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Abstract—The Data Intensive Computing Environments group 

has been developing data grid technology for twenty years.  Two 

generations of technology were created, the Storage Resource 

Broker - SRB (1994-2006) and the integrated Rule Oriented Data 

System - iRODS (2004-2016).  Both products represented 

pioneering technology in distributed data management and were 

widely applied by communities interested in not only publishing 

data, but also sharing and preserving data.  Applications included 

national digital libraries, national data grids, national archives, 

and international collaborations.  The success of the software was 

strongly driven by basic concepts that still represent the state-of-

the-art for data management systems.  These concepts include 

policy-based data management, virtualization, collection life cycle, 

and federation. The development, evolution, and application of 

these concepts in data grids, digital libraries and archives are 

reviewed in this paper. 

 
Index Terms—Collections, Data grids, Federation, Policy-

based, Virtualization 

I. INTRODUCTION 

ata grids, digital libraries, and archives implement basic 

data management functionality related to ingestion, 

arrangement, description, storage, and access.  The 

characterization of data management functionality can be done 

in terms of these services, or through a description of the 

architecture that supports the services, or through the basic 

concepts that enable the implementation of the operations.  

Variants of the basic data management operations are present 

in data sharing environments (data grids), data publication 

systems (digital libraries), data preservation systems (archives), 

and data processing systems.  A significant research question 

has been whether it is possible to design generic data 

management infrastructure that is capable of supporting not 

only the digital library operations, but also data sharing and 

preservation operations.  The expectation is that generic 

versions of data management functionality can be defined and 

implemented that support publication, sharing, and 

preservation of data. 
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The implementation of two successful data management 

software systems – the Storage Resource Broker (SRB) [2] and 

then the integrated Rule Oriented Data System (iRODS) [13], 

represents an example of a software development life cycle for 

data management systems. User requirements from the 

academic science community drove the implementation of data 

management technology, and the evolution of data grid 

capabilities from simple data management to information and 

knowledge management.  The SRB and iRODS systems 

pioneered significant conceptual ideas and technologies in 

large-scale data management and indeed added multiple terms 

to the ever changing vocabulary of  the field. The current 

emergence of Big Data as a full-fledged field can be traced to 

some of the concepts implemented by these two systems – 

concepts such as data-intensive computing, infrastructure 

independence, virtualization and policy-based data 

management.  The two software systems were developed by 

the Data Intensive Computing Environments group (DICE), 

which was started in 1994 at the San Diego  Supercomputer 

Center (SDSC).  The DICE group pursued the goal of 

implementing software systems that would enable 

collaborative research through large-scale sharing of multi-

disciplinary data files.  In the following we track the history of 

this development and the application of data grids in support of 

digital libraries and archives. 

II. DRIVING REQUIREMENTS 

The selection of the initial software development goal was 

based on observations of research requirements in 

computational plasma physics, observations of technology 

management requirements within the San Diego 

Supercomputer Center, results from a prior collaboration on an 

Alternative Architecture study for the Earth Observing System 

[1], and research in high-performance networking within the 

CASA Gigabit Network project [2].  For example, in 

computational plasma physics, the analysis of the stability of 

toroidal plasma configurations was being done at institutions 

on the East and West coasts of the United States in the 1980s.  

A collaboration environment was needed to enable researchers 

to compare stability analyses and independently verify results.  

This required the ability to share input files, as well as output 

results, across institutional boundaries.  A common name space 

was needed for referencing files, and descriptive metadata was 

needed to define a collection context. 

Within the San Diego Supercomputer Center, which started 

in 1986, technology was replaced every three years to track and 

take advantage of the emergence of cheaper and higher 

performance systems.  In particular, by 1994, the third version 
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of an archival storage system had been implemented, using a 

third generation of storage tape technology.  A mechanism was 

needed to simplify migration of the archived data between old 

and new systems.  The properties of the collections housed 

within the center needed to be maintained independently of the 

choice of storage technology. 

The Earth Observing System Alternative Architecture 

analysis proposed that data products should be organized as a 

collection, and that relational database technology should be 

used to manage the system state information.  Data replication 

was proposed between two centers, with data streaming to 

support processing of the contents.  A collection-based 

approach to data management was expected to handle a much 

larger number of files than supported by the available file 

systems. 

In the CASA Gigabit Network, theoretical predictions were 

made of the maximal achievable performance of a distributed, 

heterogeneous computational environment.  The concept of 

superlinear speedup through the federation of heterogeneous 

computing resources was analyzed, and a practical 

demonstration was made that showed a speedup of a factor of 

3.3 across two supercomputers.  This indicated that 

management of heterogeneous resources was important for 

optimizing performance across distributed systems.  The 

corresponding concept in archival storage was the use of a disk 

to hold small files while larger files were written to tape.  This 

optimized access to small files while enabling the storage of 

massive amounts of data. 

The combination of these prior research efforts pointed to 

the need for researchers to be able to provide a context for 

interpreting shared data, while managing technology evolution.  

These requirements for a distributed data management system 

were the seeds for the development of the first data grid 

software -  the Storage Resource Broker data grid system.  The 

same basic requirements, listed below, were also used to 

implement digital libraries and archives: 

 Management of data from multiple institutions as a 

shareable collection through virtualization mechanisms.  

This was implemented by managing global name spaces for 

files, collections, users, and storage systems independently of 

the physical storage systems where the objects were stored, and 

independently of the administrative domains at each institution. 

Authentication and authorization on the global user name space 

were implemented as third-party services.  The  global name 

space for files mapped logically named files onto physical 

locations within distributed storage systems. 

 Organization of data files as a collection  

independently of the physical characteristics of the data 

file.  That is, a collection provides a virtual “grouping” of files 

that might be stored on distributed resources of various types, 

created and owned by multiple users and groups but having 

some common properties that warrant bundling them into the 

same virtual group. Not all objects in the collection need to be 

files, but can also be dynamic relational queries,  sensor 

streams or self-aggregated/described objects such as tar files or 

HDF files.  

 Association of descriptive metadata, provenance 

metadata, and representation metadata with objects in a 

collection to provide a context for interpreting the data and to 

capture domain-centric  and systems-centric structured 

information. 

