

iRODS
User Group Meeting 2016

Proceedings

© 2016 All rights reserved. Each article remains the property of the authors.

8TH ANNUAL CONFERENCE SUMMARY

The iRODS User Group Meeting of 2016 gathered together iRODS users, Consortium members, and staff to
discuss iRODS-enabled applications and discoveries, technologies developed around iRODS, and future
development and sustainability of iRODS and the iRODS Consortium.

The two-day event was held on June 8th and 9th in Chapel Hill, North Carolina, hosted by the iRODS Consortium,
with over 90 people attending. Attendees and presenters represented over 30 academic, government, and
commercial institutions.

Contents

Listing of Presentations .. 1

ARTICLES

iRODS Audit (C++) Rule Engine Plugin and AMQP .. 5
Terrell Russell, Jason Coposky, Justin James - RENCI at UNC Chapel Hill

Speed Research Discovery with Comprehensive Storage and Data Management .. 21
HGST | PANASAS | iRODS

Integrating HUBzero and iRODS .. 23
Rajesh Kalyanam, Robert A. Campbell, Samuel P. Wilson, Pascal Meunier, Lan Zhao, Elizabett A. Hillery,
Carol Song - Purdue University

An R Package to Access iRODS Directly .. 31
Radovan Chytracek, Bernhard Sonderegger, Richard Coté - Nestlé Institute of Health Sciences

Davrods, an Apache WebDAV Interface to iRODS .. 41

NFS-RODS: A Tool for Accessing iRODS Repositories via the NFS Protocol .. 49
D. Oliveira, A. Lobo Jr., F. Silva, G. Callou, I. Sousa, V. Alves, P. Maciel - UFPE
Stephen Worth - EMC Corporation
Jason Coposky - iRODS Consortium

Academic Workflow for Research Repositories Using iRODS and Object Storage ... 55
Randall Splinter - DDN

Application of iRODS Metadata Management for Cancer Genome Analysis Workflow 63
Lech Nieroda, Martin Peifer, Viktor Achter, Janna Velder, Ulrich Lang - University of Cologne

Status and Prospects of Kanki: An Open Source Cross-Platform Native iRODS Client Application 69
Ilari Korhonen, Miika Nurminen - University of Jyväskylä

Ton Smeele, Chris Smeele - Utrecht University

Listing of Presentations

The following presentations were delivered at the meeting:

• The iRODS Consortium in 2016
Jason Coposky, iRODS Consortium

• iRODS 4.2 Overview
Terrell Russell, iRODS Consortium

• Auditing with the Pluggable Rule Engine
Terrell Russell, iRODS Consortium

• A Geo-Distributed Active Archive Tier
Earle Philhower, III, Western Digital

• Testing Object Storage Systems with iRODS at Bayer
Othmar Weber, Bayer Business Systems

• Advancing the Life Cycle of iRODS for Data
David Sallack, Panasas

• Having it Both Ways: Bringing Data to Computation & Computation to Data with iRODS
Nirav Merchant, University of Arizona

• Integrating HUBzero and iRODS
Rajesh Kalyanam, Purdue University

• iRODS Data Integration with CloudyCluster Cloud-Based HPC
Boyd Wilson, Omnibond

• Getting R to talk to iRODS
Bernhard Sonderegger, Nestlé Institute of Health Sciences

• Davrods, an Apache WebDAV Interface to iRODS
Chris Smeele, Ton Smeele, Utrecht University

• iRODS 4.3
Terrell Russell, iRODS Consortium

• Bidirectional Integration of Multiple Metadata Sources
Hao Xu, DICE Group

• DFC architecture & An iRODS Client for Mobile Devices
Jonathan Crabtree, Odum Institute
Mike Conway, DICE Group
Matthew Krause, DICE Group

• NFS-RODS: A Tool for Accessing iRODS Repositories via the NFS Protocol
Danilo Oliveira, UFPE

1

• MetaLnx: An Administrative and Metadata UI for iRODS
Stephen Worth, EMC

• Academic Workflow for Research Repositories
Randy Splinter, DDN

• Application of iRODS Metadata Management for Cancer Genome Analysis Workflow
Lech Nieroda, University of Cologne

• Status and Prospects of Kanki: An Open Source Cross-Platform Native iRODS Client
Application
Ilari Korhonen, University of Jyväskylä

• DAM Secure File System
Paul Evans, Daystrom Technology Group

• iRODS Feature Requests and Discussion
Reagan Moore, DICE Group

2

Articles

3

4

iRODS Audit (C++) Rule Engine Plugin and AMQP
Terrell Russell

Renaissance Computing
Institute (RENCI)
UNC Chapel Hill

unc@terrellrussell.com

Jason Coposky
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
jasonc@renci.org

Justin James
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
jjames@renci.org

ABSTRACT

iRODS 4.2 has introduced the new rule engine plugin interface. This interface offers the possibility of rule engines

which support iRODS rules written in various languages. This paper introduces an audit plugin that emits a single

AMQP message for every policy enforcement point within the iRODS server. We illustrate both the breadth and

depth of these messages as well as some introductory analytics. This plugin may prove useful from instrumentation

of a production iRODS installation to helping debug a confusing emergent distributed rule engine behavior.

Keywords

iRODS, audit, rule engine, automation, instrumentation, AMQP, dashboard

EXECUTION SEQUENCE OF POLICY ENFORCEMENT POINTS

By default, the audit plugin emits a single AMQP message per policy enforcement point hit within the iRODS server.

This allows us to see the patterns inherent in the iRODS protocol as well as gain an understanding of the lifecycle

of various client connections. The next few sections will contain complete policy enforcement point (PEP) execution

sequences for ils, imeta, iget, ireg, iput, iput (1GiB large file), as well as an initial dashboard screenshot made

possible by collecting the emitted AMQP messages.

Dynamic PEPs are listed in the following sections as audit_pep_<plugin_operation>_<pre|post>.

Legacy static PEPs are listed within parentheses and indented.

iRODS UGM 2016 June 8-9, 2016, Chapel Hill, NC
Authors retain copyright.

5

ils

When receiving an ils request, the server authenticates the incoming request, initiates a database connection, queries

for the requested result set, and returns the results to the client.

Many dynamic policy enforcement points are hit multiple times as database and network traffic is sent and received.

174 dynamic PEPs + 4 static PEPs

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_database_open_pre

audit_pep_database_open_post

audit_pep_exec_rule_pre

(acAclPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acChkHostAccessControl)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acSetPublicUserPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acPreConnect)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_network_agent_start_pre

audit_pep_network_agent_start_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_request_pre

audit_pep_auth_agent_auth_request_pre

audit_pep_auth_agent_auth_request_post

audit_pep_auth_request_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_response_pre

audit_pep_auth_agent_auth_response_pre

audit_pep_database_check_auth_pre

audit_pep_database_check_auth_post

audit_pep_auth_agent_auth_response_post

audit_pep_auth_response_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_obj_stat_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_obj_stat_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_obj_stat_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_obj_stat_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_gen_query_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_gen_query_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_gen_query_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_gen_query_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_network_agent_stop_pre

audit_pep_network_agent_stop_post

audit_pep_database_close_pre

audit_pep_database_close_post

6

imeta

When receiving an imeta request, the server authenticates the incoming request, initiates a database connection,

queries the metadata, and returns the results to the client.

106 dynamic PEPs + 6 static PEPs

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_database_open_pre

audit_pep_database_open_post

audit_pep_exec_rule_pre

(acAclPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acChkHostAccessControl)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acSetPublicUserPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acPreConnect)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_network_agent_start_pre

audit_pep_network_agent_start_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_request_pre

audit_pep_auth_agent_auth_request_pre

audit_pep_auth_agent_auth_request_post

audit_pep_auth_request_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_response_pre

audit_pep_auth_agent_auth_response_pre

audit_pep_database_check_auth_pre

audit_pep_database_check_auth_post

audit_pep_auth_agent_auth_response_post

audit_pep_auth_response_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_mod_avu_metadata_pre

audit_pep_exec_rule_pre

(acPreProcForModifyAVUMetadata)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_database_add_avu_metadata_pre

audit_pep_database_add_avu_metadata_post

audit_pep_exec_rule_pre

(acPostProcForModifyAVUMetadata)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_mod_avu_metadata_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_network_agent_stop_pre

audit_pep_network_agent_stop_post

audit_pep_database_close_pre

audit_pep_database_close_post

7

iget

When receiving an iget request, the server authenticates the incoming request, initiates a database connection, checks

permissions, opens, reads, and closes the file, and then sends the contents to the client.

