
 1

Abstract—The Data Intensive Computing Environments group

has been developing data grid technology for twenty years. Two

generations of technology were created, the Storage Resource

Broker - SRB (1994-2006) and the integrated Rule Oriented Data

System - iRODS (2004-2016). Both products represented

pioneering technology in distributed data management and were

widely applied by communities interested in not only publishing

data, but also sharing and preserving data. Applications included

national digital libraries, national data grids, national archives,

and international collaborations. The success of the software was

strongly driven by basic concepts that still represent the state-of-

the-art for data management systems. These concepts include

policy-based data management, virtualization, collection life cycle,

and federation. The development, evolution, and application of

these concepts in data grids, digital libraries and archives are

reviewed in this paper.

Index Terms—Collections, Data grids, Federation, Policy-

based, Virtualization

I. INTRODUCTION

ata grids, digital libraries, and archives implement basic

data management functionality related to ingestion,

arrangement, description, storage, and access. The

characterization of data management functionality can be done

in terms of these services, or through a description of the

architecture that supports the services, or through the basic

concepts that enable the implementation of the operations.

Variants of the basic data management operations are present

in data sharing environments (data grids), data publication

systems (digital libraries), data preservation systems (archives),

and data processing systems. A significant research question

has been whether it is possible to design generic data

management infrastructure that is capable of supporting not

only the digital library operations, but also data sharing and

preservation operations. The expectation is that generic

versions of data management functionality can be defined and

implemented that support publication, sharing, and

preservation of data.

This work was supported in part by the NSF OCI-1032732 grant, "SDCI Data

Improvement: Improvement and Sustainability of iRODS Data Grid Software

for Multi-Disciplinary Community Driven Application," (2010-2013) and in
part by the NSF Cooperative Agreement OCI-094084, “DataNet Federation

Consortium”, (2011-2015).

Arcot Rajasekar is with the University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599-3360 USA (e-mail: sekar@renci.org).

Michael Wan was with the University of California, San Diego, La Jolla,

CA, 92093 USA (e-mail: mwan@renci.org).
Reagan W. Moore is with the University of North Carolina at Chapel Hill,

Chapel Hill, NC 27599-3360 USA (e-mail: rwmoore@renci.org).

Hao Xu is with the University of North Carolina at Chapel Hill, Chapel
Hill, NC 27599-3360 USA (e-mail: xuh@cs.unc.edu).

The implementation of two successful data management

software systems – the Storage Resource Broker (SRB) [2] and

then the integrated Rule Oriented Data System (iRODS) [13],

represents an example of a software development life cycle for

data management systems. User requirements from the

academic science community drove the implementation of data

management technology, and the evolution of data grid

capabilities from simple data management to information and

knowledge management. The SRB and iRODS systems

pioneered significant conceptual ideas and technologies in

large-scale data management and indeed added multiple terms

to the ever changing vocabulary of the field. The current

emergence of Big Data as a full-fledged field can be traced to

some of the concepts implemented by these two systems –

concepts such as data-intensive computing, infrastructure

independence, virtualization and policy-based data

management. The two software systems were developed by

the Data Intensive Computing Environments group (DICE),

which was started in 1994 at the San Diego Supercomputer

Center (SDSC). The DICE group pursued the goal of

implementing software systems that would enable

collaborative research through large-scale sharing of multi-

disciplinary data files. In the following we track the history of

this development and the application of data grids in support of

digital libraries and archives.

II. DRIVING REQUIREMENTS

The selection of the initial software development goal was

based on observations of research requirements in

computational plasma physics, observations of technology

management requirements within the San Diego

Supercomputer Center, results from a prior collaboration on an

Alternative Architecture study for the Earth Observing System

[1], and research in high-performance networking within the

CASA Gigabit Network project [2]. For example, in

computational plasma physics, the analysis of the stability of

toroidal plasma configurations was being done at institutions

on the East and West coasts of the United States in the 1980s.

A collaboration environment was needed to enable researchers

to compare stability analyses and independently verify results.

This required the ability to share input files, as well as output

results, across institutional boundaries. A common name space

was needed for referencing files, and descriptive metadata was

needed to define a collection context.

Within the San Diego Supercomputer Center, which started

in 1986, technology was replaced every three years to track and

take advantage of the emergence of cheaper and higher

performance systems. In particular, by 1994, the third version

Evolution of Data Grid Technology

Arcot Rajasekar, Michael Y.-K. Wan, Reagan W. Moore, and Hao Xu

D

mailto:sekar@renci.org
mailto:mwan@renci.org
mailto:rwmoore@renci.org
mailto:xuh@cs.unc.edu

 2

of an archival storage system had been implemented, using a

third generation of storage tape technology. A mechanism was

needed to simplify migration of the archived data between old

and new systems. The properties of the collections housed

within the center needed to be maintained independently of the

choice of storage technology.

The Earth Observing System Alternative Architecture

analysis proposed that data products should be organized as a

collection, and that relational database technology should be

used to manage the system state information. Data replication

was proposed between two centers, with data streaming to

support processing of the contents. A collection-based

approach to data management was expected to handle a much

larger number of files than supported by the available file

systems.

In the CASA Gigabit Network, theoretical predictions were

made of the maximal achievable performance of a distributed,

heterogeneous computational environment. The concept of

superlinear speedup through the federation of heterogeneous

computing resources was analyzed, and a practical

demonstration was made that showed a speedup of a factor of

3.3 across two supercomputers. This indicated that

management of heterogeneous resources was important for

optimizing performance across distributed systems. The

corresponding concept in archival storage was the use of a disk

to hold small files while larger files were written to tape. This

optimized access to small files while enabling the storage of

massive amounts of data.

The combination of these prior research efforts pointed to

the need for researchers to be able to provide a context for

interpreting shared data, while managing technology evolution.

These requirements for a distributed data management system

were the seeds for the development of the first data grid

software - the Storage Resource Broker data grid system. The

same basic requirements, listed below, were also used to

implement digital libraries and archives:

 Management of data from multiple institutions as a

shareable collection through virtualization mechanisms.

This was implemented by managing global name spaces for

files, collections, users, and storage systems independently of

the physical storage systems where the objects were stored, and

independently of the administrative domains at each institution.

Authentication and authorization on the global user name space

were implemented as third-party services. The global name

space for files mapped logically named files onto physical

locations within distributed storage systems.

 Organization of data files as a collection

independently of the physical characteristics of the data

file. That is, a collection provides a virtual “grouping” of files

that might be stored on distributed resources of various types,

created and owned by multiple users and groups but having

some common properties that warrant bundling them into the

same virtual group. Not all objects in the collection need to be

files, but can also be dynamic relational queries, sensor

streams or self-aggregated/described objects such as tar files or

HDF files.

 Association of descriptive metadata, provenance

metadata, and representation metadata with objects in a

collection to provide a context for interpreting the data and to

capture domain-centric and systems-centric structured

information.