 Management of system state information in a 

relational database.  System metadata were associated with 

files, collections, users, and storage systems.  This enabled 

rapid queries on a much richer set of attributes than normally 

provided by file systems. The abstraction of a common set of 

attributes masked the differences between the types of 

resources being used in the physical layer and provided a 

uniform system information management layer. 

 Management of the properties of the collection, 

independently of the properties of the storage system in 

which the files were stored.  This was a key goal based on the 

virtualization of the data collection instead of the virtualization 

of the storage systems. 

 Implementation of a single sign-on authentication 

system.  The files that were shared were owned by the data 

grid.  Users authenticated to the data grid, and in turn, the data 

grid authenticated itself to the remote storage system.  The files 

were stored under an account that represented the data grid.  

This meant that the data grid had to both authenticate users, 

and authorize actions on resources and data independently of 

the physical storage system.  Access controls were managed by 

the data grid independently of the administrative domain – 

again providing a common service across the distributed 

environment. 

 An architecture based on a peer-to-peer server 

environment.  Users could connect to any server and the data 

grid would redirect the request to the correct location for the 

desired file operation.  This meant that users could request a 

file without knowing where the file was located, without 

knowing the local name of the file (physical path name), 

without having an account on the remote storage system, and 

without knowing the network access protocol required by the 

storage system.  The data grid managed the mapping from the 

logical file name to the physical path name, managed 

information about the file location, translated the request by the 

user client to the protocol required by the remote storage 

location, and initiated operations on behalf of the user. 

 Fault-tolerant semantics.  The intent was to build a 

system that tolerated failures.  If a storage resource was off-

line, a storage request would be redirected to alternate 

locations that could provide the space.  This was implemented 

through the concept of storage resource groups.  Writing to a 

resource group succeeded when a file was written to at least 

one member of the group.  Thus some of the storage systems 

could be off-line, or down for maintenance, and the success of 

the operation could still be ensured. Another type of fault 

tolerance was achieved through replication. Since the data grid 

provided a mapping from the logical name to the physical 

address location, it was easy to extend this mapping to multiple 

physical addresses – hence providing management of 

synchronized copies of a data object distributed across multiple 
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resources. If access to one copy was unavailable, the system 

automatically provided access to its replica.  

These capabilities were used to implement a data 

management systems that demonstrated scalability (through the 

dynamic addition of storage resources), access controls 

(through the single sign-on environment), discovery (through 

queries on descriptive metadata), and fault tolerance (through 

the use of storage resource groups). 

III. STORAGE RESOURCE BROKER 

The development of the Storage Resource Broker was funded 

initially by DARPA through the “Massive Data Analysis 

Systems” project [3] in 1995.  The effort to build software to 

manage distributed data was viewed as a sufficiently risky 

objective to warrant DARPA funding.  When the approach was 

presented at a meeting with the tape storage vendor Storage 

Tek, the response was that they were used to leading edge 

projects, but the DICE group was halfway down the cliff.  The 

initial development integrated multiple types of technology: 

 Use of relational database technology to manage the 

system state information.  As part of the EOSDIS alternative 

architecture study (1994), a centralized architecture was 

proposed in which all data were managed by a relational 

database.  The SRB data grid was designed to store system 

state information in a relational database, while maintaining 

links to files on distributed storage systems. At that time, 

holding and accessing hierarchical path information in 

relational systems was considered to be a performance 

bottleneck.  We chose to do this in order to achieve scalability, 

since the file systems at that time dealt with less than 2 million 

files.  Instances of the SRB data grid were implemented that 

managed over 100 million files. 

 Virtualization of data collections versus virtualization of 

storage.  The SRB focused on managing the properties of the 

data collection, instead of managing the properties of the 

storage systems.  This made it possible to implement 

operations directed at data manipulation in addition to data 

storage. Vendors were beginning to implement storage 

virtualization in 1995 but considered data/collection 

virtualization to be too risky. 

 Support for heterogeneous storage systems.  In order to 

manage interactions with multiple types of storage system 

protocols, the SRB software was designed to map from a 

standard protocol that was based on extensions to POSIX I/O, 

to the protocol used by specific types of storage systems such 

as the IBM High Performance Storage System, the UniTree 

storage system, the Network File System, and the Cray File 

System etc.  The protocol conversion was implemented as a 

modular and extensible software driver.  The data grid tracked 

all operations performed through the middleware, and updated 

persistent state variables consistently within a central metadata 

catalog.   

 Extended support for data manipulation operations.  

The SRB data grid implemented operations for replication, 

versioning, synchronization, auditing, aggregation in 

containers, staging of files, archiving of files, checksum 

creation, metadata extraction, and metadata loading.  Since the 

additional operations were initiated through both Unix utilities 

and web browsers, a key property of the data grid was the 

decoupling of access mechanisms from the data management 

middleware. 

 Support for multiple types of client interfaces.  A 

second layer of virtualization was needed to manage mapping 

from the protocol used by client software, to the standard I/O 

protocol supported within the data grid.  For the SRB, the 

clients that were supported included web browsers, Unix shell 

commands, Java load library, C++ I/O library, and Fortran I/O 

library.  The protocol used by the client did not have to match 

the access protocol required by the storage system.  In effect, 

the SRB implemented brokering technology between clients 

and storage. 

 Support for multiple authentication environments.  

Since the data grid accessed resources across multiple 

administrative domains, it needed to deal with the different 

types of authentication that were supported by the 

collaborating institutions.  To perform authentication for users 

to access files, multiple types of authentication systems were 

supported, including Unix passwords, Kerberos, and Grid 

Security Infrastructure through the Generic Security Service 

API.  For each type of authentication environment, the 

associated information was stored in the metadata catalog as 

attributes on the user account name.  The authentication 

mechanism used to authenticate a person to the data grid did 

not have to be the same as the authentication mechanism used 

to authenticate data grid access to a remote storage system. 

Hence, the system also worked as an authentication broker. 

 Schema indirection.  Each user community had different 

definitions for the descriptive metadata that they associated 

with files and collections.  Schema indirection was used to 

store a triplet consisting of the attribute name, the attribute 

value, and an attribute unit or comment.  This allowed each 

community to use the data grid as generic infrastructure and 

implement their domain specific descriptive metadata. 