148 dynamic PEPs + 6 static PEPs

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_database_open_pre

audit_pep_database_open_post

audit_pep_exec_rule_pre

(acAclPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acChkHostAccessControl)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acSetPublicUserPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acPreConnect)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_network_agent_start_pre

audit_pep_network_agent_start_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_request_pre

audit_pep_auth_agent_auth_request_pre

audit_pep_auth_agent_auth_request_post

audit_pep_auth_request_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_response_pre

audit_pep_auth_agent_auth_response_pre

audit_pep_database_check_auth_pre

audit_pep_database_check_auth_post

audit_pep_auth_agent_auth_response_post

audit_pep_auth_response_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_obj_stat_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_obj_stat_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_data_obj_get_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_resource_resolve_hierarchy_pre

audit_pep_resource_resolve_hierarchy_post

audit_pep_exec_rule_pre

(acPreprocForDataObjOpen)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_open_post

audit_pep_resource_read_pre

audit_pep_resource_read_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_exec_rule_pre

(acPostProcForOpen)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_data_obj_get_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_network_agent_stop_pre

audit_pep_network_agent_stop_post

audit_pep_database_close_pre

audit_pep_database_close_post

8

ireg

When receiving an ireg request, the server authenticates the incoming request, initiates a database connection, checks

permissions, registers the new file, and checks quota usage.

168 dynamic PEPs + 7 static PEPs

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_database_open_pre

audit_pep_database_open_post

audit_pep_exec_rule_pre

(acAclPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acChkHostAccessControl)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acSetPublicUserPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acPreConnect)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_network_agent_start_pre

audit_pep_network_agent_start_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_request_pre

audit_pep_auth_agent_auth_request_pre

audit_pep_auth_agent_auth_request_post

audit_pep_auth_request_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_response_pre

audit_pep_auth_agent_auth_response_pre

audit_pep_database_check_auth_pre

audit_pep_database_check_auth_post

audit_pep_auth_agent_auth_response_post

audit_pep_auth_response_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_obj_stat_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_obj_stat_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_phy_path_reg_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acSetRescSchemeForCreate)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acRescQuotaPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_resolve_hierarchy_pre

audit_pep_resource_resolve_hierarchy_post

audit_pep_resource_stat_pre

audit_pep_resource_stat_post

audit_pep_database_reg_data_obj_pre

audit_pep_database_reg_data_obj_post

audit_pep_resource_registered_pre

audit_pep_resource_registered_post

audit_pep_exec_rule_pre

(acPostProcForFilePathReg)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_phy_path_reg_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_network_agent_stop_pre

audit_pep_network_agent_stop_post

audit_pep_database_close_pre

audit_pep_database_close_post

9

iput

When receiving an iput request of a small file (by default, smaller than 32MiB), the server authenticates the incoming

request, initiates a database connection, checks permissions, receives and writes the incoming file to disk, registers

the new file, and checks quota usage.

234 dynamic PEPs + 11 static PEPs

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_database_open_pre

audit_pep_database_open_post

audit_pep_exec_rule_pre

(acAclPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acChkHostAccessControl)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acSetPublicUserPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acPreConnect)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_network_agent_start_pre

audit_pep_network_agent_start_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_request_pre

audit_pep_auth_agent_auth_request_pre

audit_pep_auth_agent_auth_request_post

audit_pep_auth_request_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_response_pre

audit_pep_auth_agent_auth_response_pre

audit_pep_database_check_auth_pre

audit_pep_database_check_auth_post

audit_pep_auth_agent_auth_response_post

audit_pep_auth_response_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_obj_stat_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_obj_stat_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_obj_stat_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_obj_stat_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_data_obj_put_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acSetRescSchemeForCreate)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acRescQuotaPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_resolve_hierarchy_pre

audit_pep_resource_resolve_hierarchy_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acSetRescSchemeForCreate)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acSetVaultPathPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_create_pre

audit_pep_resource_create_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_database_reg_data_obj_pre

audit_pep_database_reg_data_obj_post

audit_pep_resource_registered_pre

audit_pep_resource_registered_post

audit_pep_resource_stat_pre

audit_pep_resource_stat_post

audit_pep_exec_rule_pre

(acPreProcForModifyDataObjMeta)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

10

audit_pep_database_mod_data_obj_meta_pre

audit_pep_database_mod_data_obj_meta_post

audit_pep_exec_rule_pre

(acPostProcForModifyDataObjMeta)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_modified_pre

audit_pep_resource_modified_post

audit_pep_exec_rule_pre

(acPostProcForPut)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_data_obj_put_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_network_agent_stop_pre

audit_pep_network_agent_stop_post

audit_pep_database_close_pre

audit_pep_database_close_post

11

iput (1GiB large file)

When receiving an iput request of a large file (by default, 32MiB or larger), the server authenticates the incoming

request, initiates a database connection, checks permissions, registers a zero length file as placeholder, receives and

writes the incoming parallel file transfer to disk piece by piece, updates the registered file in the catalog, and checks

quota usage.

978 dynamic PEPs + 44 static PEPs

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_database_open_pre

audit_pep_database_open_post

audit_pep_exec_rule_pre

(acAclPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acChkHostAccessControl)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acSetPublicUserPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acPreConnect)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_network_agent_start_pre

audit_pep_network_agent_start_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_request_pre

audit_pep_auth_agent_auth_request_pre

audit_pep_auth_agent_auth_request_post

audit_pep_auth_request_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_auth_response_pre

audit_pep_auth_agent_auth_response_pre

audit_pep_database_check_auth_pre

audit_pep_database_check_auth_post

audit_pep_auth_agent_auth_response_post

audit_pep_auth_response_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_obj_stat_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_obj_stat_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_obj_stat_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_obj_stat_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_data_obj_put_pre

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acSetRescSchemeForCreate)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acRescQuotaPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_resolve_hierarchy_pre

audit_pep_resource_resolve_hierarchy_post

audit_pep_database_gen_query_access_control_setup_pre

audit_pep_database_gen_query_access_control_setup_post

audit_pep_database_gen_query_pre

audit_pep_database_get_rcs_pre

audit_pep_database_get_rcs_post

audit_pep_database_gen_query_post

audit_pep_exec_rule_pre

(acSetRescSchemeForCreate)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acSetVaultPathPolicy)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_create_pre

audit_pep_resource_create_post

audit_pep_database_reg_data_obj_pre

audit_pep_database_reg_data_obj_post

audit_pep_resource_registered_pre

audit_pep_resource_registered_post

audit_pep_exec_rule_pre

(acSetNumThreads)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_microservice_pre

12

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_open_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_pre

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_lseek_post

audit_pep_resource_open_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_open_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_open_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_resource_write_pre

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_pre

audit_pep_resource_lseek_post

audit_pep_resource_write_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_open_post

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_open_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_lseek_post

audit_pep_resource_open_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_open_post

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_pre

audit_pep_exec_rule_post

audit_pep_resource_lseek_post

audit_pep_resource_open_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_open_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_open_post

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_open_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_post

audit_pep_exec_rule_post

audit_pep_resource_write_pre

audit_pep_resource_open_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_open_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_open_post

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_open_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_resource_lseek_pre

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

13

audit_pep_resource_lseek_post

audit_pep_exec_rule_post

audit_pep_resource_open_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_open_post

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPreProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_resource_lseek_pre

audit_pep_exec_rule_post

audit_pep_resource_lseek_post

audit_pep_resource_open_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_open_post

audit_pep_resource_lseek_pre

audit_pep_resource_lseek_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

14

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

15

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_write_post

audit_pep_resource_write_pre

audit_pep_resource_write_post

audit_pep_exec_rule_pre

(acPostProcForServerPortal)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_opr_complete_pre

audit_pep_resource_close_pre

audit_pep_resource_close_post

audit_pep_resource_stat_pre

audit_pep_resource_stat_post

audit_pep_exec_rule_pre

(acPreProcForModifyDataObjMeta)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_database_mod_data_obj_meta_pre

audit_pep_database_mod_data_obj_meta_post

audit_pep_exec_rule_pre

(acPostProcForModifyDataObjMeta)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_resource_modified_pre

audit_pep_resource_modified_post

audit_pep_exec_rule_pre

(acPostProcForPut)

audit_pep_exec_microservice_pre

audit_pep_exec_microservice_post

audit_pep_exec_rule_post

audit_pep_opr_complete_post

audit_pep_network_write_body_pre

audit_pep_network_write_header_pre

audit_pep_network_write_header_post

audit_pep_network_write_body_post

audit_pep_data_obj_put_post

audit_pep_auth_agent_start_pre

audit_pep_auth_agent_start_post

audit_pep_network_read_header_pre

audit_pep_network_read_header_post

audit_pep_network_read_body_pre

audit_pep_network_read_body_post

audit_pep_network_agent_stop_pre

audit_pep_network_agent_stop_post

audit_pep_database_close_pre

audit_pep_database_close_post

16

VISUAL DIFFERENCE OF ireg AND iput

Once a full audit of the iCommands are readily available, it becomes clear that cursory understandings of internal

iRODS functionality can be interrogated. One of these unexamined understandings may have been the relationship

of ireg with iput. Figure 1 compares the two and shows that an ireg is a subset of an iput (permissions are checked

and the data is transferred before the registration into the catalog).