 Management of system state information in a

relational database. System metadata were associated with

files, collections, users, and storage systems. This enabled

rapid queries on a much richer set of attributes than normally

provided by file systems. The abstraction of a common set of

attributes masked the differences between the types of

resources being used in the physical layer and provided a

uniform system information management layer.

 Management of the properties of the collection,

independently of the properties of the storage system in

which the files were stored. This was a key goal based on the

virtualization of the data collection instead of the virtualization

of the storage systems.

 Implementation of a single sign-on authentication

system. The files that were shared were owned by the data

grid. Users authenticated to the data grid, and in turn, the data

grid authenticated itself to the remote storage system. The files

were stored under an account that represented the data grid.

This meant that the data grid had to both authenticate users,

and authorize actions on resources and data independently of

the physical storage system. Access controls were managed by

the data grid independently of the administrative domain –

again providing a common service across the distributed

environment.

 An architecture based on a peer-to-peer server

environment. Users could connect to any server and the data

grid would redirect the request to the correct location for the

desired file operation. This meant that users could request a

file without knowing where the file was located, without

knowing the local name of the file (physical path name),

without having an account on the remote storage system, and

without knowing the network access protocol required by the

storage system. The data grid managed the mapping from the

logical file name to the physical path name, managed

information about the file location, translated the request by the

user client to the protocol required by the remote storage

location, and initiated operations on behalf of the user.

 Fault-tolerant semantics. The intent was to build a

system that tolerated failures. If a storage resource was off-

line, a storage request would be redirected to alternate

locations that could provide the space. This was implemented

through the concept of storage resource groups. Writing to a

resource group succeeded when a file was written to at least

one member of the group. Thus some of the storage systems

could be off-line, or down for maintenance, and the success of

the operation could still be ensured. Another type of fault

tolerance was achieved through replication. Since the data grid

provided a mapping from the logical name to the physical

address location, it was easy to extend this mapping to multiple

physical addresses – hence providing management of

synchronized copies of a data object distributed across multiple

 3

resources. If access to one copy was unavailable, the system

automatically provided access to its replica.

These capabilities were used to implement a data

management systems that demonstrated scalability (through the

dynamic addition of storage resources), access controls

(through the single sign-on environment), discovery (through

queries on descriptive metadata), and fault tolerance (through

the use of storage resource groups).

III. STORAGE RESOURCE BROKER

The development of the Storage Resource Broker was funded

initially by DARPA through the “Massive Data Analysis

Systems” project [3] in 1995. The effort to build software to

manage distributed data was viewed as a sufficiently risky

objective to warrant DARPA funding. When the approach was

presented at a meeting with the tape storage vendor Storage

Tek, the response was that they were used to leading edge

projects, but the DICE group was halfway down the cliff. The

initial development integrated multiple types of technology:

 Use of relational database technology to manage the

system state information. As part of the EOSDIS alternative

architecture study (1994), a centralized architecture was

proposed in which all data were managed by a relational

database. The SRB data grid was designed to store system

state information in a relational database, while maintaining

links to files on distributed storage systems. At that time,

holding and accessing hierarchical path information in

relational systems was considered to be a performance

bottleneck. We chose to do this in order to achieve scalability,

since the file systems at that time dealt with less than 2 million

files. Instances of the SRB data grid were implemented that

managed over 100 million files.

 Virtualization of data collections versus virtualization of

storage. The SRB focused on managing the properties of the

data collection, instead of managing the properties of the

storage systems. This made it possible to implement

operations directed at data manipulation in addition to data

storage. Vendors were beginning to implement storage

virtualization in 1995 but considered data/collection

virtualization to be too risky.

 Support for heterogeneous storage systems. In order to

manage interactions with multiple types of storage system

protocols, the SRB software was designed to map from a

standard protocol that was based on extensions to POSIX I/O,

to the protocol used by specific types of storage systems such

as the IBM High Performance Storage System, the UniTree

storage system, the Network File System, and the Cray File

System etc. The protocol conversion was implemented as a

modular and extensible software driver. The data grid tracked

all operations performed through the middleware, and updated

persistent state variables consistently within a central metadata

catalog.

 Extended support for data manipulation operations.

The SRB data grid implemented operations for replication,

versioning, synchronization, auditing, aggregation in

containers, staging of files, archiving of files, checksum

creation, metadata extraction, and metadata loading. Since the

additional operations were initiated through both Unix utilities

and web browsers, a key property of the data grid was the

decoupling of access mechanisms from the data management

middleware.

 Support for multiple types of client interfaces. A

second layer of virtualization was needed to manage mapping

from the protocol used by client software, to the standard I/O

protocol supported within the data grid. For the SRB, the

clients that were supported included web browsers, Unix shell

commands, Java load library, C++ I/O library, and Fortran I/O

library. The protocol used by the client did not have to match

the access protocol required by the storage system. In effect,

the SRB implemented brokering technology between clients

and storage.

 Support for multiple authentication environments.

Since the data grid accessed resources across multiple

administrative domains, it needed to deal with the different

types of authentication that were supported by the

collaborating institutions. To perform authentication for users

to access files, multiple types of authentication systems were

supported, including Unix passwords, Kerberos, and Grid

Security Infrastructure through the Generic Security Service

API. For each type of authentication environment, the

associated information was stored in the metadata catalog as

attributes on the user account name. The authentication

mechanism used to authenticate a person to the data grid did

not have to be the same as the authentication mechanism used

to authenticate data grid access to a remote storage system.

Hence, the system also worked as an authentication broker.

 Schema indirection. Each user community had different

definitions for the descriptive metadata that they associated

with files and collections. Schema indirection was used to

store a triplet consisting of the attribute name, the attribute

value, and an attribute unit or comment. This allowed each

community to use the data grid as generic infrastructure and

implement their domain specific descriptive metadata.

Association of name spaces to form an entity set (e. g. Dublin

Core, FITS metadata, DICOM metadata, etc.) was also

possible.

 Extensible generic infrastructure. Since multiple types

of applications built upon the SRB data grid, new features were

implemented through appropriate forms of virtualization. This

ensured that the system would remain compatible with prior

versions, and that extensions to the software could build upon

multiple versions of storage technology. The highly extensible

architecture ensured long-term sustainability of the software

through continued application to additional science and

engineering domains.

The SRB can be viewed as an interoperability mechanism

that enabled use of multiple types of storage technology,

multiple types of authentication systems, and multiple types of

access clients. The interoperability enabled by the SRB

software is shown in Figure 1. The SRB data grid was

implemented as multiple software servers that may reside on

different computers or may be co-located on a single computer.

Each software server ran as a user-level application on the

 4

computer. The servers communicated over a network using a

protocol written specifically for the Storage Resource Broker.

External clients accessed the data grid over a network. Each

access was authenticated, and each operation was authorized

by the data grid. One of the servers managed interactions with

a metadata catalog, which in turn composed the SQL needed to

access a relational database that stored the system attributes.