Association of name spaces to form an entity set (e. g. Dublin 

Core, FITS metadata, DICOM metadata, etc.) was also 

possible. 

 Extensible generic infrastructure.  Since multiple types 

of applications built upon the SRB data grid, new features were 

implemented through appropriate forms of virtualization.  This 

ensured that the system would remain compatible with prior 

versions, and that extensions to the software could build upon 

multiple versions of storage technology.  The highly extensible 

architecture ensured long-term sustainability of the software 

through continued application to additional science and 

engineering domains. 

The SRB can be viewed as an interoperability mechanism 

that enabled use of multiple types of storage technology, 

multiple types of authentication systems, and multiple types of 

access clients.  The interoperability enabled by the SRB 

software is shown in Figure 1.  The SRB data grid was 

implemented as multiple software servers that may reside on 

different computers or may be co-located on a single computer.  

Each software server ran as a user-level application on the 
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computer.  The servers communicated over a network using a 

protocol written specifically for the Storage Resource Broker.  

External clients accessed the data grid over a network.  Each 

access was authenticated, and each operation was authorized 

by the data grid.  One of the servers managed interactions with 

a metadata catalog, which in turn composed the SQL needed to 

access a relational database that stored the system attributes.  

The SRB had drivers for interacting with multiple types of 

storage systems (tape archives, file systems, objects in 

databases, object ring buffers) and multiple databases (DB2, 

Oracle, Sybase, Postgres, mySQL, and Informix).  Any of the 

listed clients (C library, Java, Unix shell command, C++ 

library, web browser, Kepler workflow actor, Python load 

library, Perl load library, DSpace digital library, GridFTP 

transport tool) could discover, retrieve, or load files within the 

distributed environment through mapping of their API to the 

SRB communication protocol.  

By virtualizing the data collection, it became possible to 

think of a digital library as the mechanism for managing the 

flow of technology through a permanent collection.  The 

properties of the collection remained invariant as new 

technologies were selected for storing data, authenticating 

users, and managing access. 

The development of the SRB was funded by 22 projects that 

represented collaborations with groups sharing data, groups 

managing large-scale distributed data, groups organizing 

digital libraries, and groups building preservation 

environments.  The very wide range of applications ensured 

that generic infrastructure was developed, with appropriate 

virtualization mechanisms used to support the domain features 

of each application.  See the Appendix for a list of the versions 

of the SRB software that were developed over a ten year 

period. 

IV. DATA MANAGEMENT CONCEPTS 

Within each funded collaboration project, data management 

concepts were developed to represent how generic 

infrastructure could be used to support all types of data 

management applications, including digital libraries and 

archives.  The concepts are useful in that they help define 

standard semantics for discussing data management.  In many 

cases, the DICE group had to invent terms, or extend the 

meaning of terms in order to describe what was being done.  

Eventually, most terms gained broader acceptance within the 

academic world.  Each example of a concept is illustrated 

within the context of the collaboration project that supported 

the development of the associated generic infrastructure. We 

describe the various concepts and their timeline during the 

SRB development. 

Logical File Name and Logical Collection (1996): In the 

SRB data grid, we needed a term that differentiated the name 

space used to organize distributed data from the names used 

within the physical file systems.  We used the term “logical file 

name” to denote the identifier for a file as managed by the data 

grid.  The “logical file name” could be organized into “logical 

collections”, making it possible to associate files that were 

stored on different storage systems within the same logical 

collection. 

Data Grid (1998):  A data grid is the software infrastructure 

that organizes distributed data into a shareable collection.  A 

paper describing the Storage Resource Broker data grid was 

presented at the CASCON conference in 1998 [4].  This paper 

subsequently won an award as one of the top fourteen 

CASCON First Decade High Impact Papers.  A variant of this 

term was used by NASA for the Information Power Grid. 

Middleware definition (1998):  At an NSF middleware 

workshop, the question of “What is middleware?” was 

discussed [5].  The answer based on the SRB data grid was: 

“Middleware is a software system that manages distributed 

state information.” 

This definition was extended to include support for services 

over a network that linked the distributed environment.   

However, the relationship of middleware to network 

infrastructure was not codified in the workshop. Data grid 

middleware manages distributed state information about file 

location and file membership in collections.  Networks also 

manage distributed state information within their routing tables 

about links to other routers.  The resolution of this dichotomy 

was recently achieved within the iRODS data grid software, 

with the integration of policy-based data management with 

policy-based network routing.  See the concept Software 

Defined Networks in Section 6. 

Persistent Archive (2000):  In the Transcontinental 

Persistent Archive Prototype, a project funded by the National 

Archives and Records Administration, the DICE group needed 

a term to describe the preservation of an archive [6].  Note that 

the word archive (from the computer science discipline) is used 

to denote the infrastructure that is used to preserve records.  In 

the preservation community, the word “archives” is used to 

denote the records that are being preserved.  A “persistent 

archive” provides a way to archive a record collection 

independently of the preservation environment, and then 

retrieve the archives for instantiation of the archive on new 

technology, overcoming technology obsolescence. 

 
 

Fig. 1  Storage Resource Broker Data Grid Components 
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Preservation through Interoperability Mechanisms 

(2000):  There is an equivalence between access to 

heterogeneous resources across space and access to 

heterogeneous resources over time.  At the point in time when 

records are migrated to new technology, both the old 

technology and new technology are present.  Thus data grid 

middleware can provide the interoperability mechanisms that 

enable access to both the old and the new technology [7].  The 

preservation infrastructure needs to provide the virtualization 

mechanisms that abstract preservation properties from the 

current choice of storage technology.  In a sense, application of 

interoperability across spatial resources was taken to the next 

level by providing interoperability across time. The SRB 

provided a convenient mechanism for performing the temporal 

jumps in a seamless manner. What resulted is an “organic 

system” that enabled migration of data objects across time 

overcoming technology obsolescence through codification of  

infrastructure independence.  