Figure 1. The ireg PEPs are a subset of the iput PEPs

17

AGGREGATE DISPLAY OF AMQP MESSAGES

Since every client connection and every operation within the server can be audited, it is useful to visualize and

quantify this activity. The following initial dashboard data was generated by a small script that moved files around

in an iRODS 4.2 Zone consisting of two servers.

The pipeline (Figure 2) consists of a connection between iRODS and ActiveMQ (or Apollo) and then configuring the

Elastic Stack (Logstash, Elasticsearch, and Kibana) to pull the messages and chart them.

Figure 2. AMQP data pipeline from iRODS to Kibana

Shown in Figure 3 are Connections, Unique Users, Bytes Written, Bytes Read (all per minute, and per server).

Additionally, aggregate Top Client IPs and Top Users are displayed across the entire Zone.

Figure 3. Initial Kibana dashboard using data from the iRODS Audit AMQP rule engine plugin

18

CONCLUSION

iRODS 4.2 represents a significant effort towards providing more integration-friendly functionality for distributed

policy-based data management. iRODS 4.2 can now be a part of enterprise-quality metrics gathering and reporting.

This example has shown only a basic AMQP message bus, but with the pluggable rule engine, multiple plugin

instances can be run concurrently and emit onto targeted topics or queues. This allows for different queries and

assumptions to be tested on live data without getting in the way of the iRODS servers themselves.

By default, the audit plugin is configured to use a queue (store-and-forward) to guarantee that no messages are lost,

but it can easily be configured to use a topic or topics which would allow for a broadcast style of messaging if multiple

servers are needed to do different analyses on the same messages.

The AMQP messages themselves can be directed to other types of reporting or indexing technology as well. A greater

goal of iRODS 4.2 is to allow external services to react to different types of activity within an iRODS deployment.

When a file is created or updated, a message could be sent to an indexing server which could then retrieve the full

text of the data object within iRODS and produce and maintain a full-text index.

The AMQP audit plugin is a powerful new addition to the iRODS technology platform and should dramatically aid

in the automation and instrumentation of complex data grids.

19

20

SPEED RESEARCH DISCOVERYUSE CASE

Highlights
Comprehensive technical computing
storage and data management architecture

HGST Active Archive System

• Simple to Deploy – Power and network
connections are all you need

• Extreme Scale – Increase capacity and
performance in line with data growth

• Highest Resiliency – up to 15 nines data
durability, with the ability to survive
a data center outage in in 3-geo-
configuration

• Enterprise Security – end-to-end
encryption security for in-flight and data
at-rest protection

• Excellent TCO – Low acquisition cost,
power/TB, high capacity and density

Panasas ActiveStor

• Lightning-fast response time and parallel
access for massive throughput

• Scales to 12PB and 150GB/s or 1.4M IOPS

iRODS Data Management Software

• Rules-based open source software

• Workflow automation with rules engine

• Easy data discovery with metadata
catalog

• Rules-based storage tiering for efficiency

The rate of progress in life sciences research is accelerating exponentially leading to
important advances in healthcare, agriculture, climate science and more, but those advances
also create a mountain of data. IT managers supporting these efforts are being challenged
to provide researchers the right solution that will accelerate their work. Complex simulations
can take days or weeks to run. When simulations take longer, discoveries are delayed slowing
analysis and ultimately the commercialization of the findings. Faster simulations allow more
complex models to be run – leading to improved discoveries through bioinformatics.

A key to accelerating life science application performance is implementing a high
performance computing (HPC) infrastructure that eliminates computing and storage
bottlenecks, enables better collaboration, and preserves simplicity so researchers focus their
efforts on discovery.

Conventional Storage is Slowing the Progress
Storage performance and data management are major causes of computing bottlenecks. The
volume and type of data generated by modern lab equipment along with varying application
and workflow requirements, makes implementing the right solution all the more challenging.
In some cases, data is generated in one place and kept there, while other times the data
is generated by many researchers around the world whose results and expertise must be
pooled together to achieve the biggest benefit. Furthermore, HPC environments place special
demands on storage with compute clusters that can have hundreds of nodes and thousands
of cores working in parallel. Technical computing applications tend to be I/O bound with large
numbers of sequential and random rapid read/write operations that can exhaust conventional
storage, resulting in workflow bottlenecks, costly islands of storage, increased management
effort, and longer time-to-discovery. A better approach is needed.

Eliminate Storage Performance Bottlenecks
with Parallel Access
Panasas has an advanced performance scale-out NAS solution called ActiveStor that is
designed to maximize mixed workload performance in HPC environments. Based on a fifth-
generation architecture and parallel file system, application clients have simultaneous fast
direct parallel access to large and growing datasets, avoiding the need to copy datasets
locally to the compute cluster prior to processing. Direct parallel data access is also
important because in the case of genomics, while sequencers often generate data in single
streams, analysis of sequencer data can be done in parallel with many clients reading and
writing directly to storage. In addition, up to 90% of metadata-related operations happen
outside the data path, minimizing data access impact, resulting in faster workflows.

Speed Research Discovery
with Comprehensive Storage
and Data Management

21

Object Storage for Massive Data Growth and Global Collaboration
Built using next generation object storage technology, the HGST Active Archive System enables research organizations to help cost-
effectively manage enormous data growth. Serving as the capacity optimized secondary archive tier (Figure 1), the system’s industry leading
durability and data integrity makes it ideal for long-term data preservation. The system is simple to deploy and manage and can be easily
scaled over time. IT management overhead is minimized with automated self-healing and proactive data integrity checks. Deployed in
3-site-geospread configuration, data is efficiently spread across three sites making it ideal for collaboration across distributed researchers.
Integration with HPC workflows is easy using iRODS and its S3 resource server plugin.

Data Management at Scale in a Distributed Environment
Data-intensive technical computing applications such as in life sciences, require efficient, secure and cost effective data management in
a wide-area distributed environment. Datasets are often shared by a global community of researchers that need to easily find and transfer
subsets of data to a local or remote resource such as a private or public cloud for further processing. Open source data management
software called iRODS (Integrated Rule-Oriented Data System) is increasingly used in a variety of technical computing workflows.

iRODS virtualizes data storage resources by putting a unified namespace on files regardless of where they are located, making them appear
to the user as one project. Data discovery is made easy using a metadata catalog that describes every file, every directory, and every storage
resource in the iRODS data grid, including federated grids (Figure 1). Data workflows can be automated with a rules engine that permits
any action to be initiated by any trigger on any server or client in the grid. Collaboration is made secure and easy with configurable user
authentication and SSL, users need only to be logged in to their home grid to access data on a remote grid. iRODs also helps control costs
by allowing data to be aligned to the right storage technology through rules-based tiering. For instance, the majority of data can be stored
on a capacity optimized object storage active archive tier and automatically moved to the high-performance scale-out file tier – significantly
reducing CapEx.

USE CASE

UC10-Speed-Research-Discovery-EN-US-0616-01

© 2016 Western Digital Corporation or its affiliates. Produced 6/16.

Western Digital and the HGST logo are registered trademarks or trademarks of Western Digital Corporation or its affiliates in the U.S. and/or other countries. Panasas, the Panasas logo
ActiveStor and DirectFlow are registered trademarks or trademarks of Panasas, Inc.All other marks that may be mentioned herein are the property of their respective owners. References
in this publication to HGST-brand products, programs, or services do not imply that they will be made available in all countries. Product specifications provided are sample specifications
and do not constitute a warranty. Actual specifications for unique part numbers may vary. As used for storage capacity, one gigabyte (GB) = one billion bytes, one terabyte (TB) = 1,000GB
(one trillion bytes), and one petabyte (PB) = 1,000TB (one quadrillion bytes). Total accessible capacity varies depending on operating environment. Please visit the Support section of our
website, www.hgst.com/support/systems-support, for additional information on product specifications. Pictures shown may vary from actual products.

SPEED RESEARCH DISCOVERYUSE CASE

Figure 1. Life sciences and HPC storage architecture example with iRODS federated data grids

HGST Active Archive System
GEO1 GEO2 GEO3

Life Sciences / HPC Storage and Data Managment Architecture

10GE / 40GE Network

Processing Cluster Panasas ActivStor System

iRODS
Resource

Server

iRODS
Resource

Server + S3 plugin

Microscope

Input
Modality

Workstations with
Local Storage

Squencer

10
G

E
/ 4

0
G

E
N

et
w

or
k

Local Users

Remote Users

} Primary
Performance

Tier

Tape
Library

Nearline
NAS

} Secondary
Archive

Tier

iRODS Federated Zone 2

iRODS Federated Zone 1

iRODS Federated Zone 3

Learn more about HGST Active Archive
System at www.hgst.com/activearchive

Learn more about Panasas ActivStor at
www.panasas.com

Learn more about iRODS software at
www.irods.org

22

http://www.hgst.com/support/systems-support
http:// www.hgst.com/activearchive
http://www.panasas.com
http://www.irods.org

iRODS UGM 2016, June 8-9, 2016, Chapel Hill, NC.
Copyright 2016 The Trustees of Purdue University.

