complex-
ity.

Regarding the iRODS choice, it was made on the fea-
tures: we need a distributed file system suitable for a dis-
tributed and heterogeneous grid infrastructure composed
of several supercomputers having gateways to reach each-
other; and we need a unique namespace. We also need
the sites to be independent of the others. It means that a
site can be out of service, the data available in another site
should still be available. The only case when the entire in-
frastructure is broken is when the centralized meta-catalog
is not reachable. But this part of the infrastructure is lo-
cated in a highly available datacenter and we may also im-
plement a HA meta-catalog. As it is not posix compliant,
iRODS allows more control for the admins and the users.
For example, replication can be completely controlled. In
our case, we do an automatic replication (staging) of the
files when they are got from site A or B to site C, for net-
work optimization. But the user may also want to replicate
on every sites to get better performances with big jobs cam-
paigns spread on every clusters of the grid. Also better than
a posix filesystem, the users can add custom meta-data to
the files and collections allowing them to retrieve data by
making some queries with an SQL-like syntax.

Another interesting aspect of iRODS for a project like
Whisper is that we can register into iRODS data that are
stored on a dedicated posix filesystem. For example, the
Japanese raw data were stored on external storage disks
that we copied through USB directly onto a server dedi-
cated to the project. We then added this server as an iRODS
resource and then registered the data to make them avail-
able to the whole grid. In this example, we also used the
access rules to set up a read/write policy for the only con-
cerned users.
Open problems and future works

• iRODS has a different transfert policy for "small" files
(under 32MB). In this case, files are transiting through
the server used by the client instead of a direct con-
nection between the original resource and the client.
In a high load context, with a lot of small file trans-
fers, it leads to an overload of the concerned server. A
possible solution to that problem could be to share the
load among the servers of a given site. For that, we
can imagine using a virtual ip address making a round
robind on all the ip addresses of the servers of the site.

• We issued some network overloads: automatic stag-
ing, as set up for a site that has a lower bandwidth than

the others may result in a lot of background iRODS
processes doing the replication even when connection
rate limit is set up on the servers and even when iget
commands are aborted. Under some circumstances,
it may completely overload a 1Gb/s ethernet link be-
tween 2 sites. Another overload encountered was
when the user activates the -Q (use RBUDP (data-
gram) protocol for the data transfer) option. Even
from a single node, this option can cause dramatic
overload of network interfaces. Maybe iRODS should
implement better rate limit control.

• We made some preliminary tests of the python bind-
ings of the iRODS API (called Pyrods). We noticed
that when you have a lot of small operations to do
from a python code (like in the Whisper project), ei-
ther creating a lot of small files, or meta-data, Py-
rods may be 10 times faster than a shell loop with i-
commands inside. We are now making code examples
for the other users to be able to take benefits from this
method that would have been useful for the Whisper
project.

• We also noticed that a multiprocess program made
with python and the PyRODS API improves the speed
of a recursive transfer of a collection containing a lot
of small files (thousands of 64kb files for example).

5 Conclusion
Despite the problems that have been solved or not, we are
currently able to process terabytes of data within a few
hours.

Note also that the local data grid (iRODS+CiGri) and
more generally the platform of CIMENT as well as the
OAR tools permit for the Whisper project to produce sig-
nificant new results for seismological community in a re-
duced delay.

Lot of improvements that involve automatization of the
processing, and also concerning the scientific workflow
have constantly been made. We may say that Whis-
per+CiGri+iRODS is a great success!
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ABSTRACT

This paper describes activities on the research IT infrastructure development project at the University of Jyväskylä. 
The main contribution is a cross-platform iRODS client application with a rich graphical user interface. The client 
application is fully native and builds from a single C++ codebase on all of the platforms on which iRODS 4.0 is 
supported. The application has a responsive UI with native look & feel and enables drag & drop integration to the 
desktop. This is made possible by basing the development of the client application on top of the Qt 5 framework 
and an object-oriented C++ framework for iRODS which is being developed with the client application. The object-
oriented framework wraps around the native iRODS 4.0 C/C++ client API library and provides object-oriented 
interfaces to iRODS protocol operations e.g. a fully object-oriented iRODS General Query (GenQuery) interface 
used by the client application has been implemented in this C++ framework. By developing on top of the native 
C/C++ iRODS API library, the plugin architecture of iRODS 4.0 can be fully leveraged in authentication (e.g. 
Kerberos) and network transport (e.g. SSL) modules without any additional complexity.

Keywords
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INTRODUCTION

There is an increasing demand for IT services for researchers that span the full ”stack” of storage and computation 
infrastructure for research data with metadata support and widely available interfaces for information extraction 
and reporting. On one hand, the scope of computationally intensive datasets currently spans all fields of research 
necessitating university-wide support for scientific computing and research data management. On the other hand, 
funders and institutions (e.g. EU’s Horizon 2020) have expressed an increased demand for opening all research mate-
rials related to publicly funded research. This can be seen as a continuation of recent development with institutional 
repositories (e.g. DSpace, EPrints, and Fedora) supporting the ”green” way of Open Access for publications.

In Finland, the National Research Data Initiative (TTA) and Open Science and Research (ATT) projects have devel-
oped research data infrastructure and promoted open access. The Ministry of Education and Culture is considering 
to include openness (at least for publications) as an element in the funding model for the Finnish universities [1], 
pushing the need to get (meta)data from research data as well. In this paper, we describe research IT infrastructure 
development at the University of Jyväskylä, focusing on iRODS. An iRODS client application is introduced and briefly 
evaluated with respect to planned data management processes. Finally, prospects for development are outlined.

RESEARCH IT INFRASTRUCTURE DEVELOPMENT AT THE UNIVERSITY OF JYVÄSKYLÄ

In this paper, we describe some of the recent development efforts related to research IT infrastructure at the University 
of Jyväskylä. The discussion is focused on the project codenamed ”Kanki” (=meaning e.g. in Finnish ”a rod” and 
in Japanese ”cold” or ”frost”) – a native cross-platform iRODS client application with a rich graphical user interface
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based on Qt1 framework. The client application is targeted towards researchers of various disciplines as well as other
interest groups utilizing or curating research data (e.g. librarians), possibly lacking the expertise to use the iRODS
command-line interface. Our client application will enable the users to utilize the full power of an iRODS data grid
complete with powerful data management functions such as schema management and validation of metadata.

Background

There is a relatively long tradition related to the advancement of open access and research data management at the
University of Jyväskylä. Theses were published online by the Jyväskylä University Library as early as 1997, leading
to the introduction of the DSpace-based institutional repository JYX2 in 2008 [2]. A university-wide working group
for parallel publishing and administration of research material was commenced in 2009, resulting in the development
of a mechanism for parallel publishing of publication files from the research information system TUTKA3 to the
institutional repository. Even though the working group had identified various types of research materials that should
be preserved, support for managing research data in a standardized way (considering both tools and data-related
processes) was incoherent, differing between research groups. It proved to be of considerable difficulty to advance
standard data management practices when the research itself is done independently of administrative processes, often
using specialized tools and software for e.g. analysis or other parallel computation on datasets. Many older research
materials are still in analogue form – and even those in digital form are often stored in either removable media,
portable hard drives or in the best case – file servers. Some faculty-specific solutions such as YouData4 are in use,
but most datasets lack standardized metadata descriptions, complicating data discovery and reuse.

Recently, University of Jyväskylä has taken an active approach on managing research data and infrastructures. In
September 2014, JYU was the first Finnish university to have published its official principles for research data man-
agement [3]. The development project for research IT infrastructure and research data management has been active
in 2013-2015. Project activities include the adoption and integration of the Dataverse Network5, the development
of a university-wide iRODS grid infrastructure for research data storage, and the surveying of essential datasets in
the faculties for which to develop iRODS data management services. The iRODS platform has been selected as the
primary focus of development activities in the project. Overall architecture is based on separated responsibilities
between the systems. Even though some institutional repositories have been augmented for publishing research data,
support for managing the data during the whole research life cycle is inadequate (unless extensively customized,
which can be a problem from maintenance point of view). The metadata used in research datasets has considerably
more variation compared to metadata typically used in the repositories (e.g. Dublin Core). Providing access to data
in repositories is no longer enough since people want to do things with that data [4]. iRODS responds to this need
internally. Dataverse has potential to respond to the external needs with citable datasets and analysis functionality.

The iRODS-related development activities at JYU include the development of a secure, scalable, high-performance,
high-availability iRODS data grid infrastructure for university-wide deployment with infastructure automation, the
development of server-side iRODS modules for e.g. metadata autoextraction and data anonymization, and finally,
the development of a native cross-platform iRODS GUI client to enable schema-based metadata management with
validation capabilities and to serve as a platform for future iRODS-based applications. A common metadata model
for JYU research data management is being developed with JYU Library, based on national specifications. The
Finnish national research data storage service IDA6 – maintained by the Finnish IT Center for Science CSC – is
built on top of iRODS as well. Collaboration with the IDA development has been planned. The overall goal of the
project is in the advancement of the IT service culture to improve the acceptance of centralized services among the
researchers and to be able to provide added value compared to isolated legacy solutions.

1http://www.qt.io/
2https://jyx.jyu.fi/
3http://tutka.jyu.fi/
4http://youdata.it.jyu.fi/
5https://dvn.jyu.fi/
6https://www.tdata.fi/en/ida
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Infrastructure Development

The IT infrastructure at the University of Jyväskylä is a largely consolidated one with most of its servers residing as
virtual machines in a VMware vSphere 5 cluster. Separate physical servers are being used alongside virtualization for
performance critical computing or I/O-intensive applications while strongly favouring virtual servers. Shared storage
is being provided by EMC VNX Series SAN/NAS unified storage arrays connected to Fibre Channel and 10 Gbps
Converged Enhanced Ethernet fabrics. After initial evaluation and testing of iRODS it was promptly concluded that
a single deployment of an iRODS iCAT server is insufficient to provide the performance targeted for scalable use and
would not be highly available without the use of (performance limiting) hardware virtualization. This prompted the
design of a scalable and inherently highly available infrastructure for iRODS iCAT deployment at JYU.

Figure 1. Illustration of the scalable HA model for JYU iRODS deployment.

A critical point from performance point of view and simultaneously a single point of failure is the database server 
used to host the iRODS iCAT database. For the database instance to be able to both scale out from a single 
server, and to withstand a loss of a server without compromising the integrity of the database – a properly clustered 
database solution is a necessity. An Oracle RAC database high-availability cluster solution wasn’t considered feasible 
because of the prohibitive pricing per processor core of Oracle database server products. After evaluating the possible 
alternatives (e.g. HAIRS [5]) for a high-availability load balanced iRODS iCAT cluster we propose the following model 
for a scalable iRODS iCAT deployment (Figure 1). The solution is built on a highly available pooled configuration of a 
PostgreSQL 9 database, using PostgreSQL 9 streaming replication and PgPool-II for load balancing and HA failover 
on top. The system can be built on configurations with at least two servers and scales horizontally on read-only 
transaction performance and is able to withstand the loss of a single server and having no single point of failure.

On the very lowest level of the configuration are the PostgreSQL 9 database server instances, one initially set up as 
the primary database master, the other ones as read-only database replicas, which receive streaming replication from 
the master database. On top of the PostgreSQL 9 database server instances is PgPool-II, which is configured to a 
HA configuration via the built-in watchdog facility. PgPool-II is configured on both or all of the iCAT servers to 
share an IP address (in an HA subnet available in a private VLAN shown to the iRODS iCAT servers) such that if 
the current master PgPool-II host goes down there will be an escalation procedure to select a new PgPool-II master 
host which will take over the virtual PostgreSQL pool IP address in the HA subnet. The high-availability PgPool-II 
configuration – resident in all of the iRODS iCAT servers connected via the HA subnet – is aware of the state and 
health of all of the underying database servers and in the case of a failover event (master PostgreSQL database 
backend health check failed) executes a recovery operation to an available PostgreSQL 9 hot standby server, which 
becomes the new master of the database as ordered by PgPool-II and starts accepting read-write transactions to the 
database. The recovery process sets the other server(s) as read-only hot standby replicas of the new master database.
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The iRODS iCAT server(s) are set up on top of the PgPool-II managed database cluster such that the iCAT server(s)
are set to use a pooled database available at the pool virtual IP. This way the iRODS iCAT may utilize the entire
database cluster for increased performance, since the PgPool-II middleware load balances the read-only transactions
throughout the cluster. Read-write transactions are sent only to the master database and synced to the other nodes
with streaming replication. Some load balancing of the iRODS connections can be accomplished using a simple DNS
round-robin set up with the caveat that iRODS itself is not DNS round-robin aware. Additionally the DNS name
service caching in use in common operating systems hinders with the round-robin of resolved IP addresses. We hope
that in the future this aspect would be addressed in the development of iRODS. For the time being this solution
provides some load balancing between clients of iRODS connections to two or more iRODS iCAT servers.

The deployment of new iRODS instances to a HA pair of servers is being done at JYU with Ansible infrastructure
automation. The setup has been parametrized such that a new iRODS instance can be specified simply by Ansible
group variables for the group of iRODS iCAT servers and host variables to specify the hosts themselves. This
is believed to be useful not only for quick deployment of development servers but also for deploying new iRODS
instances for special use cases. For example, a specialized instance of iRODS deployment is in planning stage for the
new Jyväskylä Center for Interdisciplinary Brain Research7.

PROJECT KANKI – A NATIVE CROSS-PLATFORM GUI CLIENT APPLICATION FOR IRODS

During the research IT infrastructure development project several needs have risen for iRODS-based research data
(andmetadata) management. These prompted the need for iRODS user interface development. The utmost important
of these was the need for secure data and metadata transfer. Other specific needs not properly accomodated by other
existing freely available solutions included the graphical iRODS search tool with arbitrary search criteria formation for
data discovery, metadata schema management with visual namespace and attribute views and readiness for metadata
schema validation for data quality assurance. Some open source projects provided these features partially, but other
projects such as Davis8 were discontinued and thus rendered unsupported after the introduction of iRODS 4.0.

About the Development

To implement these user interface features for iRODS-based research data management at JYU, a software project
was started – eventually codenamed ”Kanki” – to build an iRODS 4.0 compatible client application with integration
to Kerberos authentication, the option to use iRODS 4.0 SSL secured connections, to develop extensible data and
metadata management features, and to serve as a framework for iRODS integration to different kinds of scientific
software. The introduction of iRODS 4.0 and the incorporation of the modular architecture in both iRODS 4.0 server
and client side made the native iRODS client library more attractive for client-side development than any of the other
options available. The possibility to use e.g. Kerberos authentication or SSL transports in the iRODS connections
out-of-the-box – without having to resort to e.g. IPSec for transport layer security – made a convincing case for C++
to be used also for client-side development instead of more popular alternatives like Java or Python.

Since the goal of the development was to produce a cross-platform application while still remaining fully native, the
widely adopted Qt framework proved to be an excellent choice as a development platform. At the University of
Jyväskylä we deploy all of the major platforms i.e. Linux, Mac OS X and Windows, with Red Hat Enterprise Linux
being the prominent Linux distribution with a campus license. For developing a cross-platform application targeted
to all these platforms, the Qt framework provides exceptional support for compiling from a single codebase.

Challenges

A working build configuration for Mac OS X took some effort since the newer versions of OS X, namely versions
later than OS X 10.8 Lion caused some difficulties for building iRODS. The version of the boost libraries compatible
with iRODS 4.0 proved to be incompatible with the OS X provided clang compiler. GCC 4.8 or later proved to be a

7http://cibr.jyu.fi/
8https://code.google.com/p/webdavis/

Page 24

http://cibr.jyu.fi/
https://code.google.com/p/webdavis/


working solution. There were other issues as well caused by a dynamic linker symbol conflict with OS X bundled MD5
library functions and ones provided with iRODS. The most severe consequence of this seemed to be the inability to
use the native auth module in OS X builds of iRODS 4.0, since the runtime dynamic linker resolved some of the MD5
symbols to the iRODS bundled ones and others to the OS X provided ones, causing the corruption of the memory
buffer used to compute the MD5 challenge response. This was first worked around by not using native authentication
– which is not to be used at JYU iRODS at all anyway. A workaround solution was found for the issue by changing
linkage of the auth module in a way which resolves the symbol conflict. Currently, this issue has been resolved in the
iRODS master branch.

Windows still remains as an unsupported platform since iRODS 4.0 isn’t Windows compatible at the time of writing
of this paper. With Windows support added to the iRODS codebase our client can be built on Windows as well.

Features

The client (see Figure 2) is intended to eventually serve as a bona fide alternative user interface to iRODS icommands
– the reference user interface for iRODS. Implementing all of this functionality in a native ”desktop” application will
enable the users to harness the full power of iRODS with native application performance and the usability of a
graphical user interface.

Figure 2. iRODS Grid Browser window in the client application.

Additionally, the client has some specialized features for metadata management not found in currently available
iRODS clients. Metadata schema management has been implemented with features like namespace and attribute
management. Below is an example of attribute descriptions in the XML metadata schema configuration.