Persistent Objects (2003):  Preservation communities had 

previously considered two basic approaches for long term 

preservation: 1) Emulation, in which the supporting software 

infrastructure was emulated to ensure that the record could be 

parsed using the original application; 2) Transformative 

migration, in which the format of the record was transformed 

to the format that could be parsed by modern display 

applications.  Persistent objects is a third approach, in which 

the record is preserved in an unaltered form, while the 

preservation environment virtualizes I/O operations, enabling 

access to the record by modern access protocols.  This 

viewpoint considers that the purpose of the preservation 

environment is to provide an interface between an original 

record and the ever-changing data management technology.  

Consider Figure 2.  Data grid technology implements 

persistent objects [8] by mapping from the actions requested by 

the display application to the protocol of the storage system 

where the record is located.  In the iRODS data grid, this 

concept was extended to include the ability to write a policy in 

a rule language, ensuring independence from the original 

operating system that was used to support the policy.  In both 

cases, the original record was not changed.  Instead the 

preservation environment was modified to support interactions 

with the new technologies. 

Policy-based Data Management (2006):  One of the 

applications of the Storage Resource Broker was in the United 

Kingdom eScience Data Grid.  The SRB ensured consistency 

by encoding within the software middleware explicit 

management constraints.  The constraints were applied by each 

of the distributed servers, ensuring that the properties of the 

system were appropriately maintained.  However, within the 

UK data grid, incommensurate management constraints were 

needed.  An archive collection was desired in which no 

changes to records was allowed, not even by the data grid 

administrator.  Also, a publication collection was desired in 

which the data grid administrator could replace bad files.  

Finally, a research collection was needed in which a researcher 

could replace files at will.  Three different management 

policies were needed within the same data grid. 

In the iRODS policy-based data management system, we 

identified each location in the software middleware where 

consistency constraints were imposed, and replaced the control 

software with a policy-enforcement point.  On execution of the 

policy-enforcement point, the system would retrieve the 

appropriate rule from a rule base, and then execute the 

associated procedure.  The rule controlled the procedure using 

state information stored in the data grid metadata catalog.  

Thus the rule could retrieve the name of the collection, and 

then enforce the appropriate deletion policy.  This enables 

virtualization of policy management, providing both 

administrators and users with a declarative way to define and 

control actions that happen at the data storage level. Hence, 

one can view iRODS as defining a new generation of servers 

that is completely configurable and capable of enforcing user-

centric actions. 

Preservation as Communication with the Future (2008):  

The projects sponsored by the National Archives and Records 

Administration focused on development of an understanding of 

the principals behind data preservation.  The traditional 

preservation objectives are authenticity, integrity, chain of 

custody, and original arrangement.  These objectives are all 

aspects of a higher level goal, that of enabling communication 

with the future.  The traditional representation information 

defined by the Open Archival Information System model 

provides a context for correctly interpreting a record by a 

future knowledge community through creation of preservation 

metadata.  In the future, the knowledge community will have 

enough information from the associated representation 

information to correctly interpret a record.  This viewpoint 

needed to be augmented with a characterization of the 

representation information that describes the preservation 

environment itself.  Within policy-based data management 

systems, the environment representation information is 

characterized by the policies and procedures that are used to 

manage the records along with the associated system state 

information.  It is then possible for an archivist in the future to 

verify communication from the past, and validate that the 

preservation objects have been appropriately preserved [9]. 

If preservation is communication with the future, then policy-

based systems enable verification of the validity of 

communication from the past.  The same concept can be 

 
 

Fig. 2  Managing Technology Evolution – Persistent Objects 
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applied to digital libraries.  In this case, the librarian makes 

assertions about the properties of the digital library, such as 

completeness and consistency.  A future librarian should be 

able to verify that the library properties have been conserved 

over time.  

V. INTEGRATED RULE ORIENTED DATA SYSTEM 

In 2006, the Storage Resource Broker development was 

deprecated, in favor of developing an Open Source version of 

data grid technology.  At the same time, a decision was made 

to go beyond data and information virtualization, to also 

support knowledge virtualization.  The basic approach was to 

turn policies into computer actionable rules, turn procedures 

into computer executable workflows, and use policy 

enforcement points to decide when policies should be applied. 

The architecture of the policy-based data management 

systems was similar to the SRB, as shown in Figure 3.  

Multiple peer-to-peer servers managed interactions with 

remote storage locations, and a central metadata catalog stored 

state information in a relational database.  The integrated 

Rule-Oriented Data System (iRODS) also implemented servers 

to manage message passing, and to manage a queue of 

outstanding rule requests [10]. 

A comparison of policy-based systems with distributed data 

management systems shows how the concepts related to data 

management have been evolving.  Figure 4 illustrates the 

central concepts behind traditional file systems, and also 

behind the Storage Resource Broker.  External events interact 

with the data management system through a well defined 

protocol.  The data management system uses state information 

to control the execution of operations on the stored files, and 

the state information is appropriately updated.  The file system 

(i-nodes, v-nodes, etc.) environment in some sense is 

synonymous with the state information that is managed about 

the files.  A key component of a file system is the consistent 

update of the state information after every operation that is 

performed upon the files.  The SRB answered the challenge of 

self-consistent update of state information in a distributed 

environment, across heterogeneous storage systems, across 

multiple administrative domains. 

In policy-based data management systems, operations are 

replaced by policies that control updates through procedures, 

and files are replaced by objects that may include workflows, 

active or realized objects, and databases, as well as files.  

Figure 5 lists the characteristics of policy-based data 

management, representing the evolution from traditional file-

based systems to information and knowledge based systems.  

As before, the data management environment is synonymous 

with the consistent management of state information.  

However, in the policy-based system, the environment is 

governed by a set of policies that are implemented as computer 

actionable rules.  Thus a description of the environment must 

include not only the state information, but also a listing of the 

policies and procedures that are being enforced. Similar to the 

evolution of concepts for the SRB, the development of iRODS 

also required several new concepts, which we describe along 

with a timeline.   See the Appendix for a list of the versions of 

the iRODS software that have been released at the time of this 

document. 

Computer Actionable Knowledge (2006):  A major goal of 

data grid technology has been the extension of data 

management systems to also support information management 

and knowledge management through computer actionable 

forms.  The Storage Resource Broker augmented data 

management with information management, by associating 

state information as metadata attributes on an appropriate name 

space.  The types of information that were managed included 

system administration information, provenance information, 

descriptive information, and representation information. 