Integrating HUBzero and iRODS: Geospatial Data
Management for Collaborative Scientific Research

Rajesh Kalyanam
Purdue University

rkalyana@purdue.edu

Robert A. Campbell
Purdue University

rcampbel@purdue.edu

Samuel P. Wilson
Purdue University

spwilson@purdue.edu

Pascal Meunier
Purdue University

pmeunier@purdue.edu

Lan Zhao
Purdue University

lanzhao@purdue.edu

Elizabett A. Hillery
Purdue University

eahillery@purdue.edu

Carol Song
Purdue University

carolxsong@purdue.edu

ABSTRACT

Geospatial data is now increasingly used with tools in diverse fields such as agronomy, hydrology and sociology to
gain a better understanding of scientific data. Funded by the NSF DIBBS program, the GABBS project seeks to
create reusable building blocks aiding researchers in adding geospatial data processing, visualization and curation to
their tools. GABBS leverages the HUBzero cyberinfrastructure platform and iRODS to build a web-based
collaborative research platform with enhanced geospatial capabilities. HUBzero is unique in its availability of a
rapid tool development kit that simplifies web-enabling existing tools. Its support for dataset DOI association
enables citable tool results. In short, it provides a seamless path from data collection, to simulation and publication
and can benefit from iRODS data management at each step. Scientific tools often require and generate metadata
with their outputs. Given the structured nature of geospatial data, automatic metadata capture is vital in avoiding
repetitive work. iRODS microservices enable this automation of data processing, metadata capture and indexing for
searchability. They also allow for similar offline ingestion of external research data. The iRODS FUSE filesystem
mounts directly onto the hub, enabling tools to refer to local file paths, simplifying development. In this paper we
discuss this work of integrating iRODS with HUBzero in the GABBS project and share our experience and lessons
learned from this endeavor.

Keywords

Cyberinfrastructure, geospatial data, collaborative research.

INTRODUCTION

Researchers in the agronomy, hydrology and climate sciences fields are increasingly converging to collaborate on
projects that leverage their combined expertise. In addition to originating from diverse fields, they are typically
distributed globally and often have to share data and analysis tools with each other. For instance, the recent projects,
DriNet [1], Geoshare [2], and U2U [3,4] have involved researchers from the agricultural, climate sciences,
economics, hydrology fields and more, studying the effects of climate change on crop yields and drought prediction.
Because of the distributed nature of collaborators, part of the focus in such projects is then justifiably placed on
building a cyberinfrastructure platform enabling researchers to collaborate, contribute data and tools and support
basic social media interaction. Rather than mainly being a simple data repository that users can upload to or
download data from, these platforms need to support an intuitive interface for exploring the data, support a seamless
integration of processing and visualization tools with the data and finally enable the curation of data to be used in

23

scientific publications. Having all these capabilities on a single web-accessible platform saves collaborators from the
effort of having to obtain and install these various tools on their local machines or handle data transfer between each
of these steps. This end-to-end pipeline involving data collection, discovery, analysis, and publication can benefit
from a robust data management system that provides several client libraries for ease of integration into the various
components of a cyberinfrastructure platform.

Geospatial data often plays an important role in these collaborative efforts. Global satellite and climate data can aid
in better predictions of crop yields, droughts and water quality. For instance, the percentage of snow coverage on the
ground in a particular year affects the sowing schedule and subsequently, the number of days that the crop can grow
before the next harvest. This is directly correlated to the crop yields. Research models are now being built to take
these additional factors into account to improve their accuracy, making access to geospatial data vital to such
analysis. However, the scientists collecting and processing the geospatial data are often different from the users
(agronomists, for example) of such data. There is a need to make the relevant geospatial data easy to discover,
visualize and transform. Visualizing geospatial data provides both a quick way to verify that it is from the region of
interest, and an intuitive understanding of the correlation between data from disparate domains when viewed in
conjunction with data such as crop yields. Thus, there is a need to augment the data storage with specialized
processing that can support such operations on data.

The GABBS (Geospatial Analysis Building Blocks) project aims to support collaborative research involving
geospatial data by creating the necessary reusable pieces that such efforts can utilize. In particular, this includes
geospatial data management, automatic metadata extraction, geo-located search, geospatial data visualization tools
and general-purpose map development APIs. This would make it possible for new collaborative efforts to use these
building blocks rather than start from scratch. The GABBS building blocks are intended for installation on top of the
open-source HUBzero cyberinfrastructure platform [5]. HUBzero, in addition to enabling user and community
management, supports rapid tool development using its Rappture tool development kit. This makes it possible to
quickly wrap a graphical user interface around scientific tools and deploy them onto a hub for use by other members
of the hub. In the GABBS project, Rappture was extended to allow for map and geospatial visualization elements to
be added to tools.

This paper describes our efforts towards building a collaborative research platform by integrating iRODS data
management with HUBzero with special focus on geospatial data in support of the GABBS project goals.

HUBZERO PLATFORM

The HUBzero cyberinfrastructure platform grew out of efforts to create a general-purpose software platform that can
be used to build powerful websites termed hubs that can be easily customized to suit the needs of a particular
domain. The HUBzero Content Management System (CMS) enables users to create project groups, articles, blog
entries and discussion groups. However, a primary focus of HUBzero has also been to enable collaborative scientific
research. Users can contribute datasets and tools to the hub and create citable resources (with DOIs) that can be
included in scientific publications. Such citable resources can range from datasets to scientific tools that can be run
on the hub, leading to reproducible research. HUBzero was originally created at Purdue University in conjunction
with the Network for Computational Nanotechnology (NCN) in support of nanoHUB [6], a platform for students
and researchers alike to contribute, explore and use various modeling, visualization and simulation tools for
nanotechnology. Faculty and researchers in several universities have successfully adopted nanoHUB for their
nanotechnology research and education needs. HUBzero has grown in the past several years to support hubs for a
diverse range of domains including, pharmaceuticals, cancer research, earthquake simulation, climate modeling and
several others.

The primary collaboration space on a hub is a project where access is restricted to the members of that project.
Projects provide a file management space where users can upload files, which are then available to all project
members. Project files can then be selected to be included in publications with an associated DOI. However, project
files provide limited processing and visualization capabilities. HUBzero by default provides a basic annotation

24

interface, allowing metadata to be attached to files. Similarly, basic file types like images, PDFs and text files can be
previewed to explore their contents.

One of the key factors enabling scientific research on a hub is the ability to create and deploy tools that can leverage
high performance computing resources to submit simulation jobs. The Rappture tool development kit provides
common GUI elements like dropdown lists, input boxes, plots and image viewers that can be composed together in a
sandbox environment. The Rappture API (available in several programming languages) supports event handling on
these elements in addition to input and output processing. Legacy scientific code can utilize this toolkit to add GUI
elements that both simplify tool usage and add value via intuitive output visualizations. In addition to Rappture-
based tools, scientific tools written in a variety of languages can be deployed onto a hub with minimal changes to
ensure that the tool can run in the hub’s execution environment. All hub tools are run in OpenVZ containers with
VNC support and can be accessed through a web browser. This helps secure the user’s tool session while restricting
the resources available to the tool. These containers are designed to disallow arbitrary network connections and
provide external data access via mounted file-systems. However, the primary input and output source for hub tools is
typically the user’s home directory on the hub. A file transfer utility is provided that enables file transfer between
the user’s home directory on the hub and their local desktop. This severely restricts the sizes of files that can be used
with such tools. Users requiring more storage have to go through the process of requesting additional storage on
their hub file space. Similarly, the project’s file space is not directly linked to hub tools, requiring users to transfer
files between their hub file space and their projects to enable sharing of tool results. Our work integrating iRODS
with HUBzero is intended to overcome these shortcomings by providing an easily extensible, central storage system
that can be accessed seamlessly in both the project space and hub tools.

THE GABBS PROJECT

The GABBS project was funded under the NSF DIBBS (Data Infrastructure Building Blocks) initiative that seeks to
combine data-centric capabilities and services with cyberinfrastructure to foster collaborative scientific research.
GABBS focuses on the task of simplifying the integration of geospatial data into domains that have not traditionally
dealt with such data. The intent is to provide reusable (and easily accessible) blocks that support geospatial data
processing, visualization, search and map-enabling locative data. As the project progresses, various GABBS
infrastructure, components and tools are hosted on a production hub, i.e., MyGeoHub (http://mygeohub.org), and
accessible publicly. Examples of GABBS-enabled tools include the MultiSpec and GeoBuilder tools.