The SRB had drivers for interacting with multiple types of

storage systems (tape archives, file systems, objects in

databases, object ring buffers) and multiple databases (DB2,

Oracle, Sybase, Postgres, mySQL, and Informix). Any of the

listed clients (C library, Java, Unix shell command, C++

library, web browser, Kepler workflow actor, Python load

library, Perl load library, DSpace digital library, GridFTP

transport tool) could discover, retrieve, or load files within the

distributed environment through mapping of their API to the

SRB communication protocol.

By virtualizing the data collection, it became possible to

think of a digital library as the mechanism for managing the

flow of technology through a permanent collection. The

properties of the collection remained invariant as new

technologies were selected for storing data, authenticating

users, and managing access.

The development of the SRB was funded by 22 projects that

represented collaborations with groups sharing data, groups

managing large-scale distributed data, groups organizing

digital libraries, and groups building preservation

environments. The very wide range of applications ensured

that generic infrastructure was developed, with appropriate

virtualization mechanisms used to support the domain features

of each application. See the Appendix for a list of the versions

of the SRB software that were developed over a ten year

period.

IV. DATA MANAGEMENT CONCEPTS

Within each funded collaboration project, data management

concepts were developed to represent how generic

infrastructure could be used to support all types of data

management applications, including digital libraries and

archives. The concepts are useful in that they help define

standard semantics for discussing data management. In many

cases, the DICE group had to invent terms, or extend the

meaning of terms in order to describe what was being done.

Eventually, most terms gained broader acceptance within the

academic world. Each example of a concept is illustrated

within the context of the collaboration project that supported

the development of the associated generic infrastructure. We

describe the various concepts and their timeline during the

SRB development.

Logical File Name and Logical Collection (1996): In the

SRB data grid, we needed a term that differentiated the name

space used to organize distributed data from the names used

within the physical file systems. We used the term “logical file

name” to denote the identifier for a file as managed by the data

grid. The “logical file name” could be organized into “logical

collections”, making it possible to associate files that were

stored on different storage systems within the same logical

collection.

Data Grid (1998): A data grid is the software infrastructure

that organizes distributed data into a shareable collection. A

paper describing the Storage Resource Broker data grid was

presented at the CASCON conference in 1998 [4]. This paper

subsequently won an award as one of the top fourteen

CASCON First Decade High Impact Papers. A variant of this

term was used by NASA for the Information Power Grid.

Middleware definition (1998): At an NSF middleware

workshop, the question of “What is middleware?” was

discussed [5]. The answer based on the SRB data grid was:

“Middleware is a software system that manages distributed

state information.”

This definition was extended to include support for services

over a network that linked the distributed environment.

However, the relationship of middleware to network

infrastructure was not codified in the workshop. Data grid

middleware manages distributed state information about file

location and file membership in collections. Networks also

manage distributed state information within their routing tables

about links to other routers. The resolution of this dichotomy

was recently achieved within the iRODS data grid software,

with the integration of policy-based data management with

policy-based network routing. See the concept Software

Defined Networks in Section 6.

Persistent Archive (2000): In the Transcontinental

Persistent Archive Prototype, a project funded by the National

Archives and Records Administration, the DICE group needed

a term to describe the preservation of an archive [6]. Note that

the word archive (from the computer science discipline) is used

to denote the infrastructure that is used to preserve records. In

the preservation community, the word “archives” is used to

denote the records that are being preserved. A “persistent

archive” provides a way to archive a record collection

independently of the preservation environment, and then

retrieve the archives for instantiation of the archive on new

technology, overcoming technology obsolescence.

Fig. 1 Storage Resource Broker Data Grid Components

 5

Preservation through Interoperability Mechanisms

(2000): There is an equivalence between access to

heterogeneous resources across space and access to

heterogeneous resources over time. At the point in time when

records are migrated to new technology, both the old

technology and new technology are present. Thus data grid

middleware can provide the interoperability mechanisms that

enable access to both the old and the new technology [7]. The

preservation infrastructure needs to provide the virtualization

mechanisms that abstract preservation properties from the

current choice of storage technology. In a sense, application of

interoperability across spatial resources was taken to the next

level by providing interoperability across time. The SRB

provided a convenient mechanism for performing the temporal

jumps in a seamless manner. What resulted is an “organic

system” that enabled migration of data objects across time

overcoming technology obsolescence through codification of

infrastructure independence.

Persistent Objects (2003): Preservation communities had

previously considered two basic approaches for long term

preservation: 1) Emulation, in which the supporting software

infrastructure was emulated to ensure that the record could be

parsed using the original application; 2) Transformative

migration, in which the format of the record was transformed

to the format that could be parsed by modern display

applications. Persistent objects is a third approach, in which

the record is preserved in an unaltered form, while the

preservation environment virtualizes I/O operations, enabling

access to the record by modern access protocols. This

viewpoint considers that the purpose of the preservation

environment is to provide an interface between an original

record and the ever-changing data management technology.

Consider Figure 2. Data grid technology implements

persistent objects [8] by mapping from the actions requested by

the display application to the protocol of the storage system

where the record is located. In the iRODS data grid, this

concept was extended to include the ability to write a policy in

a rule language, ensuring independence from the original

operating system that was used to support the policy. In both

cases, the original record was not changed. Instead the

preservation environment was modified to support interactions

with the new technologies.

Policy-based Data Management (2006): One of the

applications of the Storage Resource Broker was in the United

Kingdom eScience Data Grid. The SRB ensured consistency

by encoding within the software middleware explicit

management constraints. The constraints were applied by each

of the distributed servers, ensuring that the properties of the

system were appropriately maintained. However, within the

UK data grid, incommensurate management constraints were

needed. An archive collection was desired in which no

changes to records was allowed, not even by the data grid

administrator. Also, a publication collection was desired in

which the data grid administrator could replace bad files.

Finally, a research collection was needed in which a researcher

could replace files at will. Three different management

policies were needed within the same data grid.

In the iRODS policy-based data management system, we

identified each location in the software middleware where

consistency constraints were imposed, and replaced the control

software with a policy-enforcement point. On execution of the

policy-enforcement point, the system would retrieve the

appropriate rule from a rule base, and then execute the

associated procedure. The rule controlled the procedure using

state information stored in the data grid metadata catalog.

Thus the rule could retrieve the name of the collection, and

then enforce the appropriate deletion policy. This enables

virtualization of policy management, providing both

administrators and users with a declarative way to define and

control actions that happen at the data storage level. Hence,

one can view iRODS as defining a new generation of servers

that is completely configurable and capable of enforcing user-

centric actions.

Preservation as Communication with the Future (2008):

The projects sponsored by the National Archives and Records

Administration focused on development of an understanding of

the principals behind data preservation. The traditional

preservation objectives are authenticity, integrity, chain of

custody, and original arrangement. These objectives are all

aspects of a higher level goal, that of enabling communication

with the future. The traditional representation information

defined by the Open Archival Information System model

provides a context for correctly interpreting a record by a

future knowledge community through creation of preservation

metadata. In the future, the knowledge community will have

enough information from the associated representation

information to correctly interpret a record. This viewpoint

needed to be augmented with a characterization of the

representation information that describes the preservation

environment itself. Within policy-based data management

systems, the environment representation information is

characterized by the policies and procedures that are used to

manage the records along with the associated system state

information. It is then possible for an archivist in the future to

verify communication from the past, and validate that the

preservation objects have been appropriately preserved [9].