<irods:namespace prefix="fi.jyu.irods." label="University of Jyväskylä">
<irods:attribute name="metadata.modified" unit="false" editable="false">

<irods:label>Metadata Modification Time</irods:label>
<irods:displayFilter type="regExp"><irods:regExpRule>(\d+)-(\d+)-(\d+).(\d+):(\d+):(\d+)</irods:regExpRule>
<irods:regExpFilter>\3.\2.\1 \4:\5:\6</irods:regExpFilter></irods:displayFilter>

</irods:attribute>
<irods:attribute name="language" unit="false" editable="true">

<irods:label>Language</irods:label><irods:values strict="true">
<irods:value name="ISO6392:FIN"><irods:label>Finnish</irods:label></irods:value>
<irods:value name="ISO6392:ENG"><irods:label>English</irods:label></irods:value>
<irods:defaultValue>ISO6392:ENG</irods:defaultValue>

</irods:values></irods:attribute>
</irods:namespace>

In the metadata schema configuration namespaces are identified along with attributes defined in the namespaces. 
Namespaces and attributes can be defined having labels for the ease of use of the metadata editor. Additionally,
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attributes can be defined with ”display filters” which transform the attribute value stored in the iCAT database to a
more human-readable form. Currently only regular expression display filters are implemented but others are planned
such as a GenQuery filter for translating an attribute with a GenQuery and a JSON filter for transforming JSON
encoded attributes into a more visual form for display purposes. A validator interface is planned for the metadata
editor enabling client-side validation of metadata entries to the iCAT database e.g with the defintion of allowed values
for the attribute in the metadata schema the editor would present the user with a drop-down list of acceptable values.
Figure 3 views the metadata manager as currently implemented.

Figure 3. iRODS Metadata Manager windows in the client application.

At the core of the client application is an object-oriented interface for iRODS which wraps around the native C/C++
iRODS API. It is planned that these iRODS specific interface classes are to form an object-oriented C++ iRODS
framework. Below is an example of building and executing a GenQuery for retrieving metadata AVU triplets for
either a data object or a collection. The code sample is taken from the metadata model class of the client application.

Kanki::RodsGenQuery metaQuery(this->conn);
int status = 0;
if (this->objDatum->objType == DATA_OBJ_T) {

metaQuery.addQueryAttribute(COL_META_DATA_ATTR_NAME);
metaQuery.addQueryAttribute(COL_META_DATA_ATTR_VALUE);
metaQuery.addQueryAttribute(COL_META_DATA_ATTR_UNITS);

}
else if (this->objDatum->objType == COLL_OBJ_T) {

metaQuery.addQueryAttribute(COL_META_COLL_ATTR_NAME);
metaQuery.addQueryAttribute(COL_META_COLL_ATTR_VALUE);
metaQuery.addQueryAttribute(COL_META_COLL_ATTR_UNITS);

}
// add a query condition for object name
metaQuery.addQueryCondition(this->objDatum->objType == DATA_OBJ_T ? COL_DATA_NAME : COL_COLL_NAME,

Kanki::RodsGenQuery::isEqual, this->objDatum->objName);
// if we are querying a data object also specify collection path
if (this->objDatum->objType == DATA_OBJ_T)

metaQuery.addQueryCondition(COL_COLL_NAME, Kanki::RodsGenQuery::isEqual, this->objDatum->collPath);
// execute genquery and get status code from iRODS API
if ((status = metaQuery.execute()) < 0) {

// error reporting code
}
else {

std::vector<std::string> names = metaQuery.getResultSet(0);
std::vector<std::string> values = metaQuery.getResultSet(1);
std::vector<std::string> units = metaQuery.getResultSet(2);

}

Page 26



DISCUSSION

Our main concern with iRODS is related to metadata management – both in terms of metadata quality assurance
and the scope of the supported metadata structures. It has been observed that in general, at least 5% of the
information present in manually created databases is erroneous [6]. Lessons learned in the institutional repositories
domain from self-archiving of publications should be taken into account [7] - researchers should not be responsible
for filling metadata fields alone, but as a collaborative process assisted by librarians. On one hand, it is important
to allow researchers to edit the metadata entered into the system to get the first-hand insight to the datasets, but it
is up to the librarians to ensure that the metadata is in a consistent form, and, if necessary, to ”clean” the metadata
afterwards. An essential requirement is that the metadata resides in a centralized repository such that two-way
synchronizations (and in particular duplicate manual entries) are kept at minimum (i.e. master data is managed) and
metadata is reused when possible. Features of our iRODS infrastructure facilitate this goal by preserving information
about the latest metadata update (user, timestamp and the metadata UUID), extensible validation functionality,
and cascading collection-level metadata to data objects. Practices that yet need to be implemented include duplicate
detection, metadata batch editing, and delete/replace on list-like metadata – an effective way to clean up records
with misspellings, but to be used with caution [8].

Scoping the supported metadata structures is related to metadata quality. If one is confined to a standard minimum
metadata set, object-specific metadata can be perceived as a small set of plain-text fields, resulting to little attention
in metadata validation. This alone can be a quality problem if conventions are not followed – especially if data is
aggregated from multiple sources [7]. However, depending on the domain, essential metadata may be much more
involved, containing diverse compound fields (e.g. MARC in the library domain), or multiple entity classes that
may refer to each other. An example is the domain of cultural heritage, where a trend of shifting from item-centric
cataloging (physical objects as the primary entities) to event-centric documentation (e.g. CIDOC CRM – events
related to the objects) is taking place [9]. Individual fields may be too coarse-grained to represent events, but
compound fields specified in a JSON-like structure may be part of the solution. For selected fields, utilization of
ontologies (e.g. controlled keywords in the Finnish national Finto service) and other external sources (e.g. name
disambiguation with ORCID identifiers) becomes relevant, but needs additional development. One prospect might be
declaring special data objects contained in iRODS as internally controlled authorities for recurrent, shared metadata
(represented as a look-up list), akin to the solution applied in DSpace-CRIS9: entities function as authorities for item
metadata [10].

As a development framework, Qt provides several benefits compared to both OS-specific (i.e. iExplore [11]) or
even web-based solutions. Unified look and feel could be accomplished with other languages or frameworks, but
C++ -based compilation and direct linking to iRODS and system libraries provides the best possible performance.
Web clients such as iDrop10 contain useful functionality from data access perspective (no need to install additional
software) and we except them to be used for some use cases. However, we argue that a purely web-based client is
insufficient for more involved data management (i.e. performing computation on multiple versions of the dataset with
close integration to local filesystem). iDrop does not provide schema-specific validation which is a problem from data
quality perspective. Another problem with web-based interfaces is – despite recent HTML5 improvements – that
file management cannot be implemented with explorer -like capabilities. Even though it is possible to implement
drag’n’drop support from local filesystem to browser, it would be limited to file transfer. Mass edit functions,
versioning, or 2-way synchronization between web-based view and local filesystem would need an additional plug-in
or client application. Therefore, a cross-platform native client application is a critical factor to improve the utilization
rate of the system since most users already expect a user experience as streamlined (but lacking in metadata, validation,
or security aspects) as in popular cloud-based file-sharing services such as Dropbox or Google Drive.

9http://cineca.github.io/dspace-cris/
10https://github.com/DICE-UNC/idrop
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CONCLUSION

Future prospects with our IT infrastructure development project include increased integration – both on the storage
and application levels. JYU iRODS could be used as a general purpose storage middleware beyond research data for
e.g. the JYU digitization center with metadata imported from the book scanner workflow. The institutional repository
JYX would also benefit from iRODS storage in contrast to typical filesystem-based asset store. Potential application-
level integrations include connections from iRODS to Dataverse for publishing datasets, and the Current Research
Information System (CRIS – currently in procurement at JYU [12]) . Whereas an institutional repository, iRODS or
Dataverse are used to store the outputs of a research project, a CRIS system provides information about the research
projects themselves. This includes metadata related to publications and project-related documentation (e.g. research
plans, funding decisions). A CRIS could be used as a data hub combining information about research infrastructures,
projects, and outputs – used for aggregating metadata from other sources (i.e. bibliographic databases) as well as
feeding it to other systems, such as a data warehouse, an institutional repository, or an iRODS grid.

The development of our client is still at early stages. The iRODS infrastructure and our client have been presented
to other Finnish HEIs and the National IT Center for Science CSC at the National IT Days for Higher Education
(IT-päivät in Finnish) and other occasions. Our solution has provoked interest, showing potential to be of use in
other universities as well as IT services operated by CSC. We intend the development process to be a collaborative
effort and plan to publish the code under an open source licence. We welcome suggestions regarding the features for
the UI, validation, and data description format and hope that the software will be utilized in other institutions.
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ABSTRACT

We describe a new development in the next release of iRODS. The pluggable rule engine architecture allows us 
to easily create new rule engines as plugins and run multiple rule engines concurrently. The pluggable rule engine 
architecture allows easy implementation and maintenance of rule engine plugin code and offers significant performance 
gains in some use cases. The pluggable rule engine architecture enables modular incorporation of features from other 
programming languages, allows efficient auditing of interactions between user-defined rules and the iRODS system, 
and supports full interoperability between rules and libraries written in different languages. This design allows us 
to easily incorporate libraries designed for different programming languages, for example, Python, C++, etc., into 
the policy sets, significantly enhancing the capabilities of iRODS without syntactic overhead. This new architecture 
enables a wide range of important applications including auditing, indexing, and modular distribution of policies. We 
demonstrate how to create the Python rule engine plugin and how to create user defined policy plugins.

Keywords

Pluggable Policy, Rule Engine, Plugin Architecture

INTRODUCTION

In this paper, we are going to describe a new development in the next release of iRODS. The pluggable rule engine 
architecture allows us to easily create new rule engines as plugins and run multiple rule engines concurrently. The 
pluggable rule engine architecture allows easy implementation and maintenance of rule engine plugin code and offers 
significant performance gains in some use cases. The pluggable rule engine architecture enables modular incorporation 
of features from other programming languages, allows efficient auditing of interactions of user-defined rules and the 
iRODS system, and supports full interoperability between rules and libraries written in different languages. This 
design allows us to easily incorporate libraries designed for different programming languages, for example, Python, 
C++, etc., into the policy sets, significantly enhancing the capabilities of iRODS without syntactic overhead. This new 
architecture enables a wide range of important applications including auditing, indexing, and modular distribution 
of policies.

Users of iRODS have expressed the following areas of improvement:

iRODS UGM 2015 June 10-11, 2015, Chapel Hill, NC
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• customization of error handling in pre and post PEPs.

• calling microservices written in other languages directly.

• native performance for event tracking rules.

• modular distribution of policies.

• full auditing of data access operations.

• reduce manual change when upgrading.

• new policy enforcement points.

The pluggable rule engine architecture addresses these challenges.

THE DESIGN

In this section, we overview the key designs in the pluggable rule engine architecture.

iRODS Features

iRODS supports a wide range of plugin types. This allows the core iRODS to be independent from the components

that it uses. For example, the database plugin allows iRODS to use different databases without changing the core

code. Each plugin has a set of defined operations that it has to provide. The core interacts with plugins only through

those operations. One benefit of this design is that we can easily capture all state changing operations by looking at

plugin operations. And we can show that such capture is complete in the following sense. If we want to capture all

database operations, we only need to look at database plugin operations. Because of the ignorance of the underlying

implementation of these operations, the core cannot perform any additional operations than those provided by the

plugin architecture. Therefore, if we capture all operations in the plugin architecture, we capture all state changing

operations.

In iRODS, a pair of pre and post PEPs are automatically generated for every defined plugin operation. This way we

ensure that all policy enforcement points are present. Having the capability to write policies for every state changing

operation, we make the complete information about each operation available to the PEPs by making the argument

and environment in which the operation is called available to the PEPs. This way the PEPs can determine what to
do based on this information.

Formally speaking, let Op denote the set of plugin operations, and Act denote the set of actions, with

Op ⊂ Act

Let f denote the function that generates an action from a plugin operation. For example, given a plugin operation,

the plugin architecture generates a PEP-added action Act comprising of pre and post operations PEPs as follows:

f : Op → Act

f [op(args, env)] = preop(args, env); op(args, env); postop(args, env)

Here the sequential combination operator can be thought of as the monadic bind operator. This formalism can be

used to adopt a wide-range of applications. One of the disadvantages of this design is that the semantics of f must be

fixed in an iRODS implementation, for example, how the error is handled. And the particular form f lacks principal

error handling semantics, i.e., one which fits all of our users’ use cases by just varying pre and post PEPs. For

example, should we make op to be skipped if preop fails? Should we still call postop? This problem can be solved by

providing a generalization that can be customized by plugins.
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Pluggable Rule Engine Architecture

The pluggable rule engine architecture generalizes the current design and is fully backward compatible. The design

provides a global policy enforcement that can be further customized for different semantics.

An example is that you can have error handling semantics encapsulated in a plugin, and by installing that plugin,

you enable those error handling semantics. This requires the plugin architecture to load multiple rule engine plugins

at the same time, and in a way that one plugin may provide semantics for another plugin.

Given a set of plugin operations, the pluggable rule engine architecture generates a PEP-added action Act as follows:

f : Op → Act

f [op(args, env)] = pep(op, args, env)

To recover the default behavior, we can define pep as

pep : Op × Args × Env → Act

pep[op, args, env] = preop(args, env); op(args, env); postop(args, env)

We can define different error handling semantics as follows:

Skip postop if preop fails:

pep1 : Op × Args × Env → Act

pep[op, args, env] = if(preop(args, env) >= 0){op(args, env); postop(args, env)}

Run postop if preop fails:

pep2 : Op × Args × Env → Act

pep[op, args, env] = if(preop(args, env) >= 0){op(args, env)}; postop(args, env)

This way the rule engines form a hierarchy, with rule engines gradually refining the semantics of plugin operations.

We can define such a hierarchy so that it is fully compatible with the current semantics, with the current rule engine

at the bottom of the hierarchy, so that all existing rules run as expected. We can also, when new use cases arise,

define a different set of plugins that implement different semantics, without changing the core code. This gives our

users the flexibility to implement their policies.

Another challenge is the inter-rule-engine-call (IREC). Each rule engine provides a set of rules that it defines. Rules

defined in one rule engine should be able to call rules defined in another rule engine. This is done through a universal

callback function. The universal callback function is the only point of entry from the rule engine plugin to the iRODS

core system. It handles all operations including accessing state information, accessing session variables, and the

IREC. The general format of a callback is

fn(args)

where fn is a callback name and args is a list of arguments. In the case of IREC, fn is the name of the rule and

args are the arguments to the rule. Compared to exposing a server API to the rule engine plugin, this approach

has several advantages: First, this enables calling functions written in other programming languages as if they are

microservices. Second, it allows us to add new APIs without changing the rule engine plugin interface. Third, we

can add a pair of PEPs to this operation, which is sufficient for monitoring all interactions from the rule engine back

to the core.
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IMPLEMENTATION

The rule engine plugin architecture allows loading of multiple types of rule engine plugins, and multiple instances of

each type of rule engine plugin. All instances share the same plugin object, but with different contexts. This way we

don’t have to load a rule engine plugin multiple times.

The rule engine contains the following four operations given in C++:

template<typename T>

irods:error start(T&);

template<typename T>

irods::error stop(T&);

template<typename T>

irods::error rule_exists(std::string, T&, bool&);

template<typename T>

irods::error exec_rule(std::string, T&, std::list<boost::any>&, callback);

The start function is called when the rule engine plugin is started. This happens when an iRODS process starts.

The stop function is called when the rule engine is stopped. This happens when an iRODS process stops. The

parameter is an object that can be used to pass data to and from these functions as well as other functions in the

plugin operation. It can be thought of as the context. In fact, the state information can only be stored in this object.

When the rule engine plugin manager loads more than one instance of the same plugin, the only object that is newly

created is this object.

The rule exists function accepts a rule name, a context, and writes back whether the rule exists in this plugin.

The exec rule function accepts a rule name, a context, a list of arguments, and a callback object. The list of

arguments are boxed by boost::any, and stored in a std::list container. This allows us to load the function in a

dynamically linked library. The callback object is a C++ Callable, with the following interface method:

template<typename ...As>

irods::error operator()(std::string, As&&...);

The first parameter is fn. The second, third, etc. parameters are args.

One may have noticed that the callback interface expects raw values whereas the exec rule function expects a list

of values boxed by boost::any. Why do we design them like this? Ideally we would like to always use raw values to

maximize efficiency, but this would require templates. We can accept raw parameters for the callback interface because

it is statically compiled. But to allow the exec rule to be loaded from a dynamic library, we cannot use templates.

Because C++ templates are expanded at compile time, we cannot put a template function in a dynamically linked

library that is linked to the main program at runtime. Wouldn’t this be inefficient if the rule engine plugin simply

wants pass the list of incoming arguments to the callback? The answer is to use the unpack construct as follows:

irods::error exec_rule(std::string _rn, T& _re_ctx, std::list<boost::any>& _ps, callback _cb) {

cb(rn2, irods::unpack(_ps));

}

The unpack constructor is implemented so that the time complexity is O(1).

The default implementation comes with a default rule engine. The default rule engine only has the pep rule and

provides an implementation of the generalized PEP. It provides extended namespace support for the translation
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to the default semantics. Formally speaking, it implements the following function, given a list of n namespaces

nsi, i ∈ {1, . . . , n} (configured in server config.json)

pep : Op×Args× Env → Act

pep[op, args, env] = ns1preop(args, env); . . . nsnpreop(args, env);

op(args, env);nsnpostop(args, env); . . . ns1postop(args, env)

Here, for simplicity, we omitted error handling semantics.