The MultiSpec desktop tool that supports the visualization and processing of a large range of geospatial formats was
deployed as a hub tool, allowing web access to a tool that would have otherwise required local installation.
MultiSpec already had a few thousand users prior to being deployed onto MyGeoHub. It is expected that the
simplified web-access will attract more users in the future. The GeoBuilder tool that serves as proof-of-concept of
the new geospatial Rappture APIs was similarly deployed onto the hub. This tool demonstrates how a hub user can
use the new Rappture map API and widgets to quickly construct a tool that provides a choice of base map layers and
the ability to overlay locative tabular data on the base map. General-purpose options can be included for various
map operations including, toggling zoom levels, filtering the displayed tabular data, selecting fields to be displayed
and managing layer opacity. An open-source Python mapping library (PyMapLib) based on QGIS was also
developed for tools requiring more complex geospatial capabilities, for instance, managing tiled layers, simple
geospatial processing, value inspection and style customization. This mapping library is independent of HUBzero
(unlike Rappture) and can thus have broader impact outside of the hub environment.

The central piece that connects all of these capabilities together is the ability to better manage geospatial data,
making it seamlessly available to all the other GABBS components. This includes, automatic metadata extraction
that can inform the user of useful details about the data, on-demand visualization that provides users with a quick
overview of the data, data services enabling inter-operability with external applications and geospatial search that
allows users to employ general-purpose keyword and bounding box searches to discover relevant data. The rest of
this paper will describe how integrating iRODS with HUBzero allows us to provide these data capabilities while
enabling a straightforward integration with hub tools.

25

IRODS IN A HUB

There are two data-intensive components of a hub that provide natural integration points for iRODS. First, the hub
projects file space where users can contribute and share datasets and, second, the input source and output destination
for hub tools. As mentioned previously, rather than just having a data repository supporting upload and download,
our intent is to allow users to discover, explore, visualize and process the data. This involves extracting metadata
enabling search, and converting data to a form that enables visualization using general-purpose mapping libraries.
Locating these operations as close to the data source as possible improves the efficiency as well as distribution by
simplifying packaging. Our integration of these capabilities into iRODS is described next. The overall system design
is illustrated in Figure 1.

Figure 1. System Design

iRODS Filesystem Mounts

The hub projects file space is managed by the HUBzero CMS, written in PHP. One of the design considerations was
potential future support for various file management software packages in this space, including Dropbox, Google
Drive and Globus. HUBzero by default provides a local Git repository for each project for version-controlled
storage. As a general-purpose solution, the PHP Flysystem adapter was employed to support these different storage

26

systems. Rather than develop an iRODS Flysystem adapter from scratch, it was decided to use Flysystem’s Local
Filesystem adapter to manage iRODS collections mounted onto the hub webserver’s filesystem. The iRODS FUSE
client was used to mount iRODS collections owned by a single service account onto the hub webserver. Each hub
project has its own top-level collection created when the project is created. Access control is then inherited from hub
project membership. The hub project files user interface is designed to only allow access to files in that project’s
collection.

One of the shortcomings identified before is that datasets contributed to the project file space are not directly
available to hub tools. To overcome this, the hub middleware code responsible for starting tool containers was
modified to mount the projects file space in tool containers. Rather than separately FUSE mount the iRODS
collections into each container, a bind mount is used to mount some part of the iRODS mount path to each tool
container. In particular, only the folders corresponding to the projects that the current user is a member of are
mounted into any tool session for that user. The project collections share the same name as the project, making such
filtering straightforward. The availability of the project file space in a tool container session solves the issue of
enabling project files as both input sources and output destinations for tools. More significantly, a tool developer
does not need to code anything specific to leverage this; a tool can directly reference the local file path (in the
container filesystem) where the bind mount has been created. This ability to maintain a single data repository linked
to hub projects that can also function as the data repository for hub tools greatly simplifies data management in a
hub, enabling a seamless link from data collection, sharing, processing and eventual publication.

Specialized Data Processing in iRODS

In order to make the most of the geospatial data managed in the hub, the iRODS storage needs to be augmented in
support of metadata extraction, indexing for search and visualization. We accomplish this by attaching processing
procedures via iRODS microservices. This has several advantages. First, the processing is located as close as
possible to the data source, avoiding the need for data transfer. Second, these procedures can be packaged and easily
installed via iRODS support for pluggable microservices. Finally, having these microservices triggered via iRODS
rules releases tool developers from the burden of ensuring that tool outputs have sufficient metadata captured and
are queryable. There are three microservices that add these capabilities to our iRODS storage and are explained
briefly below.

Geospatial Metadata Extraction

The geospatial metadata extraction microservice is set to run whenever a new file is added to iRODS storage by
attaching it to the acPostProcForPut event. GDAL C++ APIs are used to process the newly uploaded file to extract
metadata from both raster and vector files. In particular, the title (if any), data variables, and history (if any) are
extracted and stored as iRODS metadata AVU triples for the file object. In addition, the geospatial bounds of the file
are extracted and converted into Lat-Long coordinates. The Dublin-core metadata schema is used to manage file
metadata, restricting metadata extraction to the 15 primary Dublin Core Metadata Initiative (DCMI) fields. It is to be
noted that most tools often attach useful metadata to their outputs. Past experience suggests that users are often
reluctant to update file metadata if there is no pre-defined schema or if there are too many required fields.
Restricting metadata to the 15 DCMI fields and attempting to automatically extract as much metadata as possible
allows us to overcome these issues.

Metadata Indexing

Metadata extracted from files is also indexed into Apache Solr to enable subsequent search for files. The
microservice responsible for indexing file metadata constructs an XML document from the iRODS AVU triples and
uses cURL to POST this data to a remote Solr server. While this microservice is executed in conjunction with the
microservice extracting metadata, a separate microservice is made available to handle user modifications from the
project files web front-end. This microservice allows a set of AVU triples to be provided as input and bulk updates
both the iRODS file metadata as well as the Solr index. An iRODS rule can be used to execute this microservice on

27

demand from the HUBzero CMS. The Solr schema is designed to index all text fields into a single searchable field,
allowing for file searches to conduct a simple keyword search across all fields. Any extracted geospatial bounds are
indexed in a separate coverage field against which intersection queries can be conducted, enabling geospatial search
from the hub. A bounding box can be drawn on a world map, and all files with data in that region can be queried and
returned.

Geospatial Preview

The ability to visualize a geospatial file allows users to quickly verify that their tool (with geospatial outputs)
performs as expected. More generally, users exploring geospatial datasets can gain a better picture of the data when
visualized on a map. A color-coded raster map can provide an intuitive understanding of data variation across the
region of interest. Overlaying multiple datasets can often provide new insights into the data. Overlaying a vector
map displaying watershed regions over a raster map with crop yield data can help identify reasons for yield variance
in a particular region. The GeoServer map server is used in GABBS to visualize vector and raster data. Data files are
registered as layers in GeoServer and can be served using either the Web Map Service (WMS) or Web Feature
Service (WFS) protocols and visualized using any mapping library that supports these protocols. The hub project
files web interface, supports the preview of a subset of the raster and vector file formats using the OpenLayers
Javascript library. The process of registering the raw data files into GeoServer is performed by an iRODS
microservice. This microservice is responsible for converting and re-projecting geospatial files into a format handled
by GeoServer. GDAL C++ APIs are used to perform the necessary transformation of the files, while cURL is used
to register these files onto a remote GeoServer via its Representational State Transfer (REST) interface. While file
contents can be POSTed to GeoServer when creating a layer, we instead use NFS to allow GeoServer access to the
transformed files stored in the iRODS vault for efficiency reasons. Since file preview is required on-demand, the
preview microservice is invoked via an iRODS rule from the HUBzero CMS.

CONCLUSION AND FUTURE WORK

By integrating iRODS storage management with the HUBzero cyberinfrastructure framework, the GABBS project
accomplishes the primary goal of the DIBBS program, providing a data-centric cyberinfrastructure platform
fostering collaborative research. The value-added services integrated into iRODS via the three microservices allow
us to accomplish the stated goals of the GABBS project, simplifying the integration of geospatial data with disparate
domains via reusable geospatial file processing, visualization and search capabilities. Going forward, we intend to
expose a data service API that will allow non-hub frameworks to access data stored in iRODS for better
interoperability with other DIBBS projects. We are also exploring the use of iRODS resource federation to enable
distinct hubs to share data and tools with one another. This would further enable researchers from different fields to
readily share expertise without having to replicate resources across their hubs.

ACKNOWLEDGMENTS

This work has been supported in part by the National Science Foundation grant #1261727. We would like to thank
David Benham, Erich Heubner and Shawn Rice from the HUBzero team at Purdue University for their invaluable
assistance in enabling this integration effort. We would also like to thank the iRODS team and the DataNet
Federation Consortium for their continued support through this endeavor.