If preservation is communication with the future, then policy-

based systems enable verification of the validity of

communication from the past. The same concept can be

Fig. 2 Managing Technology Evolution – Persistent Objects

 6

applied to digital libraries. In this case, the librarian makes

assertions about the properties of the digital library, such as

completeness and consistency. A future librarian should be

able to verify that the library properties have been conserved

over time.

V. INTEGRATED RULE ORIENTED DATA SYSTEM

In 2006, the Storage Resource Broker development was

deprecated, in favor of developing an Open Source version of

data grid technology. At the same time, a decision was made

to go beyond data and information virtualization, to also

support knowledge virtualization. The basic approach was to

turn policies into computer actionable rules, turn procedures

into computer executable workflows, and use policy

enforcement points to decide when policies should be applied.

The architecture of the policy-based data management

systems was similar to the SRB, as shown in Figure 3.

Multiple peer-to-peer servers managed interactions with

remote storage locations, and a central metadata catalog stored

state information in a relational database. The integrated

Rule-Oriented Data System (iRODS) also implemented servers

to manage message passing, and to manage a queue of

outstanding rule requests [10].

A comparison of policy-based systems with distributed data

management systems shows how the concepts related to data

management have been evolving. Figure 4 illustrates the

central concepts behind traditional file systems, and also

behind the Storage Resource Broker. External events interact

with the data management system through a well defined

protocol. The data management system uses state information

to control the execution of operations on the stored files, and

the state information is appropriately updated. The file system

(i-nodes, v-nodes, etc.) environment in some sense is

synonymous with the state information that is managed about

the files. A key component of a file system is the consistent

update of the state information after every operation that is

performed upon the files. The SRB answered the challenge of

self-consistent update of state information in a distributed

environment, across heterogeneous storage systems, across

multiple administrative domains.

In policy-based data management systems, operations are

replaced by policies that control updates through procedures,

and files are replaced by objects that may include workflows,

active or realized objects, and databases, as well as files.

Figure 5 lists the characteristics of policy-based data

management, representing the evolution from traditional file-

based systems to information and knowledge based systems.

As before, the data management environment is synonymous

with the consistent management of state information.

However, in the policy-based system, the environment is

governed by a set of policies that are implemented as computer

actionable rules. Thus a description of the environment must

include not only the state information, but also a listing of the

policies and procedures that are being enforced. Similar to the

evolution of concepts for the SRB, the development of iRODS

also required several new concepts, which we describe along

with a timeline. See the Appendix for a list of the versions of

the iRODS software that have been released at the time of this

document.

Computer Actionable Knowledge (2006): A major goal of

data grid technology has been the extension of data

management systems to also support information management

and knowledge management through computer actionable

forms. The Storage Resource Broker augmented data

management with information management, by associating

state information as metadata attributes on an appropriate name

space. The types of information that were managed included

system administration information, provenance information,

descriptive information, and representation information.

Fig. 3 Policy-based Data Management Architecture

Fig. 4 File System Characterization

Fig. 5 Policy-based System Characterization

 7

Policy-based data management systems augment information

management with knowledge management. The knowledge

required to execute a protocol, or manipulate a file, or access a

remote repository is encapsulated in a microservice. The

microservices can be chained together to implement a

workflow, or procedure. Policies control when and where each

procedure can be executed. In a sense, a file (or object) is not

viewed in isolation, but along with all the policies and

procedures that govern its creation and usage. The application

of knowledge requires the dynamic execution of procedures.

The result of the execution is stored as system state

information, and is assigned as metadata on objects within a

name space. In essence, the reification of a knowledge

procedure is turned into administrative information that is

stored as metadata in a relational database. One can view the

metadata as inherent properties (labels) on the objects that

codify the derived knowledge obtained through application of

procedures.

This approach to knowledge management through computer

actionable forms can be quantified as follows:

 Data consists of bits (zeros and ones)

 Information consists of labels applied to data

 Knowledge evaluates relationships between labels

 Wisdom evaluates relationships between relationships

Within the iRODS data grid, data are managed as files in a

file system, or objects in an object store. Information is

managed as metadata in a relational database. Knowledge is

applied as computer actionable rules through a rule engine.

Wisdom (within the confines of the user-configurable iRODS

system) is applied through policy enforcement points which

determine when and where the knowledge procedures should

be executed.

Note that the concept of relationships has been extended to

include:

 Semantic or logical relationships

 Spatial or structural relationships

 Temporal or procedural relationships

 Functional or algorithmic relationships

 Systemic or epistemological relationships

Thus a procedure is the application of a functional

relationship to a digital object to generate either information

about the digital object, or a new digital object [11].

The differentiation between information and knowledge is

complex. In order to assign a label to a digital object, a

knowledge relationship between existing labels needs to be

evaluated. However each existing label required the prior

application of knowledge relationships. Information

generation is an infinite recursion on the application of

knowledge procedures. Each knowledge procedure evaluates

relationships between labels that were previously generated.

The recursive nature is closed by reducing the information

labels to a well known set that are interpreted the same way by

the entire user community. The simplest way to separate

information and knowledge is to view information as the

reification of knowledge. Information is a static property,

while knowledge is the active evaluation of a relationship.

Our first attempt to characterize information and knowledge

was expressed as a matrix, with the goal of differentiating

between ingestion, management, and access services for digital

objects [12]. This characterization focused on services that

were used to manipulate data, information and knowledge,

within the context of a data grid. Figure 6 shows the

components of the characterization, with the data grid

represented by the matrix that links together the individual

components related to the types of service.

This characterization is realized in the iRODS policy-based

data management system. The services to manipulate data are

the operations supported upon digital objects. The storage

systems for data are accessed through storage drivers. The

services to manipulate information are the operations supported

upon metadata attributes. The information repository is the

metadata catalog, stored in a relational database. The

knowledge relationships between concepts are implemented by

chaining microservices that are controlled by computer

actionable rules. The knowledge repository is implemented as

a rule base. The knowledge-based grid can be viewed spatially,

as a shared distributed service or temporally, as a persistent

archive.

The access services remain an area of active development,

and are further discussed in the feature-based indexing concept

in Section 6.

Knowledge Virtualization (2010): The iRODS data grid

provides virtualization of data, information, and knowledge.

Figure 7 shows a simple architecture view of the

Fig. 6 Knowledge-based Grids

Fig. 7 iRODS data grid virtualization mechanisms

 8

interoperability mechanisms. An access interface virtualizes

access by mapping from the access protocol to the iRODS

interaction protocol. Each interaction is trapped at policy

enforcement points where a rule base is consulted to determine

which policy to execute. The policies control the execution of

procedures that are composed by chaining together basic

functions, called microservices. This requires that the

middleware manage exchange of structured information

between the chained microservices through in-memory

structures. When the microservices are executed on different

servers, the information structures are serialized, moved over

the network, and unpacked into in-memory structures at the

remote system.