 
 

Fig. 3  Policy-based Data Management Architecture 

 
 

Fig. 4  File System Characterization 

 

 

 

 
 

Fig. 5  Policy-based System Characterization 

 

 



 7 

Policy-based data management systems augment information 

management with knowledge management.  The knowledge 

required to execute a protocol, or manipulate a file, or access a 

remote repository is encapsulated in a microservice.  The 

microservices can be chained together to implement a 

workflow, or procedure.  Policies control when and where each 

procedure can be executed.  In a sense, a file (or object) is not 

viewed in isolation, but along with all the policies and 

procedures that govern its creation and usage. The application 

of knowledge requires the dynamic execution of procedures.  

The result of the execution is stored as system state 

information, and is assigned as metadata on objects within a 

name space.  In essence, the reification of a knowledge 

procedure is turned into administrative information that is 

stored as metadata in a relational database. One can view the 

metadata as inherent properties (labels) on the objects that 

codify the derived knowledge obtained through application of 

procedures. 

This approach to knowledge management through computer 

actionable forms can be quantified as follows: 

 Data         consists of bits (zeros and ones) 

 Information  consists of labels applied to data 

 Knowledge   evaluates relationships between labels 

 Wisdom      evaluates relationships between relationships 

Within the iRODS data grid, data are managed as files in a 

file system, or objects in an object store.  Information is 

managed as metadata in a relational database.  Knowledge is 

applied as computer actionable rules through a rule engine. 

Wisdom (within the confines of the user-configurable iRODS 

system) is applied through policy enforcement points which 

determine when and where the knowledge procedures should 

be executed. 

Note that the concept of relationships has been extended to 

include: 

 Semantic or logical relationships 

 Spatial or structural relationships 

 Temporal or procedural relationships 

 Functional or algorithmic relationships 

 Systemic or epistemological relationships 

Thus a procedure is the application of a functional 

relationship to a digital object to generate either information 

about the digital object, or a new digital object [11]. 

The differentiation between information and knowledge is 

complex.  In order to assign a label to a digital object, a 

knowledge relationship between existing labels needs to be 

evaluated.  However each existing label required the prior 

application of knowledge relationships.  Information 

generation is an infinite recursion on the application of 

knowledge procedures.  Each knowledge procedure evaluates 

relationships between labels that were previously generated.  

The recursive nature is closed by reducing the information 

labels to a well known set that are interpreted the same way by 

the entire user community.  The simplest way to separate 

information and knowledge is to view information as the 

reification of knowledge.  Information is a static property, 

while knowledge is the active evaluation of a relationship. 

Our first attempt to characterize information and knowledge 

was expressed as a matrix, with the goal of differentiating 

between ingestion, management, and access services for digital 

objects [12].  This characterization focused on services that 

were used to manipulate data, information and knowledge, 

within the context of a data grid.  Figure 6 shows the 

components of the characterization, with the data grid 

represented by the matrix that links together the individual 

components related to the types of service. 

This characterization is realized in the iRODS policy-based 

data management system.  The services to manipulate data are 

the operations supported upon digital objects.  The storage 

systems for data are accessed through storage drivers.  The 

services to manipulate information are the operations supported 

upon metadata attributes.  The information repository is the 

metadata catalog, stored in a relational database.  The 

knowledge relationships between concepts are implemented by 

chaining microservices that are controlled by computer 

actionable rules.  The knowledge repository is implemented as 

a rule base. The knowledge-based grid can be viewed spatially, 

as a shared distributed service or temporally, as a persistent 

archive.  

The access services remain an area of active development, 

and are further discussed in the feature-based indexing concept 

in Section 6. 

Knowledge Virtualization (2010):  The iRODS data grid 

provides virtualization of data, information, and knowledge.  

Figure 7 shows a simple architecture view of the 

 
 

Fig. 6  Knowledge-based Grids 

 

 

 
Fig. 7  iRODS data grid virtualization mechanisms 
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interoperability mechanisms.  An access interface virtualizes 

access by mapping from the access protocol to the iRODS 

interaction protocol.  Each interaction is trapped at policy 

enforcement points where a rule base is consulted to determine 

which policy to execute.  The policies control the execution of 

procedures that are composed by chaining together basic 

functions, called microservices.  This requires that the 

middleware manage exchange of structured information 

between the chained microservices through in-memory 

structures.  When the microservices are executed on different 

servers, the information structures are serialized, moved over 

the network, and unpacked into in-memory structures at the 

remote system. 

The microservices perform operations such as I/O 

manipulation, metadata extraction, and domain-specific 

operations.  Each microservice invokes standard POSIX-based 

I/O operations.  The data grid middleware then translates 

between the standard I/O and the protocol required by the 

remote storage location.  Thus the microservices are 

independent of the operating system.  The same microservices 

run on Windows, Unix, and Mac computers, enabling the 

migration of policies and procedures across operating systems.  

The ability to manage application of knowledge procedures, 

independently of the choice of storage environment, can be 

viewed as a form of knowledge encapsulation. 

Policies as Intellectual Property (2013):  A major goal of 

the development of policy-based data grid middleware has 

been the conversion of management policies into computer 

actionable rules that control computer executable procedures.  