By default, we have only one namespace which is ns1 = ””, which implements the default semantics. We can

implement different semantics outlined in the previous section by changing this plugin. We can add more namespaces

and keep the default semantics. For example, we can add in another namespace for auditing ns2 = ”audit ” or

indexing ns3 = ”index ”. The rules listen to the audit namespace. For example pre and post file read PEPs are

provided as follows:

audit pep resource read pre

audit pep resource read post

Rule engine plugins can be written to listen to those namespaces and provide the specific functionalities in a modular

fashion. When a set of specialized plugins are installed, we can switch on/off a feature by just changing which

namespaces are available.

APPLICATIONS
Python Rule Engine

We have created a proof of concept Python rule engine plugin. It allows users to implement PEPs directly in Python.

This provides an avenue for the rapid expansion in the functionality of iRODS deployments, by taking advantage of

the vast ecosystem of existing Python libraries as well as the large community of Python developers.

The plugin translates calls to exec rule into calls to Python functions, whose implementations are loaded from

/etc/irods/core.py, a Python code file. Users of the plugin are only required to write Python code, and are able

to use all features of the Python programming language, including importing arbitrary Python modules.

Because of the pluggable rule engine architecture, this means iRODS users will be able to implement all PEPs directly

in Python, or to call out to Python from other rule engine plugins, e.g. to extend the functionality of existing iRODS

rules.

Event Tracking

The audit plugin provides an asynchronous tracking mechanism for every operation and their arguments and environ-

ments in iRODS, thereby providing a complete log. It runs at native code speed. Because the PEPs are dynamically

generated, it supports any future plugin operation automatically. It allows the log to be sent to a remote system and

processed asynchronously1.

The rules listen to the audit namespace. To illustrate the implementation, a pre and post file read rule can be

provided as follows:

1currently under development
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audit_pep_resource_read_pre (...) {

writeLine("serverLog", ...);

}

audit_pep_resource_read_post (...) {

writeLine("serverLog",...);

}

In our implementation, these rules are implemented directly in C++ and therefore incur minimum overhead over

normal operations.

CONCLUSION

We described a new development in the next release of iRODS. The pluggable rule engine architecture allows us

to easily create new rule engines as plugins and run multiple rule engines concurrently. The pluggable rule engine

architecture allows easy implementation and maintenance of rule engine plugin code and offers significant performance

gains in some use cases. The pluggable rule engine architecture enables modular incorporation of features from other

programming languages, allows efficient auditing of interactions of user-defined rules and the iRODS system, and

supports full interoperability between rules and libraries written in different languages. This design allows us to easily

incorporate libraries designed for different programming languages, for example, Python, C++, etc., into the policy

sets, significantly enhancing the capabilities of iRODS without syntactic overhead. This new architecture enables a

wide range of important applications including auditing, indexing, and modular distribution of policies.
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ABSTRACT

The evolution of the data center and data has been dramatic in the last few years with the advent of cloud computing 
and the massive increase of data due to the Internet of Everything. The Integrated Rule-Oriented Data System 
(iRODS) helps in this changing world with virtualizing data storage resources regardless the location where the data 
is stored. This paper explains and demonstrates a library that extends the Qt abstract model interface to provide 
access to the iRODS data system from within the Qt framework. Qt is widely used for developing graphical user 
interface software applications that are display platform agnostic. This library intends to benefit Qt developers by 
enabling a transparent iRODS access. Moreover, it will allow developers to implement applications that access an 
iRODS data system to populate a single model that can be displayed as a standard Qt tree like structure.

Keywords

iRODS, storage, RODS library, Qt, RODEX.

1. INTRODUCTION

The data center has evolved dramatically in recent years due to the advent of the cloud computing paradigm, social 
network services, and e-commerce. This evolution has massively increased the amount of data to be managed in data 
centers. In this context, the Integrated Rule-Oriented Data System (iRODS) has been adopted for supporting data 
management. The IRODS environment is able to virtualize data storage resources regardless of the location where 
the data is stored as well as the kind of device the information is stored on.

IRODS is an open source platform for managing, sharing and integrating data. It has been widely adopted by 
organizations around the world. iRODS is released and maintained through the iRODS Consortium [1] which involves 
universities, research agencies, government, and commercial organizations. It aims to drive the continued development 
of iRODS platform, as well as support the fundraising, development, and expasion of the iRODS user community. 
iRODS is supported by CentOS, Debian and OpenSuse operating systems. Since iRODS is an open source platform, 
the developed library must also support other Linux distributions.

For using iRODS, a few basic client tools are available such as: iCommands and iRODS Explorer. However, developers 
that would like to implement C++ applications that communicate with iRODS do not have any framework to 
conduct easy communication nor support for the development of graphical user interfaces. Therefore, it is not easy 
for developers to integrate iRODS with other software. This paper proposes a library to reduce this gap by providing 
support for Qt framework developers to communicate with iRODS.

In the last few years, some research has been performed to allow the communication of different storage systems 
or file systems. iRODS adopted a proprietary protocol to conduct the communication between storage nodes and

iRODS UGM 2015 June 10-11, 2015, Chapel Hill, NC
[Author retains copyright.]
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clients. Therefore, the development of customized client tool or the adoption of general tools to access iRODS data is
difficult. The authors in [7] proposed other data transfer protocols such as WebSAV that is an open standard based

on HTTP protocol. A generic interface, named Davis, was implemented to consider that open standard protocol.

Davis is a WebDAV gateway to iRODS server regardless of its location. Besides that, experiments were conducted

to show that the proposed approach did not impact the iRODS performance.

The main goal of [8] is to enable grid systems to access data from any arbitrary data source and to be able to transfer

data between data sources with different protocols without the need of intermediate space such as a local storage

space. In order to accomplish that, the authors designed a generic file system access framework as a backend to the

GridFTP interface. The applicability of the proposed approach was demonstrated through a prototype named Griffin

that was developed. That prototype considers iRODS data grid system as an example of an arbitrary data source.

In [6], the authors propose a framework that integrates data grid engines and network to facilitate complex policy-

driven data operations. In order to test the proposed approach, the authors had combined OPenFlow rules with

iRODS rules to allow non network expert users to easily access and control the network using the iRODS interface.

Different from the previous papers, the main goal of this work is to provide a library that allows Qt developers to
implement a model that access the iRODS data system. Therefore, iRODS developers may adopt the proposed library

for developing graphical user interface software applications with Qt. In order to accomplish that, we developed a
mapping between iRODS API commands and Qt equivalents.

The proposed library extends QAbstractItemModel class and provides a model already integrated with the Qt mod-

el/view controller, Qt MVC, that access the iRODS data system. Qt is a framework widely used for developing

software applications with graphical user interface [2]. The adoption of the proposed library allows Qt developers

to implement applications that access iRODS data system through one sigle model that can be set to stardard Qt

views, such as Qt tree view, Qt list view and Qt table view.

This paper is organized as follows. Section 2 briefly present the basic concepts needed for a better understanding about

this work. Section 3 presents the developed library named QRODS. Section 4 describes an example implemented

that uses QRODS library. Section 5 concludes the paper and makes suggestions on future directions.

2. PRELIMINARIES

This section presents important concepts for a better understanding of QRODS library. First, a brief overview re-

lated to iRODS is presented. Next, some concepts regarding QAbstractItemModel class and Jargon API are discussed.

2.1 iRODS

iRODS has become a powerful, widely deployed system for managing significant amount of data that requires extend-

able metadata. Typical file systems provide only limited functionality for organizing data and a few (or none) for

adding to the metadata associated with the files retained. Additionally, file systems are unable to relate or structure

what limited metadata is available and provide only a platform from which to serve unstructured file data. Within

several fields, scientific research evolving instrumentation capabilities have vastly expanded the amount and density

of unstrucuted file data, in which standard file systems can be a limiting factor in the overall use of data.

iRODS can be classified as a data grid middleware for data discovery, workflow automation, secure collaboration

and data virtualization. As illustrated in Figure 1, the middleware provides a uniform interface to heterogeneous

storage systems (POSIX and non-POSIX). iRODS lets system administrators roll out an extensible data grid without

changing their infrastructure and accessing through familiar APIs. The reader should refer to [4] and [3] for more

details about iRODS environment.
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Figure 1. iRODS Overview [5].

2.2 QAbstractItemModel class

Qt is a comprehensive C++ application development framework for creating crossplatform GUI applications using a

“write once, compile everywhere” approach. Qt lets programmers use a single source tree for applications that run

on Windows, Linux, and Mac OS X as well as mobile devices. Qt libraries and tools are also part of Qt/Embedded

Linux alike product that provides its own window system on top of embedded Linux.

The Qt framework provides a model/view controller approach (Qt MVC). QAbstractItemModel class provides an

abstract interface for item model classes. Thus, programmers can populate one single model; such model enables the

use of different ways for displaying a group of contents (files and directories). A QTreeView, for example, implements

a tree representation of items from a model, whereas a QTableView implements a standard table representation.

2.3 Jargon API

Jargon is an API that implements the communication with iRODS protocol. The API allows development of iRODS-

enabled Java applications. It is useful for developing mid-tier applications and services, as well as desktop-clients.

These libraries also provide a foundation for a new set of interfaces that come with iRODS. Besides iRODS protocol

implementation, Jargon is also able to acess iRODS data.

Jargon is implemented in Java, providing support for Java applications and not for other programming languages.

Therefore, the iRODS Rest API based on Jargon has been developed to overcome such issue. The REST API provides

support for developers to implement different client use cases for iRODS. Next session presents the QRODS, a library

that adopts Jargon REST API to conduct the direct aceess from Qt applications to iRODS data system.

3. QRODS LIBRARY

This section presents the QRODS library. First, an overview of the library features is shown. Next, the architecture

and the class diagram are presented.

3.1 Features

QRODS is a library that enables software engineers to build Qt graphical user interfaces (GUI) which can access the

iRODS storage platform. The current version of QRODS implements essential manipulation functionalities of files

and directories (collections). Therefore, the QRODS may perform the following proceedings:

• Create and delete files or collections;
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• Download and upload files;

• Add and delete metadata from an object; and

• List content (files, metadata, collections).

3.2 Library Architecture

Figure 2 (a) depicts the QRDOS library architecture. As previously mentioned, the main goal of this library is to

provide an interface that allow Qt developers to build applications with graphical user interfaces communicating

to the iRODS data system. In order to accomplish that, Jargon REST API has been adopted to implement the

iRODS protocol communication between our proposed library and iRODS. Jargon is an API that implements the

communication with iRODS protocol. Although Jargon has been implemented in Java, it also provides a REST API

for allowing tools implemented through different languages to adopt it to communicate with iRODS. Therefore, the

QRODS library perform REST calls to the Jargon API that communicates with iRODS protocol through XML.

Jargon REST API

REST
Calls

XML

iRODS

QRODS

File
Content
Client

Abstract
HTTP
Client

Collection
Client

Data
Object
Client

Qt GUI
#include QRODS

Table View

List View

Tree View

(a)

(b)

Figure 2. QRODS integrated with iRODS; (a) depicts the QRODS-IRODS access; and (b) highlights the three

possibilities of iRODS content presentation.

The QRODS library has been composed of four different types of clients: (i) file content client, which is responsible

to conduct all operations related to folders; (ii) data object client implements the metadata operations; (iii) collection

client, which provides all functionalities for data collection; and (iv) abstract HTTP client, which provides secure

communication functionalities. The following lines provide more details about the functionalities implemented for

each type of client.

FileContentClient class

FileContentClient class manages iRODS files through two main functions: upload and download objects. As the name

suggests, Qt applications upload files to iRODS using the uploadFile() function. The local and remote file names

(including the entire file path) are parameters of that method. The equivalent iRODS command for this method is iput.
Similar to uploading functionality, Qt applications download iRODS files by adopting the downloadFile() function.

Local and remote paths represent the parameters used on that method. The equivalent iRODS command for this

function is iget.
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DataObjectClient class

DataObjectClient class manages metadata, which includes the add, remove and list functions. Qt applications

associate a metadata to an iRODS object through the DataObjectClient() constructor. To remove an object metadata,

the removeDataObject() method is adopted. A metadata can be listed by the getDataObjectMetadata() method or

by its asynchronous version getDataObjectMetadataAsync(). The corresponding iRODS command for this method is

imeta. In addition, a metadata collection can be added by the addCollectionMetadata() method.

CollectionClient class

CollectionClient class manages iRODS collections. This class contains methods to list collection contents, delete and

create new collections. The equivalent iRODS commands to the CollectionClient class functionalities are ils, irm

and imkdir. In order to delete a collection, the removeCollection() function must be called and the collection path is

passed as parameter. Similarly, the createCollection() method receives the remote path as parameter to create new

iRODS collections.

The listing functionality is implemented in two different ways:

• Asynchronous Listing : Using the getCollectionDataAsync() method, all the content of a collection is asyn-

chronously listed. However, depending on the collection size, this function may take some time to finish.

• Lazy Listing : The asynchronous getCollectionDataLazy() method is adopted to perform collection lazy listing.

By using this function, just a group of collection objects is retrieved per function call. This method is called

several times to list all the collection objects. Therefore, this functionality is suitable for huge collections.

AbstractHTTPClient class

This class provides asynchronous functions associated with GET, POST, PUT AND DELETE HTTP calls. The

doGet() method retrieves information identified by the requested URI. The doPost() method sends a post request

with an enclosed entity to a given resource identified by the respective URI.The doPut() method requests the enclosed

entity to be stored under the supplied requested URI. The doDelete() method requests that the resource identified

by the requested URI to be deleted.

Qt Application Architecture using QRODS

Figure 2 (b) presents the architecture of a Qt application that includes the QRODS library to directly communicate

with iRODS data system. Besides that, it is important to stress that the list, tree and table views were implemented

in our QRODS library. Therefore, Qt developers may show the iRODS data as a list, a tree or a table view as depicted

in Figure 3.

QRODS class Diagram

Figure 4 presents the QRODS class diagram. QAbstractItemModel is a Qt model view class which provides the

abstract interface for item model classes. This class defines functions that are required to support table, trees and

lists views. QAbstractItemModel class cannot be directly instantiated. Instead, a subclass must be implemented to
create new models.

QRODS extends QAbstractItemModel overriding its main methods, such as: (i) index(), which returns the item

model index specified by a given row, column and parent index; (ii) parent(), which returns the item model parent

of a given index; and (iii) headerData() that returns the data for the given role and section in the header with the

specified orientation.

QRODS is associated with one or more clients (e.g., Collection, FileContent or DataObject). The reader is redirect

to Section 3.2 for more details about these clients.
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Figure 3. RODS: List View (a), Table View (b) and Tree View (c).

FileListingEntry represents one node in the file system (file or collection) having pointers to the father and child

objects. FileListingEntry is used by the aforementioned three types of views (see Section 3.2).

AbstractHTTPClient provides secure communication through HTTP commands using SSL protocol and encrypted

channels. In addition, passwords have been stored using AES 128 standard. MetadataEntry class encapsulates

metadata information for a specific iRODS object. More specifically, it aggregates the corresponding attribute name,

value and unit.

4. RODS EXPLORER - RODEX

The main goal of this section is to illustrate the applicability of the proposed QRODS library in an implemented

Qt application. Therefore, RODs EXplorer (RODEX) was developed to show the main functionalities of our library.

RODEX application is able to upload and download files, create and delete files or collections. This application also

allow one to add, delete and list file metadata, and to list content (files, metadata or collections) of iRODS data

system. In order to add such functionalities to the Qt framework, Qt developers just need to include QRODS library

into their project.
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Figure 4. QRODS class diagram.

Figure 3 (a) depicts the RODEX application, a common Qt framework application using QRODS library that allows

the direct access to iRODS collections and files. Users may add/delete a collection by providing the collection path.

Related to files, it is possible to download, upload and delete files. For download and upload it is necessary to inform

local and remote paths. Aiming to delete files only remote path field is required. Finally, button “Next Page” may

be used when loading and visualizing collections at left side window. Files are loaded in low portions, obeying a fixed

offset number.

Listing 1 shows two methods implemented in the MainWindow.cpp class for uploading and downloading files from

iRODS data system. The main goal of this example is to show that the adoption of QRODS library is quite similar

to the codes that Qt developers are used to implement. For instance, in the on downloadButton clicked() method

(lines 2 to 10), it is just necessary to select the file to be downloaded from the list view as shown in Figure 3 (a).

Besides that, the user must select the local path to download the file from the iRODS data system. The local path

is achieved in line 4, and the remote path is represented through line 7. Afterwords, a call to the getFile() method

is performed (line 9).

Lines 11 to 17 show the on uploadButton clicked() method that is responsible for uploading files to iRODS data

system. For instance, to upload a file, a call to the uploadFile() method is performed (line 16). This method receives

as parameters the local and remote paths. The local path is reached from the line 13 and the remote path from the

line 14.

1 ...

2 void MainWindow :: on_downloadButton_clicked ()

3 {

4 QString localPath = ui ->localPathEdt ->text();

5

6 QModelIndexList list = ui ->listView ->selectionModel ()->selectedIndexes ();

7 QString remotePath = list.at(0).data().toString ();

8
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9 fileClient ->getFile(remotePath , localPath);

10 }

11 void MainWindow :: on_uploadButton_clicked ()

12 {

13 QString localPath = ui ->localPathEdt ->text();

14 QString remotePath = ui->remotePathEdt ->text();

15

16 fileClient ->uploadFile(remotePath , localPath);

17 }

18 ...

Listing 1. MainWindow.cpp example.