The microservices perform operations such as I/O

manipulation, metadata extraction, and domain-specific

operations. Each microservice invokes standard POSIX-based

I/O operations. The data grid middleware then translates

between the standard I/O and the protocol required by the

remote storage location. Thus the microservices are

independent of the operating system. The same microservices

run on Windows, Unix, and Mac computers, enabling the

migration of policies and procedures across operating systems.

The ability to manage application of knowledge procedures,

independently of the choice of storage environment, can be

viewed as a form of knowledge encapsulation.

Policies as Intellectual Property (2013): A major goal of

the development of policy-based data grid middleware has

been the conversion of management policies into computer

actionable rules that control computer executable procedures.

This enabled multiple communities, shown below, to apply the

technology. The users of the software span multiple science

and engineering disciplines, and include national data grids,

national libraries, and international projects:

Archives

 Taiwan National Archive, Digital Preservation Network

Astrophysics

 Auger supernova search

Atmospheric science

 NASA Langley Atmospheric Sciences Center

Biology

 Phylogenetics at CC IN2P3

Climate

 NOAA National Climatic Data Center

Cognitive Science

 Temporal Dynamics of Learning Center

Computer Science

 GENI experimental network

Cosmic Ray

 AMS experiment on the International Space Station

Dark Matter Physics

 Edelweiss II

Data Grids

 Bestgrid, French Grid Initiative

Digital Libraries

 French National Library

Earth Science

 NASA Center for Climate Simulations

Ecology

 CEED Caveat Emptor Ecological Data

Engineering

 CIBER-U

High Energy Physics

 BaBar / Stanford Linear Accelerator

Hydrology

 Institute for the Environment, UNC-CH; Hydroshare

Institutional Repository

 Carolina Digital Repository

Genomics

 Wellcome Trust Sanger Institute

Libraries

 French National Library, Texas Digital Libraries

Medicine

 Lineberger Comprehensive Cancer Center

Neuroscience

 International Neuroinformatics Coordinating Facility

Neutrino Physics

 T2K and dChooz neutrino experiments

Oceanography

 Science Observatory Network

Optical Astronomy

 National Optical Astronomy Observatory

Particle Physics

 Indra multi-detector collaboration at IN2P3

Plant genetics

 CyVerse

Quantum Chromodynamics

 IN2P3

Radio Astronomy

 Cyber Square Kilometer Array, TREND, BAOradio

Seismology

 Southern California Earthquake Center

Social Science

 Odum Institute for Research in Social Science, TerraPop

Each community implemented different choices for

semantics, policies, and procedures. A generalization of the

observed usage patterns is to associate the intellectual

properties of each community with the policies and procedures

that they implemented. The underlying data grid middleware

was generic infrastructure that provided the mechanisms

needed to virtualize interactions with data, information, and

knowledge. The policies and procedures encapsulated the

knowledge that was needed to apply the middleware within

each domain.

This means that intellectual property can be captured and

applied within generic data management infrastructure to cater

to the specific needs of each domain. This idea is extended in

Figure 8, which describes a general approach towards

quantifying intellectual property.

Each domain is characterized by:

 Purpose driving the formation of a data collection. The

purpose represents a consensus of the persons collaborating on

a data management project.

 Properties that will be maintained for the data collection.

The properties are dependent upon the driving purpose. If the

 9

intent is preservation, then properties related to authenticity,

chain of custody, integrity, and original arrangement are

desired. If the intent is formation of a digital library, then

properties related to descriptive metadata, file arrangement,

and file format may be desired. The properties comprise

assertions made about the collection by the developers of the

collection. Other domain centric elements (such as provenance,

retention, disposition, etc.) can also be defined as part of these

properties.

 Policies that enforce the desired properties. The policies

control when and where management procedures are executed.

Multiple policies may be needed for each desired property. In

general, policies are needed to control generation of the desired

property. Policies are also needed to validate whether the

desired property has been maintained over time. Since the

distributed environment is subject to multiple forms of risk

(network outage, storage system maintenance, operator error,

policy change), assessment criteria are needed that can be

checked to verify compliance with the desired collection

properties. The assessment policies are turned into computer

actionable rules that are periodically executed. Example

domain centric policies include enforcing authority (e. g.

HIPAA policies), integrity checks, data cleansing, metadata

extraction, etc..

 Procedures codify and apply the operations needed to

generate a desired property. Examples include procedures to

create a replica, extract metadata, set access controls, manage a

quota, check a retention period, apply disposition, etc.

Procedures are executed as computer executable workflows.

 Persistent state information is generated each time a

procedure is run. The persistent state is stored as metadata

attributes on one of the name spaces managed by the data grid.

The state information can be queried for compliance at a point

in time. To verify compliance over time, the system parses

audit trails. Persistent state information in turn codify the

properties of a collection.

A viable policy-based data management system must be

sufficiently sophisticated to handle a wide variety of data

management applications. The iRODS data grid provides 317

microservices that can be used to compose procedures, and

manages 338 persistent state information attributes. In

practice, each domain implements a small number of policies.

Out of the box, the iRODS data grid source provides 14 default

policies for enforcing data sharing properties. Communities

typically add another 5 policies on the average to control

desired features. However, the range of policies that are

required to support a fully customized data grid may be very

large.

Each policy and procedure set encapsulates the domain

knowledge needed to manage a specific domain application.

Federation through Interoperability Mechanisms (2014):

Within the DataNet Federation Consortium [14], the iRODS

data grid is being used to create national data

cyberinfrastructure through the federation of existing data

repositories. In the process, interoperability mechanisms have

been implemented that enable three basic federation

approaches:

1. Tightly coupled federations. The name spaces used to

identify users and files are shared between two data grids. A

data grid can store and retrieve files in a second data grid

through middleware servers that enable application of the

desired operations at the remote repository. In effect, the

operations are moved to the data.

2. Loosely-coupled federations. The knowledge needed to

interact with a remote data management system is encapsulated

in a microservice that retrieves data from the remote repository

using the protocol of the remote repository. This is a

traditional approach similar to brokering, in which data are

retrieved for analysis at the local computer. The data are

moved to the processing engine.

3. Asynchronous federations. No direct interaction occurs

between the federated data repositories. Instead an

intermediary (such as a message bus queue) is used to hold

requests that have been encapsulated in messages. Requests

for an operation are posted to the queue. The remote system

retrieves messages from the queue, does the desired operations,

and posts results back to the queue.

Using these three mechanisms, the DataNet Federation

Consortium has been able to support interoperability with web

services, sensor networks, union catalogs, data repositories,

workflow environments, databases, message buses, and

systems that communicate over the internet.

The expectation is that these three federation mechanisms are

sufficient to federate all existing data management

applications. The DataNet Federation Consortium currently

(2016) federates systems across national projects in

oceanography, cognitive science, plant biology, engineering,

hydrology, and social science.