This enabled multiple communities, shown below, to apply the 

technology.  The users of the software span multiple science 

and engineering disciplines, and include national data grids, 

national libraries, and international projects: 

Archives  

 Taiwan National Archive, Digital Preservation Network 

Astrophysics  

 Auger supernova search 

Atmospheric science  

 NASA Langley Atmospheric Sciences Center 

Biology  

 Phylogenetics at CC IN2P3 

Climate  

 NOAA National Climatic Data Center 

Cognitive Science  

 Temporal Dynamics of Learning Center 

Computer Science  

 GENI experimental network 

Cosmic Ray  

 AMS experiment on the International Space Station 

Dark Matter Physics  

 Edelweiss II 

Data Grids  

 Bestgrid, French Grid Initiative 

Digital Libraries  

 French National Library 

Earth Science  

 NASA Center for Climate Simulations 

Ecology  

 CEED Caveat Emptor Ecological Data 

Engineering  

 CIBER-U 

High Energy Physics  

 BaBar / Stanford Linear Accelerator 

Hydrology  

 Institute for the Environment, UNC-CH; Hydroshare 

Institutional Repository  

 Carolina Digital Repository 

Genomics  

 Wellcome Trust Sanger Institute 

Libraries  

 French National Library, Texas Digital Libraries 

Medicine  

 Lineberger Comprehensive Cancer Center 

Neuroscience  

 International Neuroinformatics Coordinating Facility 

Neutrino Physics  

 T2K and dChooz neutrino experiments 

Oceanography  

 Science Observatory Network 

Optical Astronomy  

 National Optical Astronomy Observatory 

Particle Physics  

 Indra multi-detector collaboration at IN2P3 

Plant genetics  

 CyVerse 

Quantum Chromodynamics  

 IN2P3 

Radio Astronomy  

 Cyber Square Kilometer Array, TREND, BAOradio 

Seismology  

 Southern California Earthquake Center 

Social Science  

 Odum Institute for Research in Social Science, TerraPop 

Each community implemented different choices for 

semantics, policies, and procedures.  A generalization of the 

observed usage patterns is to associate the intellectual 

properties of each community with the policies and procedures 

that they implemented.  The underlying data grid middleware 

was generic infrastructure that provided the mechanisms 

needed to virtualize interactions with data, information, and 

knowledge.  The policies and procedures encapsulated the 

knowledge that was needed to apply the middleware within 

each domain. 

This means that intellectual property can be captured and 

applied within generic data management infrastructure to cater 

to the specific needs of each domain.  This idea is extended in 

Figure 8, which describes a general approach towards 

quantifying intellectual property.   

Each domain is characterized by: 

 Purpose driving the formation of a data collection.  The 

purpose represents a consensus of the persons collaborating on 

a data management project. 

 Properties that will be maintained for the data collection.  

The properties are dependent upon the driving purpose.  If the 
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intent is preservation, then properties related to authenticity, 

chain of custody, integrity, and original arrangement are 

desired.  If the intent is formation of a digital library, then 

properties related to descriptive metadata, file arrangement,  

and file format may be desired.  The properties comprise 

assertions made about the collection by the developers of the 

collection. Other domain centric elements (such as provenance, 

retention, disposition, etc.) can also be defined as part of these 

properties. 

 Policies that enforce the desired properties.  The policies 

control when and where management procedures are executed.  

Multiple policies may be needed for each desired property.  In 

general, policies are needed to control generation of the desired 

property.  Policies are also needed to validate whether the 

desired property has been maintained over time.  Since the 

distributed environment is subject to multiple forms of risk 

(network outage, storage system maintenance, operator error, 

policy change), assessment criteria are needed that can be 

checked to verify compliance with the desired collection 

properties.  The assessment policies are turned into computer 

actionable rules that are periodically executed.  Example 

domain centric policies include enforcing authority (e. g. 

HIPAA policies), integrity checks, data cleansing, metadata 

extraction, etc.. 

 Procedures codify and apply the operations needed to 

generate a desired property.  Examples include procedures to 

create a replica, extract metadata, set access controls, manage a 

quota, check a retention period, apply disposition, etc.  

Procedures are executed as computer executable workflows. 

 Persistent state information is generated each time a 

procedure is run.  The persistent state is stored as metadata 

attributes on one of the name spaces managed by the data grid.  

The state information can be queried for compliance at a point 

in time.  To verify compliance over time, the system parses 

audit trails. Persistent state information in turn codify the 

properties of a collection. 

A viable policy-based data management system must be 

sufficiently sophisticated to handle a wide variety of data 

management applications.  The iRODS data grid provides 317 

microservices that can be used to compose procedures, and 

manages 338 persistent state information attributes.  In 

practice, each domain implements a small number of policies.  

Out of the box, the iRODS data grid source provides 14 default 

policies for enforcing data sharing properties.  Communities 

typically add another 5 policies on the average to control 

desired features.  However, the range of policies that are 

required to support a fully customized data grid may be very 

large. 

Each policy and procedure set encapsulates the domain 

knowledge needed to manage a specific domain application. 

Federation through Interoperability Mechanisms (2014):  

Within the DataNet Federation Consortium [14], the iRODS 

data grid is being used to create national data 

cyberinfrastructure through the federation of existing data 

repositories.  In the process, interoperability mechanisms have 

been implemented that enable three basic federation 

approaches: 

1. Tightly coupled federations.  The name spaces used to 

identify users and files are shared between two data grids.  A 

data grid can store and retrieve files in a second data grid 

through middleware servers that enable application of the 

desired operations at the remote repository.  In effect, the 

operations are moved to the data. 

2. Loosely-coupled federations.  The knowledge needed to 

interact with a remote data management system is encapsulated 

in a microservice that retrieves data from the remote repository 

using the protocol of the remote repository.  This is a 

traditional approach similar to brokering, in which data are 

retrieved for analysis at the local computer.  The data are 

moved to the processing engine. 

3. Asynchronous federations.  No direct interaction occurs 

between the federated data repositories.  Instead an 

intermediary (such as a message bus queue) is used to hold 

requests that have been encapsulated in messages.  Requests 

for an operation are posted to the queue.  The remote system 

retrieves messages from the queue, does the desired operations, 

and posts results back to the queue. 

Using these three mechanisms, the DataNet Federation 

Consortium has been able to support interoperability with web 

services, sensor networks, union catalogs, data repositories, 

workflow environments, databases, message buses, and 

systems that communicate over the internet. 

The expectation is that these three federation mechanisms are 

sufficient to federate all existing data management 

applications.  The DataNet Federation Consortium currently 

(2016) federates systems across national projects in 

oceanography, cognitive science, plant biology, engineering, 

hydrology, and social science. 