REFERENCES

[1] Zhao, L., Song, C.: DRINET Hub for Drought Information Synthesis, Modeling and Applications,
https://hubzero.org/resources/433

[2] Villoria, N., Hertel, T.: GEOSHARE: Geospatial Open Source Hosting of Agriculture, Resource &
Environmental Data for Discovery and Decision Making, https://mygeohub.org/resources/723

28

[3] Andresen, J., Jain, A. K., Niyogi, D. S., Alagarswamy, G., Biehl, L., Delamater, P., & Hart, C.: Assessing
the Impact of Climatic Variability and Change on Maize Production in the Midwestern USA. AGU Fall
Meeting Abstracts,Vol. 1, p. 01 (2013)

[4] Haigh, T., Takle, E., Andresen, J., Widhalm, M., Carlton, J.S. & Angel, J.: Mapping the Decision Points
and Climate Information Use of Agricultural Producers Across the US Corn Belt. Climate Risk
Management, 7, 20—30 (2015).

[5] https://hubzero.org/

[6] Klimeck, G., McLennan, M., Brophy, S. P., Adams, G. B., Lundstrom, M. S.: nanoHUB.org: Advancing
Education and Research in Nanotechnology. Computing in Science and Engineering, 10(5), 17—23 (2008)

29

30

An R Package to Access iRODS Directly
Radovan Chytracek Nestlé Institute of

Health Sciences
EPFL Campus, Lausanne, Switzerland

Radovan.Chytracek@rd.nestle.com

Bernhard Sonderegger Nestlé Institute
of Health Sciences

EPFL Campus, Lausanne, Switzerland
Bernhard.Sonderegger@rd.nestle.com

Richard Coté Nestlé Institute of Health
Sciences

EPFL Campus, Lausanne, Switzerland
Richard.Cote@rd.nestle.com

ABSTRACT

The R language is an environment with a large and highly active user community in the field of data science. At

NIHS we have developed the rirods package which allows user-friendly access to irods data objects and metadata

from the R language. Information is passed to the R functions as native R objects (e.g. data-frames) to facilitate

integration with existing R code and to allow data access using standard R constructs.

To maximize performance and maintain a simple architecture, the implementation heavily relies on the iCommands

C++ code adapted for use with Rcpp and R language bindings.

The rirods package has been engineered to have semantics equivalent to the iCommands and can easily be used

as a basis for further customization. At the NIHS we have created an ontology aware package on top of rirods to
ensure consistent metadata annotations and to facilitate query construction.

Keywords

iRODS, R, R-language, iRODS clients, Metadata management

INTRODUCTION

iRODS[1] is a widely used open source data management solution. Some of the main features provided by iRODS are

association of files with structured metadata, virtualization of storage with the convenience of a logical namespace

and policy based automation of data management tasks. In order to take full advantage of metadata for both

discoverability of data and policy enforcement, it is essential that metadata be populated for new files. This can be

accomplished in different ways, depending on whether the metadata can be extracted from the file itself or determined

from the context of the file creation (user, location, etc.). The most generic solution is to use clients which are aware

of the metadata layer and are able to both populate and query it.

R[2] is a popular language and framework to perform statistical analysis on data. Scientists working in R require

access to their data of interest, which may be available from a number of sources using differing technologies. There

are many solutions in R for accessing structured data from databases as well as dedicated packages to read and

write specific file formats, however there has been a dearth of solutions to access iRODS. The existing REST-based

r-irodsclient[3] depends on a REST service and does not allow discovery of files via metadata queries.

We have built an integration solution whose aim is to allow users within R to work efficiently and comfortably,

following the R paradigms they are familiar with. Standard R objects are accepted and returned. Furthermore, the

design minimizes dependency on tools beyond iRODS itself in order to both limit complexity of deployment and to
benefit from the performance optimizations present in the core iRODS.

iRODS UGM 2016 June 8-9, 2016, Chapel Hill, NC
[Copyright. All rights belong to Nestec Ltd, Vevey, Switzerland. ©c [2016], Nestec Ltd]

31

R Paradigms used
Data frames

R is a language primarily targeted towards statistical analyses and is therefore well suited to handling tabular or
matrix data. Various data structures exist to hold this data, but one of the most commonly used ones is the data
frame. Data frames can be described as lists of named vectors of equal length. The vectors may hold elements of
different types and a special vector of row names may be defined. R users are generally familiar with the manipulation
of data frames. Wherever possible we accept data frames as input and return data frames as output.

Named arguments

R functions allow arguments to be entered using either positional syntax, named syntax or even a mixture of both.
We have attempted to provide a consistent naming of arguments across different icommand-style functions.

Design Choices

A series of design choices were made to meet our specific needs. However these choices make sense in a variety of
deployment scenarios.

First of all a conscious choice was made to use the iRODS C++ client API libraries rather than incorporating
an additional component such as a REST API. Such a component introduces a performance bottleneck (all traffic is
routed through the REST server rather than having clients connect directly to the appropriate resource server), adds
to the complexity of deployment and constitutes an additional point of failure.

The Jargon api[6] was investigated as a possible solution, but C++ was preferred mainly because it integrates much
more smoothly with R. This does mean however, that we cannot support Microsoft Windows clients; a drawback not
considered applicable in our use cases.

Many of the iCommands selected for implementation have been simplified in order to reduce the number of param-

eters they can receive. Most notably, all commands returning file and collection listings were simplified to return a
single format data frame, generated through a general query. This data frame can be filtered down in R to select
columns (or rows) of interest. Having a consistent output promotes code reuse in R.

Authentication in R poses an issue as R is often run in batch mode and providing passwords in such a use case
without placing them in plain text within a password file or even within the script itself is insecure. Furthermore
secure capture of the password in an interactive setting is complicated by the differences between standard R and
R-Studio environments. In the end, we ask our users to perform authentication using iinit outside of R and use the
same .irodsA file as the iCommands do. This has the added advantage of further maximizing code reuse from the
iCommands. We do provide an insecure iinit function in R for use cases which do not allow access to iinit in the
environment running R.

The iCommands implementation of the imeta command can be run as a subshell. This functionality has been
removed since R allows for much more flexible scripting of complex imeta manipulation.

Due to the absence of a stable general purpose C++ API for much of the functionality, we have hooked directly
into the iCommands code, simply handling argument parsing and output generation. The notable exception to this
was ils which was re-implemented using general query as stated above.

The C++ layer is intentionally kept simple and close to iCommands code. Specific R features such as named
arguments and handling of data frames as input are implemented in the R layer of the package. It is trivial to
customize functionality to meet site specific requirements such as metadata related functions with named arguments
based on specific metadata schemas as well as metadata validation.

32

RESULTS
Functionality

iRODS offers many functions in its iCommands suite including advanced file and metadata handling commands as

well as various administration commands. For R integration we did not consider reimplementing the whole spectrum

of available functionality. We have instead implemented the minimum viable set with strong focus on the file and

metadata handling in order to enable data scientists to work with iRODS seamlessly.

Selected features of iCommands
• iRODS connect/disconnect functions

• File level operations

• Metadata level operations

• Querying iRODS for files and metadata

iRODS Connection

R integration requires to establish/close iRODS connections and allow keeping them open during the program

execution. Unlike interactive iCommands sessions, R sessions require batch style execution where no users are

available to hanfle login/password handshake. This has impacts on the current implementation, please see the Design

Choices section for reference. The basic set of iRODS connection related functions is:

(iinit) iexit ienv

The iinit implementation is provided for convenience. No attempt has been made to secure password entry.

File and Collection Manipulation

We have selected only some of the file related functions for R integration:

ils iget iput ipwd

icd imkdir irm icp

We have implemented the atomic iput with metadata and acls which has been available in iRODS since version

4.1.0. The ireg command has been left out in the current implementation.

Metadata Functions

The nature of R programs does not follow the original design of the imeta command and its sub-shell commands. We

have decided to split it into individual functions instead. More details of this implementation are in the Implementation

section.

imeta_add(w) imeta_ls(w) imeta_cp

imeta_rm(w) imeta_mod imeta_set

(w) The wildcarded arguments for these commands have been implemented

Queries

rirods implements the metadata query function. The iCommands command iquery has not been implemented.
Instead we have implemented a simplified query function dedicated to metadata queries which we have called isearch.

imeta_qu isearch

33

Implementation

The R-package is implemented using Rcpp, which automates many of the details of expanding R functionality

with C++ code. Basic functionality is implemented in C++ by wrapping or modifying iCommands code. Rcpp

autogenerates R wrappers for the C++ functions which can then be customized as needed. This setup is shown in

Figure 1.

C++ Library

R functions

Site Customization R Functions

RCpp

R Calls

iRODS client libraries

Figure 1: R and C++ components of the Rirods package. A dedicated C++ library which wraps/calls/implements

iRODS interaction is accessed using the standard Rcpp mechanism. This library links to the required iRODS client

api libraries. It is simple to implement customizations such as metadata validation and metadata-schema specific

search and annotation functions through an additional R-package (shaded box).