Quantifying the Broadening of Impact through a

Collection Life Cycle: A notable requirement for National

Science Foundation funding is the demonstration that the

research results will impact a broad user community. A

mechanism has been needed to quantify the impact. One way

to do this has been the observation that the set of policies and

procedures used to manage a collection evolve over time to

represent the current requirements of each broader user

Fig. 8 Conceptualizing intellectual property as policies and procedures

 10

community. It is possible to quantify impact by tracking the

policy evolution. This can be represented through a collection

life cycle:

 Project collection – usually the team members have

complete tacit knowledge about the acceptable semantics, data

formats, and analysis procedures used with the project data

sets. The data sets are organized in a project collection with

minimal metadata. The data sharing is limited to the group, and

is mostly through shared and mounted file spaces.

 Shared collection (data grid) – when data products are

shared with other groups and institutions, the tacit knowledge

must be made explicit. Policies are needed to govern the

application of semantic terms, and the transformation of data to

required data formats. Policies are also needed to enforce

authentication, access controls and data distribution. Policies

for data manipulation may also be needed.

 Published collection (digital library) – when the results

are formally published for use by the discipline, policies are

needed to enforce domain standards for semantics and data

formats. Policies are also needed to generate persistent

identifiers, to validate integrity, and to track provenance.

 Processing pipeline – when the data sets are used in an

analysis service, procedures are needed that support the

manipulation and transformation of the data. The provenance

of derived data products needs to be captured.

 Preserved reference collection (archive) – when the

results are archived for use by future researchers, a sufficient

context is needed that enables a person in the future to interpret

the data. The knowledge is typically reified in representation

information. At the same time, the policies and procedures of

the preservation environment also need to be preserved so a

future archivist can verify that the collection was managed

correctly.

The broadening of user impact can be quantified through the

evolution of the policies and procedures that are used to

manage the information context associated with a data

collection. A digital library thus represents the publication

stage of a collection life cycle. The policies associated with a

digital library map from the assertions made by the group that

formed the collection, to the expectations for discovery and

access of the members of the discipline. This mapping is

resolved in terms of required metadata, required data formats,

required processing procedures, and required user interfaces.

Policy Sets (2015): Data management applications are

governed by policies and procedures. In collaboration with the

Practical Policy working group of the Research Data Alliance,

the DFC analyzed the policies needed to implement

representative systems for data sharing (data grids), data

publication (digital libraries), production data centers, data

preservation (archives), management of protected data, and

NSF Data Management Plans [16]. The approach was based

on identifying the tasks that needed to be done for each type of

data management application, and then developing

representative policies for automating each task. Three types

of policies were created: policies to set system parameters to

control execution of the task; policies to manage the task

execution, and policies to verify tasks were executed correctly.

Across the six categories of data management, a total of 97

tasks was identified. The tasks required the use of 119

operations and 50 persistent state information attributes. The

operations included workflow operators to control processing,

collection manipulation, file manipulation, user account

management, system parameter settings, storage resource

access, and metadata manipulation. The persistent state

information attributes included information about collection

properties, file properties, metadata, quotas, resource

properties, system parameters, user properties, and data grid

properties.

The expectation is that generic policy sets can be defined for

each type of data management application that can be modified

for use by a specific institution. This will greatly simplify the

automation and control of data collections, and enable the

development of systems that automate auditing and validation

mechanisms.

VI. FUTURE DATA MANAGEMENT INFRASTRUCTURE

The current generation of data grid middleware is still

evolving. New opportunities to apply policies to control the

data management environment are emerging. We consider

three specific extensions, the inclusion of policies within

storage controllers, the integration of policy-based data

management with policy-based networks, and the extension of

a knowledge grid into a wisdom grid.

Feature-Based Indexing: A major challenge in constructing

a collection is the assignment of appropriate descriptive

metadata. This is a laborious task, which potentially is non-

scalable. A major question is whether the act of description

can be turned into the application of a knowledge procedure,

that is automatically applied within the storage system.

Normally descriptive metadata are used to provide a context

for the contents of a file. An alternative approach is to use

descriptive metadata to define features present within a file. If

the desired features can be extracted by a knowledge

procedure, then the generation of descriptive metadata can be

automated.

This approach is being explored in collaboration with storage

vendors. The Data Direct Networks storage controllers now

support virtual machine environments that can be used to run

the iRODS data grid. When a file is written to the storage

system, the data grid can apply feature extraction procedures

automatically, and index the stored data by the features present

within each record. Hence, one can construct a domain-centric

data-grid appliance that can perform automated data

management including automated data description.

Software Defined Networks (2013): Policy-based systems

are also appearing within networks that are based on the

OpenFlow router. Network routing decisions can be controlled

by policies that are used to manage path-selection within the

router. A demonstration of the use of policy-based data grids

to control policy-based routing was given at the

Supercomputing ’13 conference [15]. The iRODS data grid

managed information about the location of files, their access

 11

controls, and the availability of replicas. Within the iRODS

data grid, a parallel data transfer was set up, with subsets of the

file sent in parallel over multiple network paths. The iRODS

data grid communicated with the OpenFlow router to select a

disjoint network path for each of the parallel data transfer

channels.

The idea here is that a traditional data grid views the network

as a black box (and vice versa, the network is opaque with

respect to the applications at the end-points of the

communication pipeline). If the data grid is able to export

some of its policies to be implemented by the network (through

the OpenFlow router) and also is able to get feedback from the

routers about network topology, congestion and statistics, the

two can work together to mutual advantage and improve

performance. Having this exchange of information can be used

in multiple ways to improve data grid operations.

One way to exchange information is through the integration

of control policies between data grids and networks. Since

both systems are managing distributed state information, it is

reasonable to think about formally moving data grid

middleware into network routers. It will then be possible to

access data by name (or metadata attribute) instead of an IP

address, enforce access controls within the network, cache data

within the network, and debug data transfers by single-stepping

through the data grid procedures (currently supported in

iRODS).

The approach would rely upon the data grid to provide a

context for the files through their organization in collections.

A file would be referenced by its membership in a collection,

with the data grid controlling the access (authentication and

authorization). The data grid would negotiate with the network

for selection of the replica to use as the starting point, and the

network path to use for data delivery. In the long term, data

grid middleware should disappear as separate infrastructure,

and be subsumed within the network. The upshot of this would

be collection-oriented addressing of objects instead of name-

oriented or ip-oriented addressing for data ingestion,

movement and access.

The integration of software-defined networks with data grids

enables the virtualization of data flows. The properties of a

data flow can be managed, independently of the type of

network. This would include naming of data flows, re-

application of a data flow, access controls on data flows, and

sharing of data flows. A content delivery system could be

defined as a data flow which is re-executed periodically.

Wisdom management: Current virtualization mechanisms

focus on data, information, and knowledge. Future data

management systems will also need to support virtualization of

wisdom. If we can think of wisdom as the evaluation of

relationships between relationships, then we can build a

computer actionable form of wisdom. Within the iRODS data

grid, wisdom is captured as hard-coded policy-enforcement

points that control when and where knowledge procedures are

executed. To make application of wisdom a dynamic process,

the system will need to implement mechanisms that enable

wisdom-based decisions to be selected as systemic processes

that apply to all interactions. This will require processing

information about each access session, information about the

collections, and information about the user community to infer

which set of knowledge procedures should be applied.