Quantifying the Broadening of Impact through a 

Collection Life Cycle:  A notable requirement for National 

Science Foundation funding is the demonstration that the 

research results will impact a broad user community.  A 

mechanism has been needed to quantify the impact.  One way 

to do this has been the observation that the set of policies and 

procedures used to manage a collection evolve over time to 

represent the current requirements of each broader user 

 
 

Fig. 8  Conceptualizing intellectual property as policies and procedures 
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community.  It is possible to quantify impact by tracking the 

policy evolution.  This can be represented through a collection 

life cycle: 

 Project collection – usually the team members have 

complete tacit knowledge about the acceptable semantics, data 

formats, and analysis procedures used with the project data 

sets.  The data sets are organized in a project collection with 

minimal metadata. The data sharing is limited to the group, and 

is mostly through shared and mounted file spaces. 

 Shared collection (data grid) – when data products are 

shared with other groups and institutions, the tacit knowledge 

must be made explicit.  Policies are needed to govern the 

application of semantic terms, and the transformation of data to 

required data formats.  Policies are also needed to enforce 

authentication, access controls and data distribution. Policies 

for data manipulation may also be needed. 

 Published collection (digital library) – when the results 

are formally published for use by the discipline, policies are 

needed to enforce domain standards for semantics and data 

formats.  Policies are also needed to generate persistent 

identifiers, to validate integrity, and to track provenance. 

 Processing pipeline – when the data sets are used in an 

analysis service, procedures are needed that support the 

manipulation and transformation of the data.  The provenance 

of derived data products needs to be captured. 

 Preserved reference collection (archive) – when the 

results are archived for use by future researchers, a sufficient 

context is needed that enables a person in the future to interpret 

the data.  The knowledge is typically reified in representation 

information.  At the same time, the policies and procedures of 

the preservation environment also need to be preserved so a 

future archivist can verify that the collection was managed 

correctly. 

The broadening of user impact can be quantified through the 

evolution of the policies and procedures that are used to 

manage the information context associated with a data 

collection.  A digital library thus represents the publication 

stage of a collection life cycle.  The policies associated with a 

digital library map from the assertions made by the group that 

formed the collection, to the expectations for discovery and 

access of the members of the discipline.  This mapping is 

resolved in terms of required metadata, required data formats, 

required processing procedures, and required user interfaces. 

Policy Sets (2015):  Data management applications are 

governed by policies and procedures.  In collaboration with the 

Practical Policy working group of the Research Data Alliance, 

the DFC analyzed the policies needed to implement 

representative systems for data sharing (data grids), data 

publication (digital libraries), production data centers, data 

preservation (archives), management of protected data, and 

NSF Data Management Plans [16].  The approach was based 

on identifying the tasks that needed to be done for each type of 

data management application, and then developing 

representative policies for automating each task.  Three types 

of policies were created:  policies to set system parameters to 

control execution of the task; policies to manage the task 

execution, and policies to verify tasks were executed correctly. 

Across the six categories of data management, a total of 97 

tasks was identified.  The tasks required the use of 119 

operations and 50 persistent state information attributes.  The 

operations included workflow operators to control processing, 

collection manipulation, file manipulation, user account 

management, system parameter settings, storage resource 

access, and metadata manipulation.  The persistent state 

information attributes included information about collection 

properties, file properties, metadata, quotas, resource 

properties, system parameters, user properties, and data grid 

properties. 

The expectation is that generic policy sets can be defined for 

each type of data management application that can be modified 

for use by a specific institution.  This will greatly simplify the 

automation and control of data collections, and enable the 

development of systems that automate auditing and validation 

mechanisms. 

VI. FUTURE DATA MANAGEMENT INFRASTRUCTURE 

The current generation of data grid middleware is still 

evolving.  New opportunities to apply policies to control the 

data management environment are emerging.  We consider 

three specific extensions, the inclusion of policies within 

storage controllers,  the integration of policy-based data 

management with policy-based networks, and the extension of 

a knowledge grid into a wisdom grid. 

Feature-Based Indexing:  A major challenge in constructing 

a collection is the assignment of appropriate descriptive 

metadata.  This is a laborious task, which potentially is non-

scalable.  A major question is whether the act of description 

can be turned into the application of a knowledge procedure, 

that is automatically applied within the storage system.  

Normally descriptive metadata are used to provide a context 

for the contents of a file.  An alternative approach is to use 

descriptive metadata to define features present within a file.  If 

the desired features can be extracted by a knowledge 

procedure, then the generation of descriptive metadata can be 

automated.  

This approach is being explored in collaboration with storage 

vendors.  The Data Direct Networks storage controllers now 

support virtual machine environments that can be used to run 

the iRODS data grid.  When a file is written to the storage 

system, the data grid can apply feature extraction procedures 

automatically, and index the stored data by the features present 

within each record. Hence, one can construct a domain-centric 

data-grid appliance that can perform automated data 

management including automated data description. 

Software Defined Networks (2013):  Policy-based systems 

are also appearing within networks that are based on the 

OpenFlow router.  Network routing decisions can be controlled 

by policies that are used to manage path-selection within the 

router.  A demonstration of the use of policy-based data grids 

to control policy-based routing was given at the 

Supercomputing ’13 conference [15].  The iRODS data grid 

managed information about the location of files, their access 
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controls, and the availability of replicas.  Within the iRODS 

data grid, a parallel data transfer was set up, with subsets of the 

file sent in parallel over multiple network paths.  The iRODS 

data grid communicated with the OpenFlow router to select a 

disjoint network path for each of the parallel data transfer 

channels.    

The idea here is that a traditional data grid views the network 

as a black box (and vice versa, the network is opaque with 

respect to the applications at the end-points of the 

communication pipeline).  If the data grid is able to export 

some of its policies to be implemented by the network (through 

the OpenFlow router) and also is able to get feedback from the 

routers about network topology, congestion and statistics, the 

two can work together to mutual advantage and improve 

performance.  Having this exchange of information can be used 

in multiple ways to improve data grid operations. 

One way to exchange information is through the integration 

of control policies between data grids and networks.  Since 

both systems are managing distributed state information, it is 

reasonable to think about formally moving data grid 

middleware into network routers.  It will then be possible to 

access data by name (or metadata attribute) instead of an IP 

address, enforce access controls within the network, cache data 

within the network, and debug data transfers by single-stepping 

through the data grid procedures (currently supported in 

iRODS).   

The approach would rely upon the data grid to provide a 

context for the files through their organization in collections.  