5. CONCLUSION

The evolution of data center due to the advent of cloud computing as well as the Internet of Everything has been

increasing the amount of data to be managed by that systems. The iRODS helps in this changing world with

virtualizing data storage resources regardless the location where the data is stored. This work has presented and

demonstrated a library that extends Qt abstract model interface to provide access to the iRODS data system from

within the Qt framework. This library, named QRODS, allows Qt developers to implement applications that access

iRODS data system as a standard model and display it as a Qt tree like structure.

The developed library provides support for three different Qt views (TreeView, ListView and TableView) that allow

Qt developers to manage iRODS data and metadata. Additionally, this library presents an asynchronous method

to perform lazy collection listing for all supported views. Therefore, groups of collection objects are incrementally

retrieved, which allows the use of QRODS to manage huge collections. Additionally, the RODEX application is

implemented to show the applicability of the proposed QRODS library. As future directions, we intend to extend our

QRODS library to deal with different remote access storage.
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ABSTRACT: 

RECOVER is a site-specific decision support system that automatically brings together in a single analysis environment the 
information necessary for post-fire rehabilitation decision-making. After a major wildfire, law requires that the federal land 
management agencies certify a comprehensive plan for public safety, burned area stabilization, resource protection, and site 
recovery. These burned area emergency response (BAER) plans are a crucial part of our national response to wildfire disasters and 
depend heavily on data acquired from a variety of sources. Final plans are due within 21 days of control of a major wildfire and 
become the guiding document for managing the activities and budgets for all subsequent remediation efforts. There are few instances 
in the federal government where plans of such wide-ranging scope and importance are assembled on such short notice and translated 
into action more quickly. RECOVER has been designed in close collaboration with our agency partners and directly addresses their 
high-priority decision-making requirements. In response to a fire detection event, RECOVER uses the rapid resource allocation 
capabilities of cloud computing to automatically collect Earth observational data, derived decision products, and historic biophysical 
data so that when the fire is contained, BAER teams will have a complete and ready-to-use RECOVER dataset and GIS analysis 
environment customized for the target wildfire. Initial studies suggest that RECOVER can transform this information-intensive 
process by reducing from days to a matter of minutes the time required to assemble and deliver crucial wildfire-related data.  

* Corresponding author. 

1. INTRODUCTION

1.1 Background 

Each year wildfires consume an average of 4.2 million acres of 
land in the United States, according to the National Interagency 
Fire Center. The long-term recent decade average is even higher 
(NIFC, 2013). Fire suppression activities have been employed 
since the early 1900s to preserve land and protect people and 
infrastructure. National coordination of fire suppression 
activities between federal agencies is performed by the National 
Interagency Fire Center in Boise, Idaho. Fire management 
begins when a fire is named and an incident command team is 
assigned; it progresses through the stages of fire suppression 
including initial and extended attack, followed by containment, 
control, and extinguishment. If necessary, when the fire is 
contained, burned area emergency response (BAER) teams may 
be assigned. These teams have seven days to make an 
assessment of post-fire conditions and develop a preliminary 
stabilization and rehabilitation; they have 21 days to submit a 
final plan once the fire is controlled (BAER, 2014).

Over the past two decades, major advancements have occurred 
in remote sensing technologies and geographic information 
systems (GIS). These Earth observational data and software 
have been employed by fire managers and those who support 
them to map and characterize fire locations and their extent. 
These maps can be combined with other geospatial data 
depicting resources, infrastructure and population centers to 
identify areas of strategic importance.

The majority of attention in mapping burned areas has 
historically focused on forested areas (Giglio, et al., 2009; Jirik, 
2013; Kasischke, et al. 2011). However, the current project 
focuses on savanna fires, which research suggests can account 
for carbon emissions equivalent to or exceeding fossil fuel 
combustion by automobiles (Brustet, et al., 1992). For purposes 
of this study, savannas in the US are defined as semiarid grass 
and shrub dominated regions and are all located in the Western 
US (Figure 1). Much of these savannas are considered primary 
habitat for sage grouse, mule deer, and pronghorn antelope and 
are also used for livestock grazing. Fires can have profound 
short-term and long-term effects on the ecosystem.
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Figure 1. Savanna ecosystem to be served  
by the RECOVER system. Image credit: Akiko Elders. 

The current process of preparing a fire rehabilitation plan 
typically begins with the BAER team leader requesting a fire 
severity product. A difference normalized burn ratio (dNBR) 
layer derived from Landsat imagery is generally the product that 
is delivered (Cocke, et al., 2005; Key and Benson, 1999). This 
product may be integrated with other data, such as topographic 
information, soil properties, land use, presence of threatened or 
endangered species, threats to life and property, historic and 
recent conditions of soil moisture, to create the knowledge base 
upon which a remediation plan is crafted. 

This data assembly, analysis, and decision-making process must 
happen quickly in order to meet the statutory requirement of 
producing a preliminary BAER plan within seven days. 
However, right now, this process involves substantial human 
intervention, and the information gathered depends on the 
availability of staff, time, and data for a particular region. Even 
though there is a wide array of information services available to 
the wildfire community, these services tend to focus on research 
coordination, information sharing, fire risk assessment, active 
fire management, and fires on forested lands. None of the 
existing services address the specific needs of post-fire 
stabilization and restoration planning and monitoring vegetation 
recovery for semiarid lands.

To assist the effort to manage savanna fires, we are developing 
an automated decision support system (DSS) called the 
Rehabilitation Capability Convergence for Ecosystem Recovery 
(RECOVER) (Carroll, et al., 2013). This system compiles all 
the necessary datasets for the BAER teams rehabilitation 
planning and provides them in an easy to use web map 
interface. In this paper, we describe the RECOVER system and 
the RECOVER project, report on the results of our Phase 1 
feasibility studies, and describe our future plans for operational 
deployment.

1.2 Challenge Being Addressed 

The RECOVER project is focusing on the restoration of fire-
impacted ecosystems as well as post-fire management and 
rehabilitation. The work is being funded by the NASA Applied 
Sciences Program and spans all four of the Program's primary 
themes of Health, Disasters, Ecosystem Forecasting, and Water 
Resources. Idaho State University's (ISU) GIS Training and 

Research Center (GIS TReC, 2014) is the lead organization 
supported by the NASA Goddard Space Flight Center's Office 
of Computational and Information Sciences and Technology 
Office and Biospheric Sciences Laboratory. Our specific focus 
has been on the semiarid regions of the Western US (Sayre, et 
al., 2009), with RECOVER framed around the problems and 
challenges faced by the BAER program and the special 
requirements of post-wildfire decision-making with regard to 
reseeding in savanna ecosystems. 

Wildfire is a common hazard throughout semiarid savanna 
ecosystems. Following fire, ground vegetation is typically 
eliminated, leaving the landscape devoid of cover. These 
communities may then experience a series of adverse changes 
due to landslides, soil erosion, and invasive plant infestations 
(Hilty, et al., 2004; Pierson, et al., 2002). While wildfires have 
occurred for millennia, the high frequency and intensity of 
today’s wildfires contrast with those that occurred in the past 
(DeBano, et al., 1998; Thoren and Mattsson, 2002). These 
changes have led to unprecedented transformations to the 
semiarid savanna ecosystem.  

Following wildfire, especially a high severity fire, the protective 
vegetation and organic litter cover are removed from hillsides, 
which can destabilize surface soils on steep slopes. Reseeding 
and other treatment approaches can rapidly stabilize the soil and 
promote water infiltration, thereby controlling erosion and 
preventing further loss of topsoil (Anderson and Brooks, 1975; 
Beyers, 2004; Miller, et al., 2003; Ribichaud, et al., 2006). 
Reseeding may also increase vegetation cover and forage 
availability for wildlife and livestock when appropriate initial 
plant establishments are used (Hubbard, 1975; Sheley, et al., 
2997).  

Given the importance of reseeding, it is not surprising that 
assessing the effects of wildfire, identifying areas that are likely 
to benefit from reseeding or other post-fire treatment, and 
monitoring ecosystem recovery in response to reseeding are 
important elements of BAER planning. However, as explained 
below, our initial feasibility evaluation has revealed that there 
also is significant interest in the use of RECOVER by active-
fire incident response teams and by agency program managers 
for regional-scale, fire risk assessment. 

1.3 Project Objectives 

The primary objective of the RECOVER project has been to 
build a DSS for BAER teams that automatically brings together 
in a simple, easy-to-use GIS environment the key data and 
derived products required to identify priority areas for reseeding 
and monitor ecosystem recovery in savanna ecosystems 
following a wildfire. The fundamental propositions that have 
been tested during our Phase 1 feasibility study is whether 
RECOVER, the embodiment of such a system, substantively 
improves BAER team decision-making and, if so, whether the 
system can be deployed into practical use in the BAER 
program.1 Beyond these fundamental questions, we have also 
used this Phase 1 feasibility study to identify unanticipated uses 
for the RECOVER technology and build the foundation for 
broader agency collaborations with the US Forest Service. 

1 Burned Area Emergency Response (BAER) is the name of the 
US Forest Service program; the corresponding program within 
the Bureau of Land Management is named Emergency 
Stabilitzation and Rehabilitation (ESR). For simplicity, we use 
BAER throughout in this paper. 
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1.4 Partner Organizations 

Our primary partner organizations during the Phase 1 feasibility 
study have been the US Department of Interior (DOI) Bureau of 
Land Management (BLM) and the Idaho Department of Lands 
(IDL). BLM is the second largest agency in the eight-member 
National Interagency Fire Center the nation's wildfire 
coordinating center located in Boise, ID.  BLM has operational 
responsibility for wildland fire on approximately 250 million 
acres of public land in the US, including approximately 12 
million acres, or 22%, of the land base in Idaho. Idaho 
Department of Lands is the primary state-level agency 
responsible for dealing with wildfire in Idaho.  

Since the RECOVER Phase 1 effort has focused on developing 
and evaluating capabilities in Idaho, the BLM/IDL teaming 
arrangement has been ideal for this feasibility study. In addition, 
partnering with BLM positions the project for broader regional- 
and national-scale operational deployment of RECOVER 
capabilities during Phase 2, as explained below. Likewise, 
interactions with NIFC through the BLM partnership open the 
possibility of RECOVER being adopted by other federal 
wildfire agencies. 

ISU's GIS TReC has over many years developed a close 
working relationship with BLM and IDL in Idaho, which 
created a congenial and highly productive environment for this 
work. There has been significant involvement of key BLM and 
IDL collaborators at all stages of the project. We are working 
directly with, BLM's National Program Leader for Post Fire 
Recovery, as well as regional and state coordinators, field office 
personnel, and incident team leaders. Approximately one dozen 
individuals from the partner agencies have contributed to the 
Phase 1 study. Interactions with our agency collaborators by 
email and phone calls have taken place on a near daily basis. In 
addition, the project hosted a summer science team meeting and 
webinar that included demonstrations, training, and a field trip 
to Idaho fire sites.  

2. THE RECOVER CONCEPT

2.1 Technical Approach and Innovations 

The RECOVER DSS is made up of a RECOVER Server and a 
RECOVER Client (Figure 2). The RECOVER Server is a 
specialized Integrated Rule-Oriented Data System (iRODS) data 
grid server deployed in the Amazon Elastic Compute Cloud 
(EC2). The RECOVER Client is a full-featured Adobe Flex 
Web Map GIS analysis environment. When provided a wildfire 
name and geospatial extent, the RECOVER Server aggregates 
site-specific data from pre-designated, geographically 
distributed data archives. It then does the necessary 
transformations and re-projections required for the data to be 
used by the RECOVER Client. It exposes the tailored collection 
of site-specific data to the RECOVER Client through web 
services residing on the Server. This automatic aggregation can 
take place in a matter of minutes.  

In a typical scenario-of-use, RECOVER uses the rapid resource 
allocation capabilities of cloud computing to automatically 
gather its various Earth observational and ancillary data 
products. Additional data can be added manually if needed, and 
the entire data collection is refreshed throughout the burn so that 
when the fire is contained, BAER teams have at hand a 
complete and ready-to-use RECOVER dataset that is 
customized for the target wildfire. The RECOVER server 
continues to gather data after the fire to support long-term 
monitoring of ecosystem recovery. 

RECOVER's technical innovations are its use of cloud com-
puting, data grid technology, and web services. Cloud com-
puting provides agility and cost-savings, because RECOVER's 
Amazon cloud servers are an "elastic" resource that can be 
dynamically created and removed as needed.  Another benefit to 
cloud computing is that RECOVER’s compute and storage 
resources are acquired as an operational cost to the project, 
rather than through a time-consuming and potentially complex 
IT procurement: we simply pay Amazon for their services.  

Figure 1. RECOVER Server and Client interfaces. For YouTube demonstrations, please see: 
        http://www.youtube.com/watch?v=LQKi3Ac7yNU RECOVER Server 
        http://www.youtube.com/watch?v=SGhPpiSYpVE RECOVER Client 
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The iRODS data grid technology at the core of the RECOVER 
Server enables the extensive use of metadata to manage files 
and individualize data collections to specific wildfire sites. It 
also provides a full-featured database capability for long-term 
archiving of all relevant information associated with a wildfire.  

Our extensive use of web services allows RECOVER’s site-
specific data to be consumed by state-of-the-art web-based GIS 
applications, such as RECOVER’s Adobe Flex Web Map 
Client. This makes it possible for our agency partners to avail 
themselves of RECOVER’s analytic capabilities on any 
computer running a web browser, without having to acquire and 
maintain standalone GIS software. In addition, RECOVER’s 
web services architecture facilitates the future development of 
client applications that run on mobile devices. Most modern 
smartphones, tablets, etc. actually consist of just the display and 
user interface components of sophisticated applications that run 
in cloud data centers. This is the mode of work that RECOVER 
is intended to eventually accommodate.  

These innovations and RECOVER's overall architecture have 
reduced development costs, enabled tailored, wildfire-specific 
services, and reduced the amount of time required in the 
development process. It is important to note that these 
innovations will have similar effects on operational deployment 
going forward.  

2.2 Application of Earth Observations 

Earth observations and ancillary data play a crucial role in 
BAER decision processes. Key NASA observational inputs for 
this feasibility study have included Landsat 8, MODIS, and 
AMSR-E. These data are used to develop fire intensity, fire 
severity, NDVI, fPAR, ET, and many other products of specific 
use to the wildfire community (Weber, et al., 2008a,b). An 
important goal of the project, however, is to position the 
RECOVER system and the BAER community to be consumers 
of SMAP and Suomi NPP data.

RECOVER automatically gathers approximately two dozen 
core data products, including information on the fire site's 
vegetation cover and type, agroclimatic zone, environmental 
site potential, fire regime condition class, geology, hydrology, 
soils, historic fires, topography, and evapotranspiration. 
RECOVER also automatically assembles about two dozen 
historic, biophysical parameters that can be important in 
understanding pre-existing conditions. These include previous 
years' monthly averages for soil moisture, NDVI, temperature, 
precipitation, relative humidity, and surface winds. To support 
long-term monitoring, RECOVER automatically updates NDVI 
and fPAR data on a monthly basis post-fire.  

Some data products require manual preparation. These are 
added to the RECOVER Server shortly after the automatic 
aggregation occurs and includes information about fire history, 
fire intensity, and habitats of importance to threatened or 
endangered species, and other types of idiosyncratic data 
relevant to a particular fire location. As described below, these 
enhancements reduce the time required for data assembly from 
days to a matter of minutes. 

2.3 Application of Climate Model Outputs 

The RECOVER project is breaking new ground by introducing 
reanalysis data into wildfire decision processes. RECOVER is 
acquiring its historic climatology data from the Modern Era 
Retrospective-Analysis for Research and Applications 
(MERRA) collection. MERRA uses NASA's GEOS-5 
assimilation system to produce a broad range of climate 
variables spanning the entire satellite era, 1979 to the present, 
essentially integrating the entire NASA EOS suite of 
observations into key variables used by the RECOVER DSS 
(Reinecker, et al., 2011). 

3. FEASIBILITY STUDY

3.1 Approach to Feasibility Assessment 

During our Phase 1 feasibility study, we developed system 
requirements from a detailed study of the 2006 Crystal Fire, 
which burned 250,000 acres, making it one of the largest 
wildfires in Idaho's history. We used interviews, 
demonstrations, and reviewed decision-making processes and 
the resulting rehabilitation plans for the Crystal Fire with 
individuals who actually worked on the Crystal Fire BAER 
team. We then used an agile software engineering approach to 
build the RECOVER system, emphasizing at each step of the 
development process close customer involvement and rapid, 
incremental improvements to a continuously available system.  

The ISU team was primarily responsible for providing GIS 
expertise, developing the RECOVER Client, building the test 
collection of Idaho datasets and web services, and working 
directly with the agency partners to provide training and 
respond to requests for specialized data products. The NASA 
team had primary responsibility for building the RECOVER 
Server, cloud computing, and providing expertise on Earth 
observational and MERRA reanalysis data. 