Within the iRODS Consortium, a pluggable version of the

iRODS data grid has been developed. New microservices can

be added dynamically to implement new operations. When the

microservice is plugged into the framework, two policy

enforcement points are dynamically created to control pre-

process rules and post-process rules. With this approach, the

operations performed by the data grid can be separated from

the middleware framework. A pre-process rule can be created

which generates an event message that is posted for processing

within an external indexing system. A post-process rule can be

created that tracks all changes to the system state information

and posts update messages. This means that all changes to the

state information within the data grid can be tracked and

associated with the corresponding client action. The

compliance of the system to the desired policies can be

verified.

In effect, the application of wisdom procedures is reified as

event information. Procedural and temporal relationships can

be evaluated across all of the event information, enabling the

application of wisdom procedures to the events that occur

within the data management system. A digital library should

be able to track all events, apply reasoning across the events to

detect usage patterns, and adjust policies to optimize user

interactions.

The iRODS software was hardened and modularized, and is

now maintained and distributed, by the iRODS Consortium,

beginning with the 4.0.0 Release. Information about the

consortium, ongoing development, and future planned releases

is available at http://irods.org.

APPENDIX

iRODS Releases

iRODS 4.1.9 July 28, 2016

iRODS 4.1.8 February 22, 2016

iRODS 4.1.7 November 20, 2015

iRODS 4.1.6 October 1, 2015

iRODS 4.1.5 September 2, 2015

iRODS 4.1.4 August 5, 2015

iRODS 4.1.3 June 18, 2015

iRODS 4.1.2 June 5, 2015

iRODS 4.1.1 June 2, 2015

iRODS 4.1.0 May 29, 2015

 JSON-based configuration, Dynamic PEPs

iRODS 4.0.3 August 20, 2014

iRODS 4.0.2 June 17, 2014

iRODS 4.0.1 June 5, 2014

iRODS 4.0.0 March 28, 2014

 Binary Packages, Pluggable architecture

iRODS 3.3.1 February 24, 2014

 SHA2 hash, Rule looping, WSO extensions

iRODS 3.3 July 17, 2013

 NetCDF support, HDFS, PAM authentication

http://irods.org/

 12

iRODS 3.2 October 3, 2012

 WSO objects, direct access resources

iRODS 3.1 March 16, 2012

 Tickets, locks, group-admin updates

iRODS 3.0 September 30, 2011

 New rule language, soft links

iRODS 2.5 February 24, 2011

 Database resources, Fortran I/O library

iRODS 2.4 July 23, 2010

 Bulk upload, monitoring,

iRODS 2.3 March 12, 2010

 Extensible iCAT, quotas, group-admin

iRODS 2.2 October 1, 2009

 HPSS driver, S3 driver, compound resource

iRODS 2.1 July 10, 2009

 mySQL driver, Kerberos, policy enforcement

iRODS 2.0 December 1, 2008

 Federation, master/slave catalog, bundling

iRODS 1.1 June 27, 2008

 GSI, mounted structured files, HDF5, Jargon

iRODS 1.0 January 23, 2008

 Oracle driver, FUSE interface, rule language

iRODS 0.9 June 1, 2007

 Replication, metadata, trash, integrity checking

iRODS 0.5 December 20, 2006

 Policy enforcement points, rule engine

SRB Releases

SRB 3.5 Dec 3, 2007

 Bind variables, bulk replication, transfer restart

SRB 3.4 Oct 31, 2005

 Master/slave MCAT, HDF5 integration

SRB 3.3 Feb 18, 2005

 ACL inheritance, bulk move, GT3 GSI

SRB 3.2 July 2 2004

 Client initiated connections, Database access

SRB 3.1 April 19, 2004

 Synchronization, trash can, checksums

SRB 3.0 Oct 1, 2003

 Federation

SRB 2.0 Feb 18, 2003

 Parallel I/O, bulk load, metadata access control

SRB 1.1.8 Dec 15, 2000

 Encrypted passwords, large file size

SRB 1.1.7 May 2000

 GSI authentication

SRB 1.1.6 Nov 1999

 Stream support, Oracle support

SRB 1.1.4 May 1999

 Containers

SRB 1.1.3 Feb 1999

 Recursive replication

SRB 1.1.2 Dec 1998

 Monitoring daemon

SRB 1.1 Mar 1998

 Query support

SRB 1.0 Jan 1998

 Unix commands

ACKNOWLEDGMENT

The original members of the DICE group included Reagan

Moore, who led the group; Michael Wan, who was the chief

architect and designed the communication and management

protocols for the peer-to-peer server architecture; Arcot

Rajasekar, who proposed and implemented key innovations

related to virtualization, management of state information, and

policy-based data management; Wayne Schroeder, who

implemented the security environment, unix-style utilities, and

the testing environment; Lucas Gilbert, who implemented a

Java I/O library; Sheau-Yen Chen, who was the grid

administrator for the group through multiple evolutions of the

grid; Bing Zhu, who ported the system to Windows; and

Chaitan Baru, Richard Marciano, Ilkay Altintas, Bertram

Ludaescher, and Amarnath Gupta who applied the technology.

The DICE group maintained a core set of developers for

twenty years, while adding expertise including Mike Conway,

who developed advanced Java library interfaces; Hao Xu, who

optimized and extended the iRODS distributed rule engine, and

Antoine de Torcy, who developed iRODS microservices for

application domains.

The SRB and iRODS technologies were developed and

applied across more than 30 funded projects, and multiple

funding agencies. These included:

NSF HydroShare 7/1/12-6/30/17 k

NSF EarthCube Layered Architecture 4/1/12-3/31/13

NSF DFC Supplement Extensible Hardware 9/1/11-8/31/15

NSF DFC Supplement Interoperability 9/1/11-8/31/15

NSF DataNet Federation Consortium 9/01/11-8/31/16

NSF SDCI Data Improvement 10/1/10 – 9/30/13

NOAA National Climatic Data Center 10/1/09 – 9/1/10

NSF Temporal Dynamics of Learning 1/1/10 – 12/31/10

NARA Transcontinental Persistent Archive 9/15/9-9/30/10

NSF Temporal Dynamics of Learning 3/1/9-12/31/9

NSF Transcontinental Persistent Archive 9/15/8-8/31/13

NSF Petascale Cyberfacility Seismic Com. 4/1/8-3/30/10

NSF Data Grids for Community Driven Apps 10/1/7-9/30/10

DOD Joint Virtual Network Centric Warfare 11/1/6-10/30/7

NSF Petascale Cyberfacility for Seismic Data 10/1/6-9/30/9

LLNL Scientific Data Management 3/1/5 – 12/31/08

NARA Persistent Archives 10/1/4-6/30/08

NSF Constraint-based Knowledge 10/1/4-9/30/6

LC NDIIPP California Digital Library 2/1/4-1/31/7

NASA Information Power Grid 10/1/3-9/30/4

NARA Persistent Archive 6/1/2-5/31/5

NSF National Science Digital Library 10/1/2-9/30/6

DOE Particle Physics Data Grid 8/15/1-8/14/4

NSF SCEC Community Modeling 10/1/1-9/30/6

DOE Terascale Visualization 9/1/98-8/31/02

NSF Grid Physics Network 7/1/00-6/30/05

NARA Persistent Archive 9/99-8/00

NSF Digital Library Initiative UCSB 9/1/99-8/31/04

NSF Digital Library Initiative Stanford 9/1/99-8/31/04

NASA Information Power Grid 10/1/98-9/30/99

NSF NPACI data management 10/1/97-9/30/99

DOE ASCI 10/1/97-9/30/99

DARPA Massive Data Analysis Systems 9/1/95-8/31/96

 13

REFERENCES

[1] F. Davis, W. Farrell, J. Gray, R. Mechoso, R. Moore, S. Sides, and M.

