NFS-RODS: A Tool for
Accessing iRODS via the NFS
Protocol

Presenter: Danilo Oliveira - dmo4@cin.ufpe.br

D.Oliveira, l. Fé, A. Lobo Jr., F. Silva, G. Stephen Worth Jason Coposky
Callou, V. Alves, P. Maciel

EMC Corporation iRODS Consortium
Center for Informatics UFPE,

Brazil

Introduction

NFS overview
NFS-RODS

Final Remarks

(Live demonstration)

Introduction

e IRODS is a powerful data grid middleware,
plenty of useful features on server side

e However, in order to be useful for final users,
it depends on our ability to create client
applications that address user’s needs

Introduction

Many ways for accessing iRODS...

Jargon core

! iRODS C-lib I

| iRODS Explorer | | Kanki iRODSClient |

Jargon REST iDROP Desktop iDROP Desktop

Introduction

How can we access iIRODS collections as local
folders transparently (hiding the details about

IRODS from the clients)?

-999

2 B >

q.o

Introduction

The NFS-RODS project aims to deliver access to
an IRODS environment via typical NFS clients.

This project was created on top of UNFS (user
space NFS server), and the iIRODS C API

UNFS home page: http://unfs3.sourceforge.net/

http://unfs3.sourceforge.net/

Network File System (NFS) is a
protocol that defines a
distributed file system.

The main goal of the NFS U i
protocol is to turn the remote J

file access transparent for the

O.S. users.

e [echnical detalls:

o Transport layer: could be UDP or TCP
o Session layer: Remote Procedure Call

o Presentation layer: External Data Representation

(XDR) protocol (also developed by Sun
Microsystems)

o Stateless server: the server doesn’t maintain
information between successive client requests

NFS and iRODS are similar in some aspects,
but, different in others.

The main challenge of this project was how to
map the functions specified by the NFS v3 RFC

to IRODS calls.

GETATTR: Get file attributes
SETATTR: Set file attributes
LOOKUP: Lookup filename
ACCESS: Check access
permission

READ: Read from file
WRITE: Write to file
CREATE: Create a file
MKDIR: Create a directory
READDIR: Read From directory
REMOVE: Remove a file
RMDIR: Remove a directory
RENAME: Rename a file or
directory

LINK: Create link to an object
READDIRPLUS: Extended read from
directory

FSSTAT: Get dynamic file system
information

FSINFO: Get static file system
information

PATHCONF: Retrieve POSIX
information

COMMIT: Commit cached data on a
server to stable storage

SYMLINK: Create a symbolic link
MKNOD: Create a special device
READLINK: Read from symbolic link

NFSv3 procedures

10

NFS

ftype3 type;
uint32 nlink;
sized size;
size3 used:;
specdata3 rdev;
uint64 fsid;
fileid3 fileid;
nfstime3 atime;
nfstime3 mtime;
nfstime3 ctime;
mode3 mode;
uid3 uid;

gid3 gid;

Which are

my
attributes?

Non-correspondence of attributes

IRODS

#define COL_D_DATA_ID 401

#define COL_D_COLL_ID 402

#define COL_DATA_NAME 403
#define COL_DATA_REPL_NUM 404
#define COL_DATA_VERSION 405
#define COL_DATA_TYPE_NAME 406
#define COL_DATA_SIZE 407

#define COL_D_RESC_NAME 409
#define COL_D_DATA_PATH 410
#define COL_D_OWNER_NAME 411
#define COL_D_OWNER_ZONE 412
#define COL_D_REPL_STATUS 413
#define COL_D_DATA_STATUS 414
#define COL_D_DATA_CHECKSUM 415

[...]