The RECOVER system was deployed into experimental use on 
five active fires from the 2013 season: the 2 1/2 Mile, Mabey, 
Pony, State Line, and Incendiary Creek Fires (Table 1). Using 
RECOVER, we directly supported the work activities and data 

Fire Start Date End Date 
Acres 

Burned 

RECOVER 
Response 
Time (min) RECOVER Client URL 

Crystal  15-Aug-06 31-Aug-06 220,000 N/A http://naip.giscenter.isu.edu/recover/CrystalFire 
Charlotte 2-Jul-12 10-Jul-12 1,029 N/A http://naip.giscenter.isu.edu/recover/CharlotteFire 
2 ½ Mile 2-Jul-13 3-Jul-13 924 30 http://naip.giscenter.isu.edu/recover/2nHalfMileFire 

Mabey 8-Aug-13 19-Aug-13 1,142 120 http://naip.giscenter.isu.edu/recover/MabeyFire 
Pony 11-Aug-13 27-Aug-13 148,170 35 http://naip.giscenter.isu.edu/recover/PonyFire 

State Line 12-Aug-13 18-Aug-13 30,206 40 http://naip.giscenter.isu.edu/recover/StateFire 
Incendiary Creek 18-Aug-13 1,100 90 http://naip.giscenter.isu.edu/recover/IncendiaryFire 

Table 1. RECOVER feasibility study fires 
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practices of agency colleagues as they responded to these fires, 
observing and gathering input from their experiences. Various 
ease-of-use, performance, and process factors were assessed.  

BAER planning is a complex, multidimensional decision 
process. In order to accurately gauge the effects of our 
interventions, we assessed RECOVER's scientific, 
technological, and programmatic feasibility in terms of the 
following six criteria: Science Feasibility – (1) Does the 
RECOVER DSS work as well or better than current tools and 
methods in supporting the science and management decision 
making of BAER teams? (2) Is value added to BAER team 
decision processes by automatically assembling data and 
maintaining wildfire site-specific data in a central RECOVER 
Server?; Technology Feasibility – (3) Has RECOVER been 
integrated and tested in a relevant operational decision-making 
environment? (4) Is RECOVER able to produce required 
outcomes as fast or faster than conventional means?; and 
Programmatic Feasibility – (5) Can RECOVER reduce the cost 
or improve the effectiveness of data assembly, decision-making, 
and post-fire recovery monitoring? and (6) Is BLM and IDL 
willing to collaborate on the production development and 
operational deployment of RECOVER?  

Criteria (1) and (2) were assessed qualitatively through daily 
interactions with individual BLM and IDL collaborators and as 
a group at the project's summer science team meeting. 
Successful prototype deployment was taken as the metric of 
success for criterion (3). Various ease-of-use, performance, and 
process factors were studied in the real-time context of the five 
active fires to assess criterion (4). Labor cost analyses for the 
historic and active fires were used to assess criterion (5). The 
level of interest and support of our agency collaborators in 
operationalizing RECOVER was the metric used to assess 
criterion (6). 

3.2 Results of the Feasibility Study 

RECOVER's science feasibility was strongly substantiated by 
the feedback received on criteria (1) and (2).  More than one 
dozen agency collaborators provided input into this study, 
including individuals directly responsible for gathering and 
analyzing wildfire-related data, such as GIS analysts, incident 
response team members, and natural resource managers, as well 
as senior managers responsible for long-term national-scale 
programmatic development.  

The overwhelming response to RECOVER has been positive. 
The consensus view is that there is great value in RECOVER's 
ability to automatically collect data that would otherwise be 
assembled by hand. In addition, having a single data 
management environment where all relevant information about 
a fire can be maintained over time and easily accessed 
significantly improves standard practice. The RECOVER Client 
Web Map application is easily accessed on the web from any 
workstation and provides a comprehensive feature set for 
routine GIS analytics without the need to maintain stand-alone 
GIS applications on the workstation. This is a significant 
convenience and has the potential for substantially reducing the 
cost and complexity of IT systems administration for our 
partner agencies.  

RECOVER's technical feasibility has been demonstrated by 
affirmative results for criteria (3) and (4). We have successfully 
validated the system in the context of active fires, which has 
allowed us to effectively estimate potential improvements to the 
target decision-making processes and project impacts on cost, 

functionality, and delivery options. The most dramatic example 
of RECOVER's capacity for process improvement is in the 
significant reduction in the time required to gather wildfire data 
into a GIS analysis environment. Where it used to require a day 
or two of work and special knowledge about the data needed 
and where to retrieve the data, RECOVER's automatic 
aggregation coupled with minimal manual additions of data has 
reduced that time to minutes or hours (Table 1) and lowered risk 
by reducing the dependence on institutional knowledge.  

RECOVER's programmatic feasibility has been demonstrated 
by affirmative results for criteria (4) and (5). Over the past four 
years, there have been on average 120 wildfires per year in 
Idaho and over 200 in 2012 alone. Looking at the data assembly 
task alone for these fires, and assuming that at least one GIS 
analyst for each partner agency takes a day or two to collect 
data and perform initial assessments, labor impacts could run as 
high as 4000 hours or more, nearly 2.0 FTEs. While this is 
substantial, we believe it represents only a fraction of the time 
that could be saved on data assembly and data management over 
the full information lifecycle of fire-related data. 

The most significant programmatic impacts, however, are likely 
to be on the improved quality of science understanding and 
management decision-making that can result from shifting 
valuable staff resources away from the mundane task of data 
gathering to the crucial jobs of analysis, planning, and 
monitoring. These benefits are almost impossible to quantify. 
The process enhancements realized by RECOVER offer the 
prospect of fundamentally improving the quality of our partner's 
work practices. For this reason, there has emerged at all levels 
within our partner agencies strong support for the RECOVER 
project and a desire to move forward with operational 
deployment of these capabilities. We therefore satisfy criterion 
(6), which has led to a successful NASA Applied Sciences 
Program review and the decision to fund Phase 2 
implementation of the RECOVER system. 

4. OPERATIONAL DEPLOYMENT

Over the next three years, we will deploy RECOVER into 
operational use.  Starting with the Great Basin states of Idaho, 
Utah, and Nevada, we will ultimately support all of the Western 
US. Initially, our primary customer will continue to be BLM 
and the state-level agencies responsible for wildfire response, 
stabilization, and rehabilitation, but the goal is to grow the 
partnership to include the US Forest Service, National Park 
Service, and other state and federal agencies that have a need 
for these capabilities. The Great Basin focus is at the specific 
request of BLM and represents a scale of development that we 
believe assures technical, economic, and political success in the 
early going. We will initially continue with our focus on 
savanna ecosystems, but the goal will be to extend RECOVER's 
capabilities to support forest ecosystems as well. 

4.1 Baseline Conditions 

Currently, regional- and state-scale fire risk assessment is a 
largely ad hoc process carried out by BLM program managers. 
It is a type of decision process that is crucial to the agency and 
influences long-range resource planning. However, the process 
now involves a great deal of manual data assembly, the 
gathering of information from a diverse and often difficult-to-
access suite of online wildfire information resources, and 
integrating this information in useful ways into stand-alone 
desktop GIS applications.  
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Emergency preparations for active-fire response by incident 
managers involves the rapid gathering of data about the incident 
site prior to on-site arrival. Currently, the technical response can 
vary by incident team based on the specific training and 
experience of team members.  Most incident teams have access 
to basic terrain maps, maps of roads and streams, etc., but use of 
advanced remote sensing and GIS capabilities is still not 
uniform between teams. With RECOVER, we will be able to 
arm response teams in advance with a complete collection of 
historic and current environmental data without depending on 
the incident team having a high-level GIS technician.  By 
automatically generating data layers that are useful in 
understanding fire intensity and patterns of potential spread, we 
enhance the ability of incident teams to respond to the fire. 

Post-fire rehabilitation plans of the sort developed by ESR and 
BAER teams are generally developed by multi-agency teams of 
specialists that include natural resource managers and scientists 
with expertise in various disciplines. Remote sensing imagery is 
used to complement field-based assessments, and several 
indicators derived from satellite imagery are used to 
characterize fire severity and intensity. For the current baseline 
condition, data collection in this setting is also a largely manual 
process performed by GIS analysts and resource managers. 
There is often limited access to critical data at the wildfire site, 
since again, most analysis environments are stand-alone 
applications running on field office workstations.  

During post-fire recovery monitoring, fire managers are 
responsible for measuring and reporting the results of treatment 
plans. In the current baseline condition, this is generally carried 
out by field sampling. As a result, detailed, comprehensive 
evaluations are limited by budget and staff resources. PI Weber 
has demonstrated, through NASA-funded research that large-
scale post-fire vegetation productivity in response to re-seeding 
can be monitored effectively using time-series NDVI and fPAR 
measurements (Chen, et al., 2012). RECOVER's ability to 
automatically assemble these post-fire metrics will significantly 
reduce the cost associated with recovery monitoring and 
improve the quality of our scientific understanding of what 
leads to successful treatments. 

4.2 Implementation Approach and Key Milestones 

We will focus on enabling four key work processes: fire risk, 
active-fire, and post-fire decision making and long-term 
recovery monitoring. Our approach will be to create a 
RECOVER deployment package — a collection of production-
hardened technologies, technical documentation, training 
materials, and data services — that can become a model and 
mechanism whereby BLM and other agencies can replicate the 
deployment of RECOVER in other states.  

Our implementation strategy will involve system development, 
data development, and operational deployment. The major work 
to be accomplished in system development is to move 
RECOVER V0.9, the experimental Client/Server platform used 
for Phase 1 feasibility analysis, to a fully functioning V1.0 of 
the system. We also will develop a mobile RECOVER Client 
that can run on iPads and iPhones (and Android clients if 
required by the customers). We will continue to use the agile 
software development approach that has proved successful in 
Phase 1, emphasizing close collaborations with our customers at 
all stages of development. Service level agreements (SLAs) will 
be defined, and the RECOVER Server and Clients will be 
security and performance hardened, validated, and tested as 

needed in order to meet the requirements of a NASA/BLM-
defined operational readiness review (ORR). 

The data development work of Phase 2 will focus on 
completing RECOVER's core data catalog, which requires 
building a comprehensive base set of automatically retrievable 
data products, including the entire suite of MERRA variables 
and SMAP Level 4 soil moisture data when they become 
available. We also will work with our agency partners to 
develop specialized fire risk and post-fire data products of the 
sort described on in Section 4.4.  

As described above, for operational deployment, we intend to 
design and develop a RECOVER deployment package that 
contains all the RECOVER components required to set up 
RECOVER on a state-by-state basis. The motivation for this is 
BLM's success in rolling out other new capabilities using this 
approach: the agency often partners with universities or other 
private-sector, non-profit entities at a state or regional level in 
order to accomplish its mission. BLM's long-standing 
partnership with ISU's GIS TReC in Idaho is an example of 
such a relationship. We will hold yearly science team meetings 
and define six-month milestones based on the major 
development threads described above.  

4.3 Potential Impacts

According to our agency partners, data assembly is the most 
significant bottleneck in wildfire-related decision making. 
RECOVER dramatically reduces the time it takes to gather 
information, and it delivers the information in a convenient, 
full-featured, web-based GIS analysis environment. As a result, 
RECOVER's most important impacts are likely to be on the 
improved quality of science understanding and management 
decision-making that results from shifting valuable staff 
resources away from the task of data gathering to the more 
important tasks of analysis, planning, and monitoring. The 
potential magnitude of the resource shift is significant. If we 
extend to our three Great Basin states the labor impact example 
shown for Idaho in Section 3.2 above, as many as 6.0 FTEs per 
fire season could be mobilized in more productive ways.   

4.4 Science Activities 

RECOVER's ability to rapidly gather historic observational data 
and reanalysis climatology data along with measurements of 
current conditions makes it possible to do precision analyses 
that simultaneously inform our understanding of fire risk, 
active-fire fuel conditions, and post-fire rehabilitation potential. 
For example, for 2013's Pony Fire, we were able to use NDVI 
time series data to identify an early flush of vegetation in late 
February that fell off to a significantly lower-than-average level 
by June, suggesting there may be substantial senescent 
vegetation in this region: fine fuels that increase susceptibility 
to ignition. Also, 2013's mid-June NDVI levels were reduced by 
more than 10 percent compared with those over the previous 
decade, further confirming the anomaly (Figure 2).  Being able 
to perform this type of analysis over automatically assembled 
data is seen as a potential game-changer by our partners. 

RECOVER's potential as a research platform has led to a 
teaming arrangement with NASA's DEVELOP Program. 
DEVELOP fosters rapid feasibility projects that employ NASA 
Earth observations in new and inventive applications, 
demonstrating the widest array of practical uses for NASA's 
Earth observing suite of satellites and airborne missions.  

This paper originally appeared in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
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DEVELOP application projects serve the global community by 
cultivating partnerships with local, state, regional, federal, and 
academic organizations, enhancing the decision and policy 
making process and extending NASA Earth Science research 
and technology to benefit society. 

As many as four DEVELOP scientists will be working with the 
RECOVER project. The DEVELOP team will conduct research 
on the identification and quantification of anomalous conditions 
that contribute to the risk of fire and that influence post-fire 
recovery using remotely sensed data and climate model outputs. 
The specific objective of the DEVELOP science activities is to 
extend the RECOVER DSS to ingest and produce products that 
incorporate SMAP, Suomi NPP, and other observational data, 
along with MERRA reanalysis data for improved decision 
making and extension of RECOVER to new end-users, such as 
the US Forest Service and the National Park Service.   

4.5 Other Contributions of the Project 

The RECOVER project is working with Esri's Landscape 
Analysis project in what promises to be a valuable off-shoot of 
these efforts. The Landscape Analysis (LA) program comprises 
a suite of data services designed to enable better informed 
decisions related to natural resources. We are working with Esri 
to use applicable LA layers in RECOVER, and, in turn, are 
contributing high-resolution RECOVER data and MERRA 
reanalysis data to Esri’s program. This partnership highlights 
RECOVER's role as a broker for valuable wildfire-related data 
and extends RECOVER's impact to the broader GIS 
community.  

5. CONCLUSIONS

The RECOVER DSS is an automated data assembly and web 
map decision support system that allows BAER teams to 
expedite the process of creating post-fire rehabilitation plans. 
Data are assembled for specific sites simply by providing a fire 
name and its spatial extent. Additional data sets can be added 
manually, and all data are maintained in a common format for 
ease of use. Initial prototype evaluations have demonstrated the 
effectiveness of RECOVER in reducing the time required to 
gather and deliver crucial data.  

The RECOVER system is being extended to include research 
products from the fire science community and through the 
DEVELOP program.  These extensions provides an opportunity 
to get new products to fire managers for evaluation and 
potential incorporation into management strategies. The agile 
architecture of RECOVER allows for incorporation of new 
datasets to the system by simply adding the web service to a list 
of “standard” products that are acquired in the data acquisition 
phase.  This makes it possible to tailor RECOVER offerings to 
client needs. 

The RECOVER decision support system will be operationally 
deployed over the next three years and available for use by 
federal and state agencies across the western United States. In 
this process, the RECOVER team is actively seeking input from 
the fire management community. Our goal is to work closely 
with end users to adapt the RECOVER system to the real and 
pressing needs of the fire response community. 

ACKNOWLEDGEMENTS 

This work represents the crucial and much appreciated 
contributions of many people. We thank our collaborators in the 
Bureau of Land Management and Idaho Department of Lands 
for their help designing and evaluating the RECOVER DSS. 
We are especially indebted to M. Kuyper, S. Jirik, and D. 
Repass for their support and leadership on the project. B. 
Holmes, A. Webb, B. Dyer, G. Guenther, T. Lenard, Z. 
Peterson, J. Nelson, D. Booker-Lair, R. Dunn, E DeYong, A. 
Mock, and A. Andrea provided helpful input throughout. We 
appreciate the long standing support and encouragement of R. 
Schwab at the National Park Service. D. Duffy, M. McInerney, 
D. Nadeau, S. Strong, and C. Fitzpatrick at NASA Goddard
Space Flight Center provided crucial technical support, as did
G. Haskett, T. Gardner, and K. Zajanc at ISU’s GIS Training
and Research Center. We thank L. Childs-Gleason, J. Favors,
and colleagues in the NASA DEVELOP National Program
Office for their help connecting the RECOVER project to the
DEVELOP mission. Finally, we wish to thank L. Friedl, V.
Ambrosia, and A. Soja in the NASA Applied Sciences Program
for their support, programmatic leadership, and encouragement.
Funding for this project has been provided by the NASA
Science Mission Directorate's Earth Science Applied Sciences
Program.

REFERENCES 

Anderson, W. E., and L. E. Brooks. 1975. Reducing erosion 
hazard on a burned forest in Oregon by seeding. Journal of 
Range Management 28: 349-398.  

Beyers, J. L. 2004. Postfire seeding for erosion control: 
effectiveness and impacts on native plant communities. 
Conservation Biology 18: 947- 956.  

Brustet, M., Vickos, J. B., Fontan, J., Podaire, A., and Lavenu, 
F. 1992. Characterization of Active Fires in West African
Savannas by Analysis of Satellite Data: Landsat Thematic
Mapper. In Global Biomass Burning, J. S. Levine, Ed.,
Cambridge Massachussets: MIT Press, pp. 53-60.

Carroll, M. L., Schnase, J. L., Weber, K. T., Brown, M. E., Gill, 
R. L., Haskett, G. W., and Gardner, T. A. 2013. A New
Application to Facilitate Post-fire Recovery and Rehabilitation
in Savanna Ecosystems. http://www.earthzine.org/2013/06/
22/a-new-application-to-facilitate-post-fire-recovery-and-
rehabilitation-in-savanna-ecosystems/.