The basic rirods package has been designed to be as generic as possible, while maintaining the usability and syntax

of the original iCommands. We leveraged the extensible nature of R packages to implement an additional package

which has been customized to our local needs and adds controlled vocabulary support. This CustomRods package

is specific to our metadata schemas and standards and is therefore not released. It wraps the functions in the base

rirods package to make them ontology-aware and enforce naming and required metadata conventions. Functions are

defined using named arguments rather than generic data frames. In this context, the function calls are more intuitive

for the user, who can use R tab-completion to quickly see what parameters are mandatory or optional. The method

internals will also validate user input against an ontology file that is deployed along with the localized package. Once

all inputs are validated, the generic data structures required by the base rirods package are constructed and passed

to the low-level functions. We also provide ontology-aware lookup functions to allow users to query for valid metadata

values for a given metadata attribute.

iput <- function(src_path, dest_path, file_type = NA, file_format = NA, software_platform = NA,

author = NA, relates_to = NA, ...,

force = FALSE, progress = FALSE, verbose = FALSE

)

Code 1: CustomRods implementation of iput. Named arguments are available for metadata fields and some
arguments like checksum are not available as defaults are enforced.

The CustomRods call, using named parameters, in much more descriptive than the base rirods call, where all of

34

the named attributes have been collapsed into a single metadata data frame.

iput <- function(src_path, dest_path, data_type = "", force = FALSE,

calculate_checksum = FALSE, checksum = FALSE,

progress = FALSE, verbose = FALSE,

metadata = "", acl = "")

Code 2: rirods implementation of iput.

Run-time initialization

The default initialization pattern for the iCommands is to initialize global run-time variables and all plugins at each

iCommand call. While this is perfectly normal for individual executables, the same pattern cannot be used when

being run from within the R envionment. In this context, we need to initialize the global run-time and plugins only

once and allow their re-use across the complete execution of an R session. In the process of developing the rirods

package, the dynamic linker flags passed on to Rcpp had to be adjusted to a different shared object resolution model.

#include <R.h>

#include <Rinternals.h>

#include <R_ext/Rdynload.h>

#include "irods_client_api_table.hpp"

#include "irods_pack_table.hpp"

void R_init_rods(DllInfo *info) {

/* Register routines, allocate resources. */

// initialize pluggable api table

irods::api_entry_table& api_tbl = irods::get_client_api_table();

irods::pack_entry_table& pk_tbl = irods::get_pack_table();

init_api_table(api_tbl, pk_tbl);

}

Code 3: C++ iRODS shared objects initialization code executed at r-rods package loading time

.onLoad <- function (libpath, pkgname) {

We load irods shared library with global symbol resolution enforced to make sure

that iRODS internal plugins can also resolve symbols from iRODS API library

library.dynam("irods", pkgname, libpath, verbose = TRUE, local = FALSE, now = FALSE)

}

Code 4: iRODS shared objects initialization code executed at r-rods package loading time

Examples

Simplified ils

Our ils implementation returns a data frame with Data name, Collection name, Data path, Data size, Data type,
Create time, Modify time for each file or collection. A generic mechanism to produce the appropriate iRODS general

35

query is used for both ils and isearch. The following example shows a data frame returned from ils.

> library(rirods)

now dyn.load("/home/user/R/x86_64-redhat-linux-gnu-library/3.2/rirods/libs/rirods.so") ...

> ils()

Data_name Collection_name Data_path Data_size Data_type Create_time Modify_time

1 /Zone/Project-1001 -1 C 2014-12-08 11:46:25 2015-05-26 17:56:55

2 /Zone/Project-1002 -1 C 2014-12-04 15:52:08 2015-05-28 14:33:00

3 /Zone/Project-1003 -1 C 2014-12-04 15:52:20 2015-05-28 14:37:26

4 /Zone/Project-1004 -1 C 2014-11-03 13:38:58 2015-06-09 22:34:15

5 /Zone/Project-1005 -1 C 2014-12-04 15:52:22 2015-05-28 14:33:01

6 /Zone/Project-1006 -1 C 2014-12-04 15:52:30 2015-05-28 14:33:02

7 /Zone/Project-1007 -1 C 2016-03-22 16:12:08 2016-03-22 16:12:08

8 /Zone/home -1 C 2014-10-03 15:40:41 2014-10-03 15:40:41

9 /Zone/TEST-123456 -1 C 2015-04-16 14:55:31 2015-04-16 14:55:31

10 /Zone/trash -1 C 2014-10-03 15:40:41 2014-10-03 15:40:41

11 datafile /Zone/ /iRODS/Vault/datafile 17 d 2015-03-13 13:39:47 2015-03-13 13:39:47

#Filtering for files only and a subset of columns.

> df <- ils()

> df[df$Data_type=="d",c("Collection_name","Data_name","Data_size")]

Collection_name Data_name Data_size

11 /NIHSData datafile 17

Code 5: Returning a dataframe from ils and manipulating it.

36

imeta Semantics

The examples below demonstrate the different outputs for different metadata queries. The data format is not uniform

as it is the legacy of the iCommand’s printing of different results based on the type of metadata query.

> # List existing metadata for test.zip

> irods::imeta_ls(type = "d", name = "/DataTest/home/rd/test.zip")

Attribute Value Unit

1 FileType ZIP

2 Purpose Test file Dummy Unit

> irods::imeta_lsw(type = "d", name = "/DataTest/home/rd/test.zip", avu = "P%;T%;z%")

Attribute Value Unit

1 Purpose Test file Dummy Unit

> irods::imeta_add(type = "d", name = "/DataTest/home/rd/test_meta.zip", [TRUNCATED]

[1] 0

> irods::imeta_ls(type = "d", name = "/DataTest/home/rd/test_meta.zip")

Attribute Value Unit

1 NewMetaAttribute NewValue NewUnit

> irods::imeta_mod(src_type = "d", src_name = "/DataTest/home/rd/test_meta.zip", ol [TRUNCATED]

[1] 0

> irods::imeta_ls(type = "d", name = "/DataTest/home/rd/test_meta.zip")

Attribute Value Unit

1 ChangedMetaAttribute ChangedNewValue ChangedNewUnit

> irods::imeta_set(type = "d",

name = "/DataTest/home/rd/test_meta.zip", avu = "ChangedMetaAttribute;SetNewValue")

[1] 0

> irods::imeta_ls(type = "d", name = "/DataTest/home/rd/test_meta.zip")

Attribute Value Unit

1 ChangedMetaAttribute SetNewValue

> irods::imeta_cp(src_type = "d", dst_type = "d", src_name = "/DataTest/home/rd/tes ..." ... [TRUNCATED]

[1] 0

> irods::imeta_ls(type = "d", name = "/DataTest/home/rd/test_meta.zip")

Attribute Value Unit

1 FileType ZIP

2 ChangedMetaAttribute SetNewValue

3 Purpose Test file Dummy Unit

> # Query iRODS objects using metadata

> irods::imeta_qu(src_type = "d", query = "FileType = ZIP")

Collection File

1 /DataTest/home/rd test_meta.zip

2 /DataTest/home/rd test.zip

> irods::imeta_qu(src_type = "C", query = "UserClass = Bravo")

Collection

1 /DataTest/home/rd

Code 6: Usage of imeta subcommands

37

Controlled Vocabulary Wrapper

The CustomRods package uses an .onAttach R hook to parse and load an ontology file written in the Open

Biomedical Ontology (OBO)[7] format and distributed as external data within the package. This file contains a

complete ontology that is used to describe the metadata that is allowed within our local iRods environment. The

ontology object is stored as a session variable for rapid access throughout the R session. To make certain iCommand

functions metadata-aware, we have written helper functions in R to confirm if values are allowed for certain attribute

categories.

buildDataFrame <- function (attribute, value, check_valid_ontology_term=FALSE, term_category=’’){

if (missing(value)){

renurn (data.frame("Attribute" = c(attribute), "Value" = c(NA)))

}

Handle list of values

if (length(value) > 1){

#filter out NA

value <- value[!is.na(value)]

attrs = c()

vals = c()

for (v in value){

if(check_valid_ontology_term){

v = onto_check(v, check_valid_ontology_term, term_category)

}

attrs <- append(attrs, attribute)

vals <- append(vals, v)

}

#return concatenated string of non-null values

return (data.frame("Attribute" = attrs, "Value" = vals))

Handle single value

} else {

#ignore null/NA

if (is.null(value)){

return (data.frame("Attribute" = c(attribute), "Value" = c(NA)))

}

if (is.na(value)){

return (data.frame("Attribute" = c(attribute), "Value" = c(NA)))

}

#quote valid value

if(check_valid_ontology_term){

value = onto_check(value, check_valid_ontology_term, term_category)

}

return (data.frame("Attribute" = c(attribute), "Value" = c(value)))