Stonebraker, “EOSDIS Alternative Architecture”, Hughes Applied
Information Systems, Tech. Rep. Contract # ECS-00012, September 6,

1994.

[2] R. Moore, "Distributing Applications Across Wide Area Networks",
General Atomics, San Diego, CA, Tech. Rep. GA-A20074, May 1990.

[3] R. Moore, C. Baru, R. Frost, R. Marciano, A. Rajasekar and M. Wan,

“MDAS - A Massive Data Analysis System”, in Proc. of Interface97
Symposium, 1997.

[4] C. Baru, R. Moore, A. Rajasekar, M. Wan, "The SDSC Storage Resource

Broker,” in Proc. CASCON'98 Conference, Nov.30-Dec.3, 1998,
Toronto, Canada, p. 5.

[5] B. Aiken, J. Strassner, B. Carpenter, I. Foster, C. Lynch, J. Mambretti, R.

Moore, B. Teigelbaum, “Network Policy and Services: A Report of a
Workshop on Middleware”, The Internet Society, 2000.

[6] R. Moore, C. Baru, A. Rajasekar, B. Ludaescher, R. Marciano, M. Wan,

W. Schroeder, and A. Gupta, “Collection-based Persistent Digital
Archives – Part 2”, D-Lib Magazine, April 2000.

[7] R. Moore, C., Baru, A. Rajasekar, B. Ludaescher, R. Marciano, M. Wan,

W. Schroeder, and A. Gupta, “Collection-Based Persistent Digital

Archives – Part 1”, D-Lib Magazine, March, 2000.

[8] R. Moore, “The San Diego Project: Persistent Objects,” Archivi &

Computer, Automazione E Beni Culturali, l’Archivio Storico Comunale
di San Miniato, Pisa, Italy, February, 2003.

[9] R. Moore, “Towards a Theory of Digital Preservation”, IJDL Volume 3,

Issue 1, August 2008, pp. 63-75.

[10] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder, “A Prototype Rule-

based Distributed Data Management System”, Presented at HPDC
workshop on “Next Generation Distributed Data Management”, May

2006, Paris, France. Available: https://wiki.irods.org/pubs/DICE_RODS-

paper.pdf
[11] R. Moore, “Automating Data Curation Processes”, in Proc. of NSF

Curating for Quality Workshop, September 11, 2012, Arlington, Virginia,

pp. 67-71. Available: http://datacuration.web.unc.edu
[12] R. Moore, “Knowledge-based Grids,” Proc. 18th IEEE Symposium on

Mass Storage Systems and Ninth Goddard Conference on Mass Storage

Systems and Technologies, San Diego, April 2001.
[13] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, S.-Y. Chen, L. Gilbert,

C.-Y. Hou, C. Lee, R. Marciano, P. Tooby, A. de Torcy, and B. Zhu,

“iRODS Primer: Integrated Rule-Oriented Data System”, Morgan &
Claypool, 2010.

[14] R. Moore and A. Rajasekar, “Reproducible Research within the DataNet

Federation Consortium”, Proc. International Environmental Modeling
and Software Society 7th International Congress on Environmental

Modeling and Software, San Diego, California, June 2014,

http://www.iemss.org/society/index.php/iemss-2014-proceedings.
[15] S. Huang, H. Xu, and Y. Xin, “A Framework for Integration of Rule-

oriented Data Management Policies with Network Policies”, Proc. 3rd

GENI Research and Educational Experiment Workshop [GREE 2014],
Atlanta, GA, March 2014.

[16] R. Moore, A. Rajasekar, and H. Xu, “DataNet Federation Consortium

Policy Toolkits”, iPRES conference, November 2015.

Arcot Rajasekar was born in India.

He received the B.S. degree in

Electronics and Communications from

the University of Madras, the M.S.

degree in Computer Science from the

Indian Institute of Technology in

Madras, and the Ph.D. degree in

Computer Science from the University of Maryland.

He was an Assistant Professor at the University of

Tennessee and joined the DICE group in 1996. He is a lead

originator behind the concepts in the SRB and iRODS data

grids. He is a professor in the School of Library and

Information Science at the University of North Carolina at

Chapel Hill.

Michael Y.-K. Wan was born in Hong Kong in 1950. He

received the B.S. degree from Illinois State University in 1972

and the M.S. degree from Georgia Institute of Technology in

Nuclear Engineering.

He was a staff member of the San Diego Supercomputer

Center from 1986 to 1994, working on operating systems and

archival storage systems. From 1994 to 2008, he was a

member of the DICE group at SDSC. He led the Data

Intensive Cyber Environment group of the Institute of Neural

Science at the University of California, San Diego, from 2008

to 2014.

Wan is the chief software architect of the integrated Rule-

Oriented Data System and the Storage Resource Broker.

Reagan W. Moore was born in Ventura,

California in 1946. He received the B.S.

degree in Physics from the California Institute

of Technology in 1967, and the Ph.D. degree

in Plasma Physics from the University of

California at San Diego in 1978.

From 1974-1986 he was a Staff Scientist at

General Atomics. From 1986-1994 he was in

charge of production services at the San Diego Supercomputer

Center, and managed the Data Intensive Computing

Environments group from 1994 to 2008. From 2008-2015 he

led the Data Intensive Cyber Environments Center at the

University of North Carolina at Chapel Hill, where he is a

Professor in the School of Information and Library Science.

Professor Moore is co-author of three U. S. patents on

“Elongated Toroid Fusion Device” (1988), “Transparent

management of data objects in containers” (2004), and

“Persistent Archives” (2005).

Hao Xu was born in China. He received his Ph.D. degree

from the University of North Carolina at Chapel Hill in 2014,

and joined the DICE Center as staff.

Xu is the architect of the pluggable rule engine used in the

iRODS data grid.

https://wiki.irods.org/pubs/DICE_RODS-paper.pdf
https://wiki.irods.org/pubs/DICE_RODS-paper.pdf
http://datacuration.web.unc.edu/
http://www.iemss.org/society/index.php/iemss-2014-proceedings