Chen, F., Weber, K.T., and Schnase, J.L. 2012. Assessing the 
success of post-fire reseeding in semiarid rangelands using 
Terra MODIS. Rangeland Ecology and Management, Vol. 65, 
No. 5, pp. 468-474. 

Cocke, A. E., Fule, P. Z., and Crouse, J. E. 2005. Comparison 
of burn severity assessments using Differenced Normalized 
Burn Ratio and ground data. International Journal of Wildland 
Fire, 14: 189-198. 

DeBano, L. F., D. G. Neary, and P. F. Pfolliott. 1998. Fire's 
Effects on Ecosystems: New York, John Wiley and Sons, 333 
pp. 

This paper originally appeared in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-1, 2014 ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA.

Reprinted with permission of the authors.

Page 49



DEVELOP, 2014. http://develop.larc.nasa.gov. 

Giglio, L. Loboda, T., Roy, D. P. Quayle, B. and Justice, C. O. 
2009. An active-fire based burned area mapping algorithm for 
the MODIS sensor. Remote Sensing of Environment, 113: 408-
420. 

Hilty, J. H., D. J. Eldridge, R. Rosentreter, M. C. Wicklow-
Howard, and M. Pellant. 2004. Recovery of biological soil 
crusts following wildfire in Idaho. Journal of Range 
Management 57: 89-96. 

Hubbard, W. A. 1975. Increased range forage production by 
reseeding and the chemical control of knapweed. Journal of 
Range Management 28: 406-407. 

Idaho State University GIS Training and Research Center (GIS 
TReC), http://giscenter.isu.edu. 

Jirik, S. 2013. “Personal Communication,” K. Weber. 

Kasischke, E., Loboda, T., Giglio, L., French, N. H. F., Hoy, E. 
E., de Jong, B., and Riano, D. 2011. Quantifying burned area 
from fires in North American forests – implications for direct 
reduction of carbon stocks. Journal of Geophysical Research, 
116. 

Key. C. H., and Benson, N. C. 1999. The normalized burn ratio 
(NBR): A Landsat TM radiometric index of burn severity. 
http://www.nrmsc.usgs.gov/research/ndbr.htm. 

Miller, J. D., W. J. Nyhan, and S. R. Yool. 2003. Modeling 
potential erosion due to the Cerro Grande Fire with a GIS-based 
implementation of the Revised Universal Soil Loss Equation. 
International Journal of Wildland Fire 12: 85-100. 

National Interagency Fire Center (NIFC). 2014. www.nifc.gov. 

Pierson, F.B., D.H. Carlson, and K.E. Spaeth. 2002. Impacts of 
wildfire on soil hydrological properties of steep sagebrush-
steppe rangeland. International Journal of Wildland Fire 
11:145-151. 

Rienecker, M.M., & Coauthors. 2011. MERRA: NASA’s 
Modern-Era Retrospective Analysis for Research and 
Applications. Journal of Climate, Vol. 24, No. 14, pp. 3624–
3648. Available online at http://dx.doi.org/10.1175/JCLI-D-11-
00015.1. 

Robichaud, P. R., T. R. Lillybridge, and J. W. Wagenbrenner. 
2006. Effects of post-fire seeding and fertilizing on hillslope 
erosion in north-central Washington, USA. Catena 67: 56-67. 

Sayre, R., P; Comer, H. Warner, and J. Cress. 2009. A new map 
of standardized terrestrial ecosystems of the conterminous 
United States, US Geological Survey Professional Paper 1768, 
17 p. (Also available online.) 

Sheley, R. L., B. E. Olson, and L. L. Larson. 1997. Effect of 
weed seed rate and grass defoliation level on diffuse knapweed. 
Journal of Range Management 50: 39-43. 

Thoren, F., and D. Mattsson. 2002. Historic wildfire research in 
southeastern Idaho. http://giscenter.isu.edu/research/techpg/ 
blm_fire/historic/wildfire_report.pdf. 

Weber, K. T., S. Seefeldt, and C. Moffet. 2009. Fire severity 
model accuracy using short-term, rapid assessment versus long-
term, anniversary date assessment. GIScience and Remote 
Sensing. 46(1): 24-38  

Weber, K. T., S. Seefeldt, C. Moffet, and J. Norton. 2008. 
Comparing fire severity models from post-fire and pre/post-fire 
differenced imagery, GIS Science and Remote Sensing 45(4): 
392-405

Weber, K. T., S. S. Seefeldt, J. Norton, and C. Finley. 2008a. 
Fire severity modeling of sagebrush-steppe rangelands in 
southeastern Idaho. GIScience and Remote Sensing 45: 68-82. 

This paper originally appeared in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-1, 2014 ISPRS Technical Commission I Symposium, 17 – 20 November 2014, Denver, Colorado, USA.

Reprinted with permission of the authors.

Page 50



iRODS Technology Applied to the DataNet Federation
Consortium

Mike Conway 
DICE-UNC

Chapel Hill, NC
michael_conway@unc.edu 

Hao Xu 
DICE-UNC  

Chapel Hill, NC

Dr. Reagan Moore
DICE-UNC

Chapel Hill, NC 

[1] ABSTRACT

The DataNet Federation Consortium (DFC) is one of the DataNet projects funded by the National Science Foundation to
create national-scale cyber-infrastructure to support collaborative research. The DFC infrastructure “provides a new
approach for implementing data management infrastructure that transcends technology, social networks, space, and time
through federation-based sustainability models.” [1] iRODS technology [2] is at the core of the federated, policy-managed
data infrastructure of DFC, and DFC efforts are creating new capabilities to support shared research, and long term data
management that are of interest to the broader iRODS community. 

Keywords

DataNet, iRODS, Jargon

[2] INTRODUCTION

The DataNet Federation Consortium is developing national scale cyber-infrastructure to manage scientific data through its
entire life cycle.  At the heart of DFC is the concept of shared research collections that may be shared, manipulated through
computational processes and transformations, discovered, and preserved for the long term. [3]  Moore describes a life cycle
for research collections that describe the policies and properties that distinguish one phase of the life cycle from another, as
expressed in this diagram:
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Implied in this scheme are basic capabilities in multiple categories, including metadata management for discover-ability,
integration of data processing and work-flows, and methods for federating and sharing data that have been discovered and
assembled into collections.  Central to this life-cycle concept is the idea that collections are defined by different types of
management policies at each stage. The research group that assembles a project collection, typically shares tacit knowledge
about the data context.  As the data are shared with broader communities, the tacit knowledge is made explicit in the form of
metadata.  Policies are developed for each new community to enforce acquisition of descriptive and provenance metadata.
These policies are enabled by capabilities being developed within the DFC infrastructure to enhance the discovery, sharing,
re-purposing, and ultimate preservation of research data.  

DFC is a cyber-infrastructure project.  Gannon et al. have and appropriate definition that maps nicely to the above identified
DFC capabilities, specifically, they identify five components. [4]

1. Data search and discovery tools.

2. Security.

3. User private data storage.

4. Tools for designing and conducting computational experiments.

5. Data provenance tracking.

These components correlate well to specific new capabilities being developed under DFC.  However, we would like to
extend this definition to a sixth component, namely, that cyber-infrastructure includes integration.  More specifically, cyber-
infrastructure exists as a middle-tier capability, but can hardly be effective as an island or walled garden.  Data that cannot
be accessed efficiently cannot be shared or discovered.  Therefore, a key capability of cyber-infrastructure is the ability to
integrate the above capabilities into a larger computational framework through API, standard protocols, as well as user
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interfaces of various types.  A great deal of effort in DFC is in this 'sixth' component, however, this integration and interface
concern will not be covered in this paper.

[3] DISCUSSION

Gannon's Components of Cyber-infrastructure as mapped to DFC and iRODS

If we use Gannon's definition of cyber-infrastructure as a template, we can explore various new technologies that are being
built with the iRODS server at the core.  We can use this as a basis for discussion, relate it to DFC, and highlight features of
the DFC cyber-infrastructure approach.

Data Search and Discovery Tools

Metadata Templates

Data search and discovery tools are key to sharing and re-use of scientific data collections.  The DFC grid, through the
application of policies appropriate to the life-cycle stage, is concerned with preserving the significant properties of the data,
both through the long-term preservation of curated metadata, and through the ability to automatically extract and maintain
metadata based on the application of computational processes and procedures.  Significantly, Moore's life-cycle concept
identifies the act of creating new collections based on shared, federated data, and this ability to arrange new collections
based on existing collections is essentially treated as a data search and discovery activity, as we will see in the developmetn
of virtual collections.

An important, novel development in iRODS to support the human curation of metadata is the concept of metadata
templates.  Simply stated, metadata templates allow the definition of required and optional metadata values, including user
friendly naming and documentation, validation and type information, as well as mapping information to store metadata
inside the iRODS catalog.  These metadata templates are defined and stored in some persistent store, and bound to
collections in iRODS.  Once associated with a collection, metadata templates allow various interesting capabilities.

First, metadata templates allow, through the definition of user cues and validation information, including default values,
ranges, and options, the dynamic generation of user interface components.  This can be for information re-display, allowing
nicely formatted, user-friendly displays instead of simple lists of metadata attributes.  Users may also be provided with data
entry forms that include validation logic based on template contents.  

Metadata templates are metadata themselves, allowing structure to be added to otherwise unstructured iRODS AVU
metadata.  AVUs in iRODS are simply attribute-value-unit triples attached to files, collections, resources, users, and other
iRODS catalog objects. These unstructured metadata values can be modified through facilities such as the imeta iCommand
[5] and rules that query and update AVUs.

Metadata templates provide grouping of metadata along with information on meaning of assigned AVU triples. metadata
templates are identified by unique UUIDs, and each element is also named with a UUID.  This device allows templates to
include elements that are linked to a master catalog of elements.  This can assist in reuse and crosswalks of data between
metadata schemes.  

Metadata template design contemplates a distinction between user curated and automatically generated metadata.  Certain
templates, instead of resulting in the generation of user entry forms, can indicate that a computational process will derive
metadata values.  In this scenario, the template holds a reference to the computational process that will do the extraction,
and will provide a mapping in the template elements that can bind an output parameter of the extraction process to AVU
values.  Using this approach provides a declarative way of specifying metadata extraction policies that are dynamically
applied based on a per-collection resolution mechanism.  

Like many new DFC features, we are taking the attitude of providing an abstract definition of the service, married to a
'reference implementation'. This reference implementation is meant to utilize only iRODS facilities, meaning that metadata
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templates are stored as JSON structures decorated with AVUs, and the binding and discovery process depends on AVUs
applied to collections and data objects.  The abstract interfaces [6] and reference implementation [7] may be found in the
DFC GitHub repository.

iRODS Indexing Framework

A major innovation in the iRODS architecture is the definition of an indexing framework as an extension of the iRODS
policy-managed approach.  This has already been demonstrated in a prototype form using the HIVE system to apply SKOS
vocabulary terms to iRODS [8], and for full-text indexing using the ElasticSearch platform.  The basic components include:

1. Extensions to the iRODS policy enforcement points [9] so that events may be captured as standard JSON
representations.  For example, storing a file in DFC triggers a PostProcForPut event, and that event can be
represented with information describing the data that was stored on the grid.  Adding AVU metadata to that file
can trigger a similar policy enforcement point.

2. Addition of a messaging mechanism to pass these events through topics and queues over an asynchronous
messaging framework such as RabbitMQ.

3. Development of a standard framework, based on distributed OSGi containers [10] that allows definition of custom
indexers that receive these events.

Implementations of indexers can be configured as OSGi components, giving them a distributed, fault-tolerant topology.
Indexers can be of two primary types, metadata-only indexers, and file content based indexers.  metadata only indexers rely
solely on AVUs and related iRODS catalog information.  Such indexing events are processed by transforming data from the
policy enforcement point into an operation on an external index.  In the case of HIVE, adding a SKOS term as a serialized
RDF statement about a file or collection causes an event to be sent to a triple-store indexer that can add and update a Jena
triple-store with statements about the iRODS collections.  

The second type of indexer is a file content indexer.  In the case of an indexer that must process all or part of an iRODS file,
for subsetting, metadata extraction, inverted index generation, or other purpose, it is necessary to access the actual file
contents through some sort of streaming i/o operation. Indexing based on file contents is relatively expensive compared to
pure metadata-based indexing, as it requires either streaming data from iRODS, or acting on the data at rest.  A second
complication is that indexers are independent of each other, and there may be multiple indexers interested in the content of

llustration 2: Basic indexer topology
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the files.  As we discuss computation in a further section, we will be introducing the concept of computational resources,
and expand on the basic idea of utilizing specialized iRODS resources that can stage files through copy or replication for
indexing by multiple indexers, with additional capability to trim or garbage collect files after indexing is accomplished.

Through either technique, an indexer can plug into event streams originating with iRODS policy enforcement points, and
through asynchronous mechanisms that limit pressure on operational grids, provide near real-time indexing synchronization.
Using this arrangement, iRODS can focus on policy-managed preservation of data and metadata, serving as a canonical
representation, and different parts of the grid may be projected into ephemeral indexes of arbitrary type, to be created,
removed, and regenerated as needed.

Virtual Collections

DFC is introducing the concept of 'Virtual Collections” in order to bring indexed metadata stores back into the reach of the
data grid.  iRODS provides the ability to organize collections through a metadata catalog, giving a global logical namespace
that is detached from the underlying physical data stores. The composition of collections, currently, is limited to the
arrangement of  these collections in the iRODS catalog based on parent/child relationships.  Virtual collections are a method
to integrate queries of the iRODS catalog or generated external indexes on an equal footing to the primary 'index', which is
the iCAT organization of Collections and Data Objects.  Virtual collections are defined as any query that can produce a
listing equivalent to the “ils -LA” iCommand.  

Virtual collections, like metadata templates, are defined through a combination of abstract interfaces and a reference
implementation class.  There are two primary objects required to implement virtual collections.  First is a maintenance
service that is responsible for discovering, serializing, and maintaining the definition of a virtual collection.  The second is
an execution service that can accept parameters and configuration, formulate the appropriate query, and format the results
into a listing.  The current reference implementation defines virtual queries as JSON structures, decorated with AVU
metadata, and stored within iRODS.  The current implementation is focused on access via the new DFC web interface,
which is in the DFC GitHub repository, and called the “irods-cloud-browser”. [11]

Given the ability to form new collections (even across federated zones) based on any arbitrary metadata, is a powerful new
capability, and central to the fulfillment of the vision of a collection life-cycle supported by cyber-infrastructure.  In
summary, iRODS can define structures and validation requirements for metadata stored n the grid.  That metadata can be
managed and secured for the long term via the application of preservation policies.  This metadata can be projected into an
arbitrary arrangement of indexes, either based on metadata in the catalog, or based on the contents of data objects, processed
through any available algorithm.  These indexes, once created, can then be used to discover and arrange new collections,
across federations, and orthogonal to any folder arrangement within iRODS.

Concept Summary

The DFC approach to discovery and collection formulation is mindful of the requirements of cyber-infrastructure, and
enables the fulfillment of several aspects of Moore's life-cycle approach to research collections.  The capabilities being
pioneered in DFC are being developed so as to easily flow back into the iRODS community. Using the policy-managed
approach of iRODS, DFC is developing metadata curation facilities, enhanced indexing facilities, and the ability to integrate
external indexes back into grid operations.

Tools for Computation 

IRODS has traditionally focused on policy management of scientific data. [12]  In the original context, this approach
identified the concept of procedures, which are encapsulated in micro-services.  These procedures are then activated using
policies that are implemented at policy enforcement points (PEPs).  The goal of these policies is to mediate security,
auditing, preservation, metadata extraction, and other data management concerns.  Under DFC, the concept of procedures is
expanding beyond the original micro-services construct, and taking on a more general notion of computation acting on data.
Under DFC, a capability called 'Workflow Structured Objects' (WSO) has been demonstrated.  These WSOs encapsulate
scientific workflows, including input parameters, workflow processes, and outputs, such that execution of a WSO given a
set of input parameters preserves those parameters and inputs, documenting a process, and enabling reproducible research.
[13] WSOs demonstrate a broad set of new approaches that have been developed within DFC, and among DFC
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collaborators similarly utilizing iRODS.  That is, the confluence of computation and data management under the policy-
managed approach of iRODS.

Computation merged with data management under the umbrella of policy-management is important in several respects.

1. As a base capability in Gannon's cyber-infrastructure concept, the ability to manage computation in the same
context as the underlying data is an affordance to researchers.  Data can be processed as easily as it can be
manipulated and copied for data management purposes.

2. Links between computation and data provide a basis for provenance tracking.  As data is processed, the derivative
products may be registered back into the grid environment, along with metadata describing the workflows,
parameters, and processing details.  By providing computational affordances, the DFC cyber-infrastructure
receives important audit trail and provenance information in return.

3. The computational processes that have been used to create new data products are metadata, describing the
significant properties of a data object, and helping to ensure that the data object remains useful to a designated
community over the long term.  Thus, the merging of computation and data management contributes to the long
term preservation goals, and ensures the viability of reference collections and published data sets at the mature end
of the research data life-cycle.

Rajaseka points out an emerging picture of computation as it pertains to DFC and iRODS.  He describes a paradigm shift in
several respects. [13]

1. A shift from compute-intensive processing to data-intensive processing.  The data and data handling become a
primary focus of computational processes.

Illustration 1: Workflow Strucured Objects (Rajaseka 2014)
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2. A shift from “large actions on small data” to “small actions on large data”, meaning that the costs of data
movement is beginning to outstrip the costs of the computational processes themselves.