11

Non-correspondence of attributes

NFS IRODS

Same value
atime -> access COL_D _CREATE_TIME -> creation

mtime -> modify content ‘_3
ctime -=> change attributes COL_D_MODIFY_TIME -= change attributes

12

Non-correspondence of attributes

QOur solution:

copy the same value _
NFS for all fields IRODS

atime -> access -
mtime -=> modify content
ctime -> change attribut

=4

COL D _CREATE_TIME -> creation

COL_D _MODIFY TIME -> change

Same value

attributes

13

Change Permissions

Most permissive mode unix iRODS
chmod 7xx own
chmod 6xx own
chmod 5xx Read
chmod 4xx Read
chmod 3xx Write
chmod 2xx Write
chmod 1xx Read

chmod 0xx Null

System Architecture

1 - Client logs into Autentication

the system using -~ Server ey

the authentication -~ ! Ty

server e Autentiication Aute:ntication

Autentication

NFS Calls iRODS Calls

15

System Architecture

Autentication
P ,

’ Server N
2 - Client mounts the remote
Auten folder and perform NFS calls on

_-" the remote folder

NFS Calls

~

Autentication

iRODS Calls

16

System Architecture

3 - NFSRODS server
translates each call in

Autenticati
i utentication — iRODS API calls,

s Server %)
, : using the user
e - credentials to

Autentication e - au_thorlze access for

2 : private folders

P =] _ - -

!
NFS Calls iRODS Calls

17

System Architecture

e The authentication server is not mandatory, if we want to access
folders inside the /<zone name>/home/public folder

s

Write and read 7 ,

IRODS public
folder

724 ‘

i’

18

Package Diagram

NFS-RODS |

nfs.c

_[R_O"D_S—‘

» rodsapi.c

utils

» utils.c

19

Installing and running NFS-RODS

1. Clone the git repository:
git clone https://github.com/modcs/NFSRODS.git

2. Run “make” on the project folder
3. Install rpcbind
sudo apt-get install rpcbind
4. Run“./NFSRODS” (runs in background mode)

20

) 6 commits {7 1 branch © 0 releases % 1 contributor

L L
Branch: master « MNew file | Find file HTTPS » https://github.com/modc [E Download ZIP
_#7 modces Update README.md Latest commit eT2FTE7 28 days ago
Il images Initial import of source code 29 days ago
i src Initial import of source code 29 days ago
E) LICENSE Initial commit 29 days ago
E) README.md Update README.md 28 days ago

README.md

NFS-RODS: A Tool for Accessing iRODS
Repositories via the NFS Protocol

Introduction

IRODS is an open source platform for managing, sharing and integrating data [1]. It has been widely adopted by
organizations around the world. iRODS is released and maintained through the IRODS Consortium which involves
universities, research agencies, government, and commercial organizations. It aims to drive the continued development of

IMAAMNC mladrncems mamnll o mm mcsmm ek e f i Armnimimea A rnlammememt mmA msmmmimem A e IMAAMNT Cimme mmmm e smih s (AT DA 21

There is a “.pro” file to open the project in QT-Creator
We are using QT-Creator as IDE, but we don’t use any QT
function

Projects | S B =W nfs.c* # X | “ nfsproc3 getattr 3 svc(GETATTR3args *, svc req*): GE

ot | NFSRODS.pro
A » [if Headers

Welcome

ap static void *result = NULL;
¥ [fcd Sources
> W Config return &result;
» [l Extras }
» [@ irodsapi
» [utils
|e] attr.c o B
|e] daemon.c
le] error.c

*

@brief nfsproc3 getattr 3 svc GETATTR - Get file attribui

Analyze

Help

le] fd_cache.c
le] Fh.c

|e] Fh_cache.c
le] locate.c

le] md5.c

|e] mount.c
le] nfs.c

|e] password.c
\e| readdir.c
|e] user.c

|e] winsuppert.c
le] xdr.c

» [Other files

Procedure GETATTR retrieves the attributes for a specifie
file system object. The object is identified by the file
handle that the server returned as part of the response
from a LOOKUP, CREATE, MKDIR, SYMLINK, MKNOD, or
READDIRPLUS procedure (or from the MOUNT service,
described elsewhere).

@param argp The file handle of an object whose attributes
@param rqgstp
@return

* ¥ O X R K R E X R ¥

*f
GETATTR3res *nfsproc3 getattr 3 svc(GETATTR3args * argp,
Y struct svc _req * rgstp)
r

22

Final remarks

e NFS-RODS allows administrators and users
familiar with NFS to interact with IRODS

e IRODS and NFS are not fully compatible, so
we had to make some decisions to integrate

them in a meaningful way

23

Live demonstration

24

Any questions?

Thanks!