}

}

38

Code 7: Function to build a dataframe of metadata attributes and values. The check_valid_ontology_term flag

determines whether the value is verified against the ontology

iput <- function(src_path, dest_path, file_type = NA, file_format = NA, software_platform = NA,

author = NA, relates_to = NA,

force = FALSE, progress = FALSE, verbose = FALSE

){

#build df

#ATTENTION, METADATA NAMES NEED TO MATCH META_DATA_ATTR_NAMES IN IRODS

#Fields reuiring ontology check

metadata <- buildDataFrame(’File type’ ,file_type,

TRUE, ’File type’),

metadata <- merge(metadata, buildDataFrame(’File format’,file_format,

TRUE, ’File format’),

all.x=TRUE, all.y=TRUE)

metadata <- merge(metadata, buildDataFrame(’Software platform’, software_platform,

TRUE, ’Software platform’),

all.x=TRUE, all.y=TRUE)

Fields not requiring ontology check

metadata <- merge(metadata, buildDataFrame(’Author’, author), all.x=TRUE, all.y=TRUE)

metadata <- merge(metadata, buildDataFrame(’Relates to’, relates_to), all.x=TRUE, all.y=TRUE)

#remove NA values

metadata <- na.omit(metadata)

if (nrow(metadata) == 0) {

metadata <- NULL

}

return (irods::iput(src_path, dest_path, data_type = "", force, calculate_checksum=TRUE,

checksum=TRUE, progress, verbose, metadata, acl=""))

}

Code 8: CustomRods imlementation of iput with calls to the buildDataFrame function, enforcing ontology checks
where needed.

In some cases, values can be free-text and not ontology-bound. In other cases, only approved values as defined in
the ontology file can be used. The onto_check function is used to validate that a given term value is allowed for an
attribute category. If the user submits a value that is not defined in the ontology, the R script will generate an error
and stop.

CONCLUSION

The rirods package for the R language allows direct connection to iRODS using iCommands-like syntax and code.
In order to integrate well with the R language, R paradigms such as the use of data frames and named arguments
are used.

A functional subset of the iCommands, focussing on file and metadata management, has been implemented as R
functions in the rirods package using Rcpp to bind R functions to their C++ implementations. The R-functions
can be further customized in order to produce site-specific functionality such as metadata validation.

39

Future development

While the package is functional as it is and covers the large majority of data analysis use cases, there is room for

improvement. Future directions we envisage include:

• Transfer of maintenance to the iRODS consortium: This would allow it to be kept in close synchronization

with the iCommands code.

• Streaming and random acces to iRODS files: Currently the package creates a local copy of files when iget is

called. This can involve a large amount of I/O and network traffic. Many dedicated functions exist both in R

and in specific libraries, which read and write from particular file formats. Most of these read from a proxy

object called an R connection object. Implementing such an object for iget and iput would enable streaming

of data directly into R. If in addition the connection object was to support random access, any optimizations

in the dedicated functions to minimize data transfer volumes would be in effect.

• Secure implementation of iinit.

Availability

The rirods package will soon be available on gihub under the iRODS organization https://github.com/irods. The

CustomRods package is not made available as its functionality is not transferable to other instances of iRODS.

ACKNOWLEDGMENTS

We would like to thank Christine Chichester for her support and the data analysts at the Nestlé Institute of Health

Sciences for their valuable time and feedback during the development of the rirods package.

REFERENCES

[1] Arcot Rajasekar, Reagan Moore, Chien-yi Hou, Christopher A. Lee, Richard Marciano, Antoine de Torcy,

Michael Wan, Wayne Schroeder, Sheau-Yen Chen, Lucas Gilbert, Paul Tooby, and Bing Zhu. 2010. iRODS

Primer: Integrated Rule-Oriented Data System. Morgan and Claypool Publishers.

[2] R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. URL http://www.R-project.org/.

[3] https://github.com/irods/r-irodsclient

[4] Eddelbuettel, Dirk (2013) Seamless R and C++ Integration with Rcpp. Springer, New York. ISBN

978-1-4614-6867-7

[5] https://github.com/hadley/devtools

[6] https://github.com/DICE-UNC/jargon

[7] Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck, K., Ireland, A.,

Mungall, C.J., the OBI Consortium, Leontis, N., Rocca-Serra, P., Ruttenberg, A., Sansone, S., Scheuermann,

R.H., Shah, N., Whetzel, P.L., Lewis, S.: The OBO Foundry: coordinated evolution of ontologies to support

biomedical data integration. Nature Biotechnology, 25(11), 1251–1255 (2007)

40

https://github.com/irods
https://github.com/irods/r-irodsclient
https://github.com/hadley/devtools
https://github.com/DICE-UNC/jargon

iRODS UGM 2016, June 8-9, 2016, Chapel Hill, NC.

[Author Retains Copyright. Copyright © 2016 Ton Smeele and Chris Smeele, Utrecht University, The Netherlands]

Davrods, an Apache WebDAV interface to iRODS
Ton Smeele

IT Services, Utrecht University

Heidelberglaan 8, Utrecht,

The Netherlands

a.p.m.smeele@uu.nl

Chris Smeele

IT Services, Utrecht University

Heidelberglaan 8, Utrecht,

The Netherlands

c.j.smeele@uu.nl

ABSTRACT

This paper covers the development and architecture of Davrods, an Apache WebDAV interface to iRODS. Our

university needed a successor to the Webdavis interface that was no longer being maintained. Davrods complies

with WebDAV Class 2 specifications and supports native and PAM authenticated connections to iRODS 4+ data

grids. Our C language based interface connects to iRODS using the iRODS 4.1.8 client library which is backwards

compatible with iRODS 3.3.1. Based on performance tests we have found that Davrods performs at least as well as

its predecessor Webdavis.

Keywords

Research data management, iRODS, WebDAV, Apache mod_dav, client software, infrastructure.

INTRODUCTION

Utrecht University is an internationally prominent, research-led university that carries out fundamental and applied

research across a wide range of academic fields. A high quality research data infrastructure is a precondition to its

research.

Utrecht University aims to facilitate researchers to manage and share their research datasets within and across

disciplines, institutes and country borders via infrastructures based on iRODS data grid technology. Easy access

from researcher workstations to datasets stored in iRODS is achieved through WebDAV, while web portals allow

the researcher to manage metadata and dataset integrity.

Up to and including iRODS 3.3.1, WebDAV connectivity to iRODS has been provided by a component called

Webdavis. The Utrecht University project Davrods aims to develop a successor to Webdavis as a strategy to ensure

long term availability of WebDAV connectivity for its iRODS based infrastructures. In this paper we describe how

the architecture of Davrods supports efficient connectivity to iRODS.

ADVANTAGES OF WEBDAV

WebDAV is short for Web-based Distributed Authoring and Versioning [1]. It is a set of extensions to the HTTP

protocol which allows users to collaboratively edit and manage files on remote web servers.

The WebDAV protocol provides four compelling advantages for connectivity to iRODS.

Supported standard: WebDAV is an Internet Engineering Task Force standard that has been implemented across

widely used software platforms including Linux, Mac OS X and Microsoft Windows.

Connectivity: WebDAV reuses existing internet web access infrastructure over HTTPS and outgoing connections

cross most organizational firewalls without any trouble. Other protocols may involve network firewall changes

before they can be used by researchers.

41

User experience: Access to grid-based data files and collections is conveniently transparent; it follows local

workstation operating system look and feel conventions for network attached storage. Users simply drag-and-drop

data back and forth using their native file manager. Local applications can access grid data without modifications.

Security: The WebDAV service can act as a gateway/stepping stone to the data grid allowing us to expose a

controlled set of iRODS functions to the internet.

DEVELOPMENTS LEADING TO PROJECT DAVRODS

In 2009 Shunde Zhang [2], at the University of Adelaide, released a Java web application called Webdavis
1
 that

enables WebDAV clients to connect to iRODS. Since then Webdavis has been deployed at various iRODS

implementations around the world including Utrecht University’s YOUth project [3]. Unfortunately Zhang moved

on to another position and the Webdavis code is no longer being maintained
2
. The last stable release was issued in

June 2012 and does not support iRODS 4+.

Despite encouraging developments
3
 we lacked a reliable solution for WebDAV connectivity to iRODS4 while we

had an urgent need to upgrade our infrastructure. In October 2015 we concluded that we could not afford to wait any

longer and hence we decided to develop our own WebDAV interface to iRODS using the Apache mod_dav module

as a starting point.

DAVRODS DESIGN GOALS

Based on Utrecht University policies and existing service levels Davrods needs to meet the following five goals:

1. Since our community deploys a variety of platforms Davrods must comply with at least WebDAV Class 2

specifications to support all major client platforms. For example Mac OS X WebDAV clients require a

Class 2 WebDAV server; otherwise write operations are disabled.

2. Performance of Davrods operations must at least match Webdavis to meet existing user expectations.

3. As we have an urgent need for the WebDAV interface, Davrods should