3. From “move data to the processing site” to “move process to the data site”.  Discovery of appropriate locations to
do computation on data, as well as facilities to host and schedule such computation become pressing issues.

4. “Function chaining” to “service chaining”.  Computation becomes a modular process, were linked capabilities may
be used to accomplish a computational tasks.

5. “Model-based science” to “data-based science”.   Data mining and computation on large sets of observations is
becoming an important practice in data-driven science.

WSOs are but one example of DFC cyber-infrastructure innovation on the iRODS platform.  Other groups that participate in
DFC have reached similar conclusions and have begun developing similar approaches, notably the iPlant Collaborative,
who have made great advances in marrying computation with data management over the iRODS platform. [14] The
discovery environment is a workbench for researchers that manages data access, provides an abstraction of applications for
data analysis, and a facility for managing the data products and notifications from these computational tasks.  The iPlant
foundation APIs are REST accessible services that can serve as a template for formalization and further abstraction within
the DFC environment, a task that is currently in progress.

1. iPlant provides an abstraction for computation as an application, with metadata describing its purpose and
parameters, such that users can discover and interact with these applications.

2. Gateways have been created to various workflow and computation environments, including Condor, Docker
containers, and grid resources such as Exceed.

3. A facility to monitor execution and receive notifications of progress and completion of computational processes
has been created.

There are several subsystems and general features here that are being incorporated into the DFC architecture, through
implementation of the Discovery Environment software on the DFC grid, and further enhancement of iRODS capabilities.
For example, the DFC design contemplates extending the 'application' abstraction demonstrated in iPlant to include WSOs
and iRODS user submitted rules.  This provides a basis for interfaces for users that allow each grid to extend its capability
by providing the appropriate procedures and computational resources.

An especially interesting development in computing is the emergence of lightweight containers such as Docker. [15] Docker
provides a means to define containers consisting of a base operating system and applications, as configuration, and to
rapidly distribute and launch containers for computation.  Under discussion in DFC is the concept of a computational
resource, which is a specialized resource that could manage Docker based applications, collocated with an iRODS storage
resource  This arrangement would allow many “small actions on large data” operations to take place on a platform that also
contains the target data resources.  Such containers could be tied into the 'application' constructs described above, and
illustrated by the current Discovery Environment services.  

It is important to note that the distinction between computation and policy management of data is actually quite artificial.
Services that have been traditionally considered data-management, such as metadata extraction or file format translation,
can be mediated through the policy management framework of iRODS can actually take place using the same application
constructs that are employed in the Discovery Environment.  This is especially the case if we consider the indexing
framework.  Earlier, we described a use case for indexers of file contents, such as text indexing, file format recognition, and
data subsetting for metadata extraction.  These use cases are, in essence, computation on data, potentially generating new
data products.  In fact, the previously mentioned metadata templates contemplate the ability to declaratively describe
automatic metadata extraction as an 'application', and this application could be accomplished in the described framework.
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These use cases employ a common set of services that define new iRODS components and capabilities driven by DFC
development.  

The policy-managed approach of iRODS, mediated through policy enforcement points, and through the policies and
procedures invoked by the iRODS rule engine, has proven to be a successful data management paradigm.  It is worthwhile,
in the context of DFC development, to extend these concepts to the management of computation as it intersects with
research data.  It is true that the iRODS based cyber-infrastructure cannot cover every single use case, but it is arguable that
there are distinct classes of cases where grid users need to discover and apply computation to data on the grid, to be notified
of the status of this computation, to be able to manage the products of this computation.  As cyber-infrastructure, DFC needs
to automatically preserve metadata about provenance, history, and meaning of derived data products.  Existing
implementations at DFC partners such as iPlant demonstrate the viability of these approaches at scale.  Computational
facilities may be common across preservation and data management use cases as well as data driven research use cases.
IRODS consortium efforts to standardize plug-ability at many levels, including at the level of the rule engine, to develop
compose-able resource hierarchies, and to provide grid introspection and discovery services, all lead towards an emerging
set of capabilities where computation and data management meet.

[4] CONCLUSION

The development of DFC architecture is resulting in many novel enhancements to iRODS in support of key requirements of
cyber-infrastructure.  In particular, innovations in the area of metadata management and discovery, and in the application of
computation to grid-managed data constitute significant new capabilities for iRODS.  These discovery and computational
features are necessary in order for DFC to achieve its goal of providing support the entire life-cycle of research data.
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ABSTRACT

The traditional iRODS mechanisms for file sharing, including user groups, often require some form of iRODS ad-

ministrative privilege. In the HydroShare project for enabling hydrology research, we perceived a need for more

flexible file sharing, including unprivileged creation and management of user groups according to policies quite dis-

tinct from the Linux/Unix policies that initially motivated iRODS protections. This is enabled by a policy database

in PostgreSQL and management API written in Python that are deployed in parallel to iCAT. Innovations in iRODS

4.1 allow access control based upon this PostgreSQL database rather than the default iCAT server, by interposing

access control code before the access event using iRODS Policy Enforcement Points. The result is an access control

mechanism that closely matches scientific needs for file sharing, and brings “dropbox-like” file sharing semantics to

the network filesystem level.

Keywords

File sharing, authorization, access control, policy enforcement points

INTRODUCTION

The access control mechanisms implemented by iCAT for iRODS [1, 2, 3] – while suitable for a variety of types of file

sharing – fell short of our requirements for file sharing in the data-centered social networking site “HydroShare” [4,

5, 6] (http://www.hydroshare.org). Based upon the Hydrologic Information System (HIS) [7] of the Consortium of

Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), HydroShare brings social networking to data

centered science, by enabling “object-centered” discussion in data-enabled science [8]. HydroShare enables posting of

a large variety of data types as directories of files in the BAGIT [9] format, and stores metadata for each object in the

object, using the Open Archives Initiative metadata guidelines [10] tailored to the needs of water sciences. The goal

of HydroShare is to enable sharing of hydrologic data and models with the same ease with which one stores photos or

videos on social networking sites, with social mechanisms including commenting, rating and sharing of data objects.

iRODS does not currently provide a sufficient protection model for objects in HydroShare, because of our desire to

enable social features rather than just file access. Among other issues, iRODS normally requires administrative access

in order to:

1. Change the owner of a file.

2. Create and manage a user group.

iRODS UGM 2015 June 10-11, 2015, Chapel Hill, NC
[Author retains copyright. All rights reserved.]
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We desired a more flexible concept of object ownership, sharing, and mutability in which a user without administrative

access can:

1. Reassign ownership and all privileges over an object to another user.

2. Create, manage, and destroy a user group and its privileges.

The result was the “IrodsShare” project, a sub-project of the “HydroShare” project, centered specifically upon

creating access control mechanisms more suitable for the collaborative scientific data sharing desired in HydroShare

than the default mechanisms in iRODS. We expect that this sharing model developed for HydroShare will be of

broader interest for scientific data sharing beyond hydrology and water science.

HydroShare

The “HydroShare” project [4, 5, 6] aims to create social mechanisms for data sharing between researchers in the

water sciences, that enhance the value of the data to other researchers. A HydroShare “resource” is a bag [9] of

data that is accessible as one unit, and can contain many subfiles of potentially differing formats. It is best to think

of a HydroShare “resource” as a directory of files rather than a single file, though single file resources are easily

represented in bags. This use of the word “resource” is completely detached from the iRODS meaning of the word

“resource”; HydroShare “resources” are directories adhering to a strict format and requirements for contents and

metadata.

HydroShare is written in Python/Django and utilizes iRODS as a data management back end. Currently, HydroShare

functions according to a Django access control model and allows or denies access via the HydroShare website. It

is desirable to create a coherent access control mechanism that is homogeneous between the privileges granted at

the Django website and all forms of access to HydroShare resources via iRODS, including REST, iCommands, etc.

“IrodsShare” provides this desired mechanism.

Policies for file access

Our policies for file control are somewhat different than those in typical iRODS or Linux, and aligned around social

and scientific needs and priorities rather than filesystem traditions. All objects in HydroShare are “HydroShare

resources”: bags of data containing perhaps multiple constituent files. The file protection model is very simple:

1. A user can possess “View”, “Change”, or “Owner” privileges over a specific resource.

2. “Owner”s can change any aspect of a resource, including its title, ownership, and access to others, and can

delete the resource.

3. “Change” users are limited to changing the resource contents and/or metadata.

4. “View” users are limited to viewing the contents of the resource file.

5. Resources can have multiple “Owner”s.

6. The last “Owner” of a file cannot revoke personal ownership; ownership must be assigned to another user first.

So far, these privileges should be familiar to most users. However, the system diverges from standard file access due

to several extra boolean resource attributes, including:

1. “Public” – the content of this resource is made available to all users.

2. “Discoverable” – the existence and metadata for this resource file is available to all users, but not necessarily

its content.
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3. “Shareable” – this resource can be shared with other users and groups by a non-owner.

These settings are used to manage whether “IrodsShare”s flexible sharing mechanisms are enabled for a specific

resource. A maximally protected resource in HydroShare would have “Shareable”, “Discoverable”, and “Public” set

to FALSE. This is a resource that an owner can share with selected users, but that non-owners cannot in turn share

with others. This is the typical setting for resources that contain pre-publication data.

1. Setting “Shareable” to TRUE allows people and groups with whom the resource has been shared to re-share it

with others. This – in essence – enables limited distribution of the resource via transitive sharing. For example,

a researcher can share the resource with that researcher’s research assistants, and those assistants – in turn –

can share it with anyone they wish.

2. Setting “Discoverable” to TRUE allows researchers not associated with the owners to learn of the existence of

the resource and request access from the owners. This enables the owners of the resource to reach a common

understanding of the limits of use with the requester before sharing the resource. The use of this flag is to

enable pre-publication access to data on a limited basis by trusted external researchers.

3. Setting “Public” to TRUE enables general access to the resource, by any user, and is normally enabled after

results are published. When this flag is TRUE, any user anywhere can discover and download the data.

The default in HydroShare is to set “Shareable” to TRUE and the others to FALSE.

Sharing and groups

Perhaps the most unique aspect of IrodsShare – from the perspective of resourcesystem-like protections – is the

concept of resource “Sharing”. Any user with a privilege over a “Shareable” resource can grant that privilege to

others. As well, privileges previously granted by a specific user can be removed by that user. One can share a

resource with either another user or a group of users.

In like manner, user groups can be created, managed, and destroyed at will by any user. A group of users is managed

very much like a resource in IrodsShare:

1. Any user can create and thus own a group.

2. Users can have “View”, “Change”, or “Owner” privilege over a group.

3. “Owner”s can invite and remove group members (with any privilege) or destroy the group.

4. “Change” users can invite new members to a “Shareable” group, and can assign those members ”Change” or

“View” privileges over the group.

5. “View” users cannot invite new members, even to a “Shareable” group.

As with resources, a group can be “Shareable” or not.

USE CASES

This model was conceived based on many conversations and experience working with water scientists interacting with

the CUAHSI Hydrologic Information System implemented at the CUAHSI Water Data Center. It strives to balance

the needs and concerns surrounding sharing and enabling access to scientific data while protecting the rights and

desires of the researchers involved. These users are a set of water scientists with broad interests, from basic hydrology

to water quality and various forms of modeling. We discussed what scientists really need, instead of limiting discussion

to resource sharing mechanisms that currently exist.
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The resulting design was documented in a working policy document [11] and motivated by several scientific use cases

discussed below. As well, part of the design attempts to provide the basic infrastructure to become a DataOne node

[12] and to serve the sharing needs of water science groups such as the Critical Zone Observatories, as documented

in [13].

In the following, it is important to remember that HydroShare “resources” are actually – logically – directories of

related files. Thus access to a resource means access to that directory and all files contained therein.

There are many non-conflicting interpretations of a HydroShare resource, including:

1. Files for one trial of a single “experiment”.

2. Input, output, and software for a specific model run.

3. A set of related files that represents the published data output of a project.

and many other potential contents.

Like a UNIX group, the concept of an IrodsShare group has many non-conflicting interpretations, including:

1. Users associated with a specific project.

2. Users associated with a specific organization or laboratory.

3. Co-authors of a specific academic paper.

4. A loosely managed group of users sharing the same interests.

While the first and second interpretations apply to a regular user group in Linux or iRODS, the third and fourth

interpretations are only really practical in IrodsShare, because of the administrative overhead involved in finding an

iRODS administrator to create what is really an “ad hoc” notion of group.

The word “group” does not serve particularly well to describe the IrodsShare group concept because of its common

association with the narrower definition used in iRODS and linux file systems. However, no better descriptive word

has emerged.

Researcher plus graduate students and collaborators

To start a project, the researcher creates a group and assigns graduate students to the group with appropriate

privilege (typically “View”) (left side of Figure 1). As students enter and leave the project, their group access is

managed by the researcher. A senior graduate student can be delegated the task of managing group membership by

assigning group “Change” privilege to that student.

Next, the researcher shares resources at different privileges with group members. In this example (right side of

Figure 1), the whole group has “View” privilege while “assistant 1” has “Change” privilege. The access control

system automatically defaults to the highest level of privilege granted through any mechanism.

Thus, the researcher retains control and oversight over all project resources and can delegate responsibility to students

very easily. Most notably, students with change privilege do not automatically assume ownership of a resource after

they make changes. Each resource remains owned by the original creator – the researcher. This eliminates the very

common plight that graduate students acquire too much privilege, and then graduate.

Page 64



Figure 1. User groups and resource sharing in IrodsShare.

Pre-publication and post-publication data protection

The “Shareable” flag on each resource arose from the necessity of protecting resources from dissemination before

results are published. The researcher can set this flag to FALSE so that no non-owner can share an accessible

resource with another user or group.

For example, this is desirable if details of the original study that collected the data in question have not been

published. Then the owner – e.g., an academic researcher – can delegate “Change” privilege to students without

permitting students to disseminate the data to others. Likewise, the “Discoverable” flag arose from the desire to

enable and encourage polite and acknowledged reuse of pre-publication data by permission of the owner. Setting this

flag to TRUE allows all users to discover that the resource exists, but users must then request access from an owner,

typically via email in this implementation. This allows the owner to set limits on resource use.

Finally, the “Public” flag arose from the desire to be able to publish results for general consumption after the results

of the data have been published. Setting this flag to TRUE gives general access to the data to all users.

Miscellaneous use cases

A few other features enable other scientific needs, including:

1. “Published” – a resource flag that indicates that the resource has been assigned a Digital Object Identifier

(DOI).

2. “Immutable” – a resource flag that indicates that the owner has frozen the contents of a resource, overriding

“Change” privileges for all current users holding that privilege.

POTENTIAL DESIGN APPROACHES

To accomplish these requirements, we discussed and tried several design approaches before settling on the final

approach. Ironically, while the project was to add non-admin functionality to iRODS, several approaches were

discarded because the unprivileged user is too privileged and, at the present time, there is no formal access control

on certain aspects of iCAT, including Attribute-Value Units (AVUs).

For example, we considered adding access control to iCAT metadata Attribute-Value Units (AVUs). Since there is

no access control on AVUs, however, we would have had to create that access control. We considered writing several

Policy Enforcement Point services to limit the changes one can make to access control AVUs. We abandoned this

approach due to four main reasons:

1. The code for controlling AVU content was discovered to be very complex.
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2. The code for utilizing AVU content for access control was predicted to be unacceptably slow.

3. Other projects’ use of AVUs could potentially collide with our uses.

4. iRODS Policy Enforcement Points had not been used previously for this function and it was not clear at the

time whether this would work properly.

Thus, after some prototyping and proof of concept, we concluded that this approach was more complex than war-

ranted.

Other considered approaches included modifying the iCAT itself to include a different kind of metadata. This was

abandoned because it was simpler for us to maintain a separate database just for access control than to branch the

iCAT code.

THE CHOSEN DESIGN

After consultation with the iRODS team at RENCI, we decided to base our access control system upon a new feature

of iRODS dynamic Policy Enforcement Points (PEPs) that was implemented for us and will be supported in the

iRODS 4.1 release. If a function defined for a pre-execution PEP returns an error, then the action being protected by

the PEP is canceled. Thus, we define PEP code for pre-execution before resource creation, update, and read requests,

and this suitably enforces our access control by returning “Access Denied” errors as appropriate. This code reads an

external PostgreSQL database to determine user privileges (Figure 2). In this figure, arrows represent directions of

control during data access and policy enforcement. The API controls access policy, which in turn controls iRODS

resource access.

Figure 2. The access control mechanism interposes policy enforcement points between iRODS resources and

a user website, thus providing consistent access regardless of the access mechanism in use.

In order for this to work, all resources being protected in this fashion must be world-writeable according to each

user’s iRODS protections. We accomplish this by making all resources writeable to a designated “HydroShare”

iRODS group, in which all users are members. Thus, the access control scheme is subtractive; it denies access to

resources to which the iRODS user would otherwise have access according to normal iRODS protections. Because

of this implementation, it is unimportant whether the actual resources are owned by specific iRODS users or not;

ownership in iRODS is orthogonal to ownership in IrodsShare, and we are currently using a proxy user as the iRODS

owner.