A file would be referenced by its membership in a collection, 

with the data grid controlling the access (authentication and 

authorization).  The data grid would negotiate with the network 

for selection of the replica to use as the starting point, and the 

network path to use for data delivery.  In the long term, data 

grid middleware should disappear as separate infrastructure, 

and be subsumed within the network. The upshot of this would 

be collection-oriented addressing of objects instead of name-

oriented or ip-oriented addressing for data ingestion, 

movement and access.  

The integration of software-defined networks with data grids 

enables the virtualization of data flows.  The properties of a 

data flow can be managed, independently of the type of 

network.  This would include naming of data flows, re-

application of a data flow, access controls on data flows, and 

sharing of data flows.  A content delivery system could be 

defined as a data flow which is re-executed periodically. 

Wisdom management:  Current virtualization mechanisms 

focus on data, information, and knowledge.  Future data 

management systems will also need to support virtualization of 

wisdom.  If we can think of wisdom as the evaluation of 

relationships between relationships, then we can build a 

computer actionable form of wisdom.  Within the iRODS data 

grid, wisdom is captured as hard-coded policy-enforcement 

points that control when and where knowledge procedures are 

executed.  To make application of wisdom a dynamic process, 

the system will need to implement mechanisms that enable 

wisdom-based decisions to be selected as systemic processes 

that apply to all interactions.  This will require processing 

information about each access session, information about the 

collections, and information about the user community to infer 

which set of knowledge procedures should be applied. 

Within the iRODS Consortium, a pluggable version of the 

iRODS data grid has been developed.  New microservices can 

be added dynamically to implement new operations.  When the 

microservice is plugged into the framework, two policy 

enforcement points are dynamically created to control pre-

process rules and post-process rules.  With this approach, the 

operations performed by the data grid can be separated from 

the middleware framework.  A pre-process rule can be created 

which generates an event message that is posted for processing 

within an external indexing system.  A post-process rule can be 

created that tracks all changes to the system state information 

and posts update messages.  This means that all changes to the 

state information within the data grid can be tracked and 

associated with the corresponding client action.  The 

compliance of the system to the desired policies can be 

verified.   

In effect, the application of wisdom procedures is reified as 

event information.  Procedural and temporal relationships can 

be evaluated across all of the event information, enabling the 

application of wisdom procedures to the events that occur 

within the data management system.  A digital library should 

be able to track all events, apply reasoning across the events to 

detect usage patterns, and adjust policies to optimize user 

interactions. 

 

The iRODS software was hardened and modularized, and is 

now maintained and distributed, by the iRODS Consortium, 

beginning with the 4.0.0 Release.  Information about the 

consortium, ongoing development, and future planned releases 

is available at http://irods.org. 

APPENDIX 

 

iRODS Releases 

iRODS 4.1.9 July 28, 2016 

iRODS 4.1.8 February 22, 2016 

iRODS 4.1.7 November 20, 2015 

iRODS 4.1.6 October 1, 2015 

iRODS 4.1.5 September 2, 2015 

iRODS 4.1.4 August 5, 2015 

iRODS 4.1.3 June 18, 2015 

iRODS 4.1.2 June 5, 2015 

iRODS 4.1.1 June 2, 2015 

iRODS 4.1.0 May 29, 2015 

   JSON-based configuration, Dynamic PEPs 

iRODS 4.0.3 August 20, 2014 

iRODS 4.0.2 June 17, 2014 

iRODS 4.0.1 June 5, 2014 

iRODS 4.0.0 March 28, 2014 

   Binary Packages, Pluggable architecture 

iRODS 3.3.1 February 24, 2014 

   SHA2 hash, Rule looping, WSO extensions 

iRODS 3.3  July 17, 2013   

   NetCDF support, HDFS, PAM authentication 

http://irods.org/
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iRODS 3.2 October 3, 2012   

   WSO objects, direct access resources 

iRODS 3.1 March 16, 2012   

   Tickets, locks, group-admin updates 

iRODS 3.0 September 30, 2011   

   New rule language, soft links 

iRODS 2.5 February 24, 2011   

   Database resources, Fortran I/O library 

iRODS 2.4 July 23, 2010   

   Bulk upload, monitoring,  

iRODS 2.3 March 12, 2010   

   Extensible iCAT, quotas, group-admin 

iRODS 2.2 October 1, 2009   

   HPSS driver, S3 driver, compound resource 

iRODS 2.1 July 10, 2009   

   mySQL driver, Kerberos, policy enforcement  

iRODS 2.0  December 1, 2008   

   Federation, master/slave catalog, bundling 

iRODS 1.1 June 27, 2008   

   GSI, mounted structured files, HDF5, Jargon 

iRODS 1.0 January 23, 2008   

   Oracle driver, FUSE interface, rule language 

iRODS 0.9 June 1, 2007   

   Replication, metadata, trash, integrity checking 

iRODS 0.5 December 20, 2006   

   Policy enforcement points, rule engine 

SRB Releases 

SRB 3.5 Dec 3, 2007   

 Bind variables, bulk replication, transfer restart 

SRB 3.4 Oct 31, 2005   

 Master/slave MCAT, HDF5 integration 

SRB 3.3 Feb 18, 2005   

 ACL inheritance, bulk move, GT3 GSI 

SRB 3.2 July 2 2004   

 Client initiated connections, Database access 

SRB 3.1 April 19, 2004   

 Synchronization, trash can, checksums 

SRB 3.0 Oct 1, 2003   

 Federation 

SRB 2.0 Feb 18, 2003   

 Parallel I/O, bulk load, metadata access control 

SRB 1.1.8 Dec 15, 2000   

 Encrypted passwords, large file size 

SRB 1.1.7 May 2000   

 GSI authentication 

SRB 1.1.6 Nov 1999   

 Stream support, Oracle support 

SRB 1.1.4 May 1999   

 Containers 

SRB 1.1.3 Feb 1999   

 Recursive replication 

SRB 1.1.2 Dec 1998   

 Monitoring daemon 

SRB 1.1 Mar 1998   

 Query support 

SRB 1.0 Jan 1998    

 Unix commands 
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NSF Grid Physics Network  7/1/00-6/30/05 
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