The IrodsShare API

The contents of the access control database are managed by a Python API (to interact with the Django/Python

website, and to suit the maintenance requirements of the HydroShare team). The API requires authentication of

a HydroShare user and acts on behalf of that user. All policies regarding access control are implemented via the

API, which modifies the PostgreSQL access control database directly. In turn, this database is shared with iRODS

microservices to control the PEPs as discussed above.
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While – ideally – we would like this to be accessible via iRODS REST microservices, that feature has not yet been

implemented.

Sharing Policies

In any social sharing situation, there is a balance between enabling sharing and minimizing “SPAM” or other unwanted

information. This concern complicates operating policies somewhat, because sharing can in principle be a source of

SPAM. For example,

1. A user must give permission to be made an owner of a resource. This prevents users being inadvertently made

responsible for resources without their knowledge.

2. A user must give permission to join a group, after being invited by an authorized member. This prevents users

from placing everyone in a group, for the purpose of broadcasting information to everyone.

Sharing with individual users is otherwise unmoderated, and anything shared with a group is immediately distributed

to its members.

PROJECT STATUS

At present, only the database and Python policy engine are complete and tested, with documentation in the Sphinx

documentation system. Deployment to HydroShare has been deferred due to the need to deal with issues in Django

access control first. PEP enforcement has been designed but not implemented.

CONCLUSIONS

We presented a novel model of access control for scientific data that mimics file sharing in social networks, at the

filesystem level. This mechanism strikes a balance between capability at the filesystem level and ease of implemen-

tation, by strategic use of iRODS dynamic Policy Access Points. By setting iRODS to “allow anything” and then

constructing selective denials, we change as little of iRODS as possible to accomplish this.

This is just a first step toward moving social networking to the filesystem level. While critics of IrodsShare believe

that it creates a two-phase commit problem with Django, this criticism is only valid as long as Django and iRODS

are competing to be ground truth for access control.

As for the actual usability and utility of the project, only time and experience will tell. We believe we have struck a

balance between utility, ease of understanding, and limitation of abuse potential.

Availability

The project is freely available from http://github.com/hydroshare/IrodsShare.
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ABSTRACT 

We developed a resource driver that provides iRODS with the full potential of an EMC Isilon scale-out storage 

system. Previously Isilon connected to iRODS as a legacy NFS device. Our dedicated Isilon resource driver offers 

Kerberos authentication, better read performance, and load distribution among nodes of a clustered storage system. 

Also ‘intelligent’ storage system features may be potentially accessed from a dedicated resource driver. All of the 

listed advantages cannot be achieved in the context of an NFS usage model (except Kerberos, which is not common 

for NFS environments). In this paper we describe the motivation behind the dedicated Isilon driver, implementation 

details, and results of initial performance evaluations of the driver. Initial performance data shows that the driver 

provides 30%-better read performance and almost perfect load balancing between the nodes of an EMC Isilon 

storage system (a clustered storage system). 
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INTRODUCTION 

EMC Isilon scale-out storage system is popular for storing large amounts of unstructured data. This is especially true 

for the Life Sciences domain [1]. iRODS
1
 (The Rule Oriented Data System) in its turn is a popular solution for 

managing unstructured data [1]. Both Isilon and iRODS have been used together for several years in different 

organizations for storing and taking control of multiple terabytes and even petabytes of data [1]. 

Till now Isilon has been represented to iRODS as legacy NFS storage leveraging the ‘unixfilesystem’ iRODS 

resource driver type. While this approach suits well for many purposes, it doesn’t align well with modern data 

management practices. Below is a list of reasons demonstrating why NFS
2
 is not a perfect option for accessing 

Isilon: 

1) Mounting NFS devices requires super-user privileges. This complicates the management of a data grid

system like iRODS. Super-user intervention is required for trouble-shouting, initial configuration, and re-

1
 All information in this article is relevant with respect to iRODS 4.0.3 version, which is the latest version at the 

time of article creation 

2
 Here and everywhere in the document ‘standard’ NFS client implementation – that comes with UNIX distributions 

– is implied
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configuration. That can be a bigger problem in cases where the roles of machine administrator and Data 

Grid administrator belong to different people 

2) Load balancing between different storage system’s nodes is problematic. Typically each iRODS

storage resource is associated with a single iRODS Resource server. With respect to NFS that means that

all I/O (input/output) workload associated with a storage resource will be processed through a single

mount. In its turn, each mount can be served by a single Isilon node only. Isilon is capable of moving

mount points from one node to another for load-balancing purposes. But this balancing occurs at the level

of network connections, which may be insufficient in cases with very ‘busy’ connections
3

3) Object-style access is not supported by NFS. Work in object style is becoming popular [4] today.

Working with object stores is quite different from conventional file system access because of additional

limitations on concurrent access, object modifications, and more.

4) NFS client is implemented at OS kernel level and is intended for general-purpose usage. User-space

clients may provide better performance, better control of data transfer and may be optimized for particular

workloads and environments

5) NFS doesn’t provide access to ‘intelligent’ features of modern storage systems.

In our initial design of Isilon resource driver we addressed the first four of the above concerns. Advanced Isilon 

features may be supported in subsequent releases. 

During this work on the driver we identified a number of iRODS issues (24) related to data transfer which were 

reported. The authors wish to thank the iRODS Community for addressing many of them. They may be found under 

nickname ‘AndreyNevolin’
4
 on the iRODS GitHub [5]. 

IMPLEMENTATION DETAILS 

HDFS access to Isilon is the core of our plugin design. HDFS protocol is supported by Isilon since version 6.5 of 

Isilon OneFS file system [6]. 

We use low-level HDFS client library Hadoofus [7] to access the HDFS server-side functions. Hadoofus is a very 

simple library. It implements only client-side counterparts of the server-side API. Relying on the low-level client 

library allows us to move all data-transfer optimizations to the level of the iRODS resource driver. The driver in its 

turn is ‘iRODS-aware’, which allows us to implement iRODS-specific optimizations (and also provide iRODS-

specific data-transfer controls available to a user or to the iRODS framework itself). Currently we implemented only 

simple data pre-fetch and write bufferization. Other optimizations may appear in future. The non-constraining 

design will allow us to introduce them easily in the future. 

Hadoofus is a native C library. It does not rely on the Java runtime environment (in contrast to most HDFS clients). 

That alleviates concerns related to JRE performance. 

Since both Hadoofus and our plugin work in user-space, super-user privileges are not required for creating 

specialized Isilon resources in iRODS. 

HDFS by its nature is an object-based protocol. Our resource driver naturally inherits this property. 

3
 Consider the following hypothetical example. Imagine a storage system cluster of two nodes. Let’s assume next 

that two NFS connections utilize these nodes: each connection resides on a separate node and each connection 

consumes 70% of single-node throughput. If one needs to occupy the cluster with a third connection that requires 

50% of node throughput for best performance, there is no way to do that without sacrificing performance of two 

workloads. Even though the cluster still has unallocated throughput of 60% of a single node (30% on each node), 

this bandwidth cannot be allocated to a single connection 

4
The following link may be used to find all iRODS issues reported by us: 

https://github.com/irods/irods/issues/created_by/AndreyNevolin 
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As was stated above, two basic optimizations are currently implemented in the driver to support effective data 

transfers. The First optimization is data pre-fetch. Data is pre-fetched in blocks of fixed size. When iRODS requests 

data that is not in a pre-fetch buffer, the resource driver first fills the buffer completely starting from the byte that 

corresponds to the requested offset. Only after that will the requested data be returned to iRODS. An independent 

read buffer is associated with each iRODS object opened through the specialized Isilon resource driver
5
. 

Our second optimization is write bufferization, which is very simple. Data is committed to Isilon only when the 

client-side intermediate buffer is full. 

Sizes of both the pre-fetch and write buffers can be specified during creation of the specialized iRODS Isilon 

resource. Preconfigured default sizes are used when corresponding parameters are omitted during creation of the 

resource. 

LIMITATIONS OF THE DRIVER 

Currently there is only one constraint
6
 that is specific to the Isilon resource driver. Namely random writes. This is a 

natural consequence of the HDFS protocol limitations. HDFS does not allow random access for writing. Only 

streaming writes are supported
7
. 

Because of this limitation and specifics of current iRODS design, our solution demonstrates slightly lower write 

performance
8
 of object upload

9
 compared to NFS-based access to an Isilon. This is due to an artifact in how iRODS 

normally transfers data – using multi-stream I/O. It splits an object into many consecutive pieces and each piece is 

transferred to/from the storage resource by a dedicated thread. This manner (which is based on the POSIX I/O 

model) leverages ‘random’ (i.e. non-consecutive) writing which is not supported by our resource driver. Because of 

that we have to constrain object uploads to a single stream per object.  

This limitation, while annoying, was deemed acceptable because: 

1) Experience shows that data reads from an Isilon device under iRODS occurs much more frequently than

writes.  Optimizing to improve read speed is most valuable

2) Our preliminary performance evaluations show that the read (download) speed of our driver is significantly

higher than that observed when using  NFS access to the Isilon (see corresponding section below for

details)

3) Preliminary data shows that in most cases the single-stream write performance of our driver is higher than

single-stream performance of NFS-style writing. This observation suggests that aggregate write

performance
10

 will be higher in case of the specialized Isilon driver than in case of NFS-style writing

5
 More precisely, an individual buffer is allocated for each object handle opened through the driver. Several handles 

may correspond to a single object 

6
 Other limitations exist, but they are not specific to our resource driver. For example, bundle iCommands are not 

supported by the driver. But any iRODS resource whose storage resource type is different from ‘unixfilesystem’ 

will have this limitation. This characteristic is well-known, see [8] for the description 

7
 In the case when random write access is a requirement, our solution may be used to form an ‘archive’ tier in a 

multi-tiered composite iRODS resources. E.g. a ‘standard’ iRODS ‘compound’ resource may be created with  the 

‘cache’ tier represented by a ‘unixfilesystem’ storage resource associated with an Isilon NFS mount, and an 

‘archive’ storage resource tier represented by the specialized Isilon resource driver 

8
 ‘Performance’ here means ‘time to complete an I/O operation measured at client side’ 

9
 Through ‘iput’ iCommand 

10
 In terms of the maximum possible throughput of multiple parallel uploads (measured at the client side) 
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4) Single stream I/O is not obliged in all practical cases to be slower than multiple stream I/O. Moreover, the

single-stream approach has several advantages over multi-stream

The last point calls for clarification. Most client-side peripheral hardware resources may be kept busy by means of 

just single computing thread (i.e. one thread per one resource). For example, only one compute thread may keep a 

network adapter continually busy. The same is true for a disk drive if the thread is sending continuous I/O. This 

implies that if several hardware resources are required to complete an operation, the maximum performance may be 

achieved by using only one compute thread per resource. All these threads should keep their corresponding 

resources continually busy – but not overly busy! Thus, the number of threads required to achieve the best data 

transfer performance may be equal to the number of hardware resources involved in the transfer. For example, one 

thread reads data from a disc drive continuously and puts the I/O payloads in a queue. Then another thread takes the 

data from this queue and sends them over a network. And so on... 

The important point here is that all I/O operations with hardware resources should be asynchronous. Otherwise the 

multi-stream model – involving multiple I/O streams per resource – may result in better performance than  the 

described single-stream approach. 

Unfortunately, data writing via HDFS is synchronous in the current HDFS implementations. But that should not be 

of great importance because the size of an HDFS IO payload may be chosen big enough to make the performance 

difference between synchronous and asynchronous protocols negligible. 

The single-stream approach also results in sequential access to storage at both the client and Isilon sides. Sequential 

access is a preferred access mode for most storage systems. The single-stream approach allows better control over 

compute resources. During our investigation, we proposed to the Consortia to consider the implementation of a 

single-stream model – which better suits for modern object-based style of data access – in addition to the multi-

stream one. We believe that many iRODS usage models – utilizing storage of various kinds – may benefit from this 

change. 

LOAD BALANCING BETWEEN DIFFERENT ISILON CLUSTER NODES 

Our data shows that the specialized Isilon resource driver results in almost perfect load distribution between 

different Isilon cluster nodes. 

This better resources utilization occurs because Isilon’s implementation of the HDFS NameNode service choses the 

appropriate Isilon node for each individual IO request. 

Let us illustrate that with a graphic (Figure 1). 
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Figure 1. Load distribution among Isilon nodes in case of NFS-style and HDFS-style access 

High peak on the left shows Isilon-side throughput for a particular set of iRODS operations
11

 carried out using NFS-

style approach. Three low peaks show Isilon’s throughput for exactly the same experiment but carried out using the 

specialized Isilon resource driver in place of ‘unixfilesystem’ driver. The resource driver and corresponding logical 

resource in iRODS are the only things that differ between the two experiments. 

It may be seen that in the case of NFS the full I/O load falls to a single Isilon node, while in the case of the 

specialized resource driver, the load is distributed evenly among all available nodes (three in our case). 

We want to stress that these results are preliminary. It may happen that intra-cluster limitations (e.g. limitations on 

traffic between cluster nodes) may not allow the I/O traffic to reach 100% of available cluster throughput under our 

new usage model. The data above should be considered as an illustration of the concept. Only stress-testing will 

provide complete proof of the concept. These works are planned but are not completed yet. 

READ PERFORMANCE 

We compared client-side performance of ‘iget’ operation in the case of NFS-style access to Isilon and in the case of 

our solution. Our experiment was very simple: 

1) We measured time required to download a single 4GB file from the Isilon

2) All that differed between the experiments was just the plugin for File System access. All other

parameters were exactly the same

3) We measured how file download time depends on the size of intermediate buffer. In the case of NFS the

size of the buffer may be altered through ‘wsize’/‘rsize’ parameters. In case of the specialized driver we

used user-controlled sizing of the pre-fetch buffer

11
 14 consecutive upload/download cycles performed for 2GB file 
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The simplest possible iRODS zone was configured to conduct the experiments (see Figure 2). The zone consisted of 

a single iRODS server which was an iCAT server. iRODS client commands – iCommands – were executed directly 

on this machine. 

We used 10Gb Ethernet to connect the iRODS machine to the Isilon. 

Figure 2. iRODS zone in our experimental setup 

Results of the experiments are shown below (Figure 3). The X-axis shows size of the intermediate buffer in 

Megabytes. The Y axis shows time (in milliseconds) taken by the ‘iget’ operation. For each buffer size and for each 

resource driver we made a series of 20 experiments. For the ‘unixfilesystem’ driver – used to create iRODS 

resource over NFS – we plotted the minimum time observed in a series. In case of the specialized driver we plotted 

average time.  

The reason we used ‘average’ for NFS is that we observed a huge inconsistency across a series of NFS experiments. 

As can be seen from the graph below, the minimum NFS time is about 7 seconds for all buffer sizes used
12

. But 

average NFS time is about 15 seconds for all buffer sizes used. Currently we cannot explain this tremendous 

inconsistency across NFS experiments. That’s why we use minimum observed time for NFS. 

In case of the specialized plugin, the minimum observed time doesn’t differ from average by more than 10%. This is 

why we are comfortable using the ‘average’ in this case. 

12
 Here we ignore high peaks resulted from random fluctuations 
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Figure 3. Performance of NFS-style access to Isilon compared to performance of the specialized driver 

It can be seen from the graph that NFS performance doesn’t depend significantly on the size of the intermediate 

buffer. Actually it does, but this dependence can be observed at KB scale only (for buffers < 1MB). The graph above 

was built at MB scale. NFS performance for KB-sized buffers is lower than that for MB-sized buffers. 

As follows from the graph, the best NFS performance (~7 seconds) is about 30% lower than best performance of the 

specialized driver (~5 seconds for buffer sizes close to 10MB). 

It is interesting to note that in our experiments it turned out that the 4GB file was downloaded into memory. A file 

wasn’t flushed to a local disk when ‘iget’ iCommand completed. Our local disk has write performance of about 

100MB/s, while maximum performance observed in the experiments is about 800MB/s. 

While the observed performance difference is promising, the results should be treated with care. The experiments 

are very simple. Stress-testing is required to understand real performance potential of the specialized Isilon resource 

driver. Multiple iRODS clients operating on multiple iRODS servers simultaneously should be used to make a good 

case for performance evaluations. We are working on that now. 

We are working to understand NFS performance limitations. Performance bottlenecks of the specialized driver 

should also be studied. Currently the best observed performance of the specialized driver in terms of client-side 

bandwidth is still 35% less than the maximum performance of 10Gb network link. Also it’s 67% less than the 

performance of memory
13

. 

CONCLUSIONS AND FUTURE WORK 

Our initial evaluations of the specialized iRODS Isilon resource driver shows that nearly perfect resource balancing 

at the Isilon side can be achieved. Also client-side read performance in a very simple usage case can be 30% better 

than in case of conventional NFS-style access to Isilon. 

13
 We measured this performance in the following way: 

sudo mount -t tmpfs -o size=9000m tmpfs /mnt/ramdisk 

time dd if=/dev/zero of=/mnt/ramdisk/memtest bs=4M count=1024 
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Nevertheless all the evaluations presented are preliminary. They were developed for very simple use cases and 

should be treated as ‘concept illustration’ and not as ‘concept proof’. Stress-testing is necessary to prove or disprove 

the concept. This work is underway. 

Besides performance evaluations of the new resource driver, we are considering further functional and performance 

improvements: 

1) Intelligent read pre-fetch and write bufferization in the background

2) Support of Isilon’s advanced features

3) Better customer experience via easier setup

During our work on the Isilon-specific resource driver we investigated the data-transfer aspects of iRODS. This 

resulted in a number of issues related to stability, usability, and performance being reported. 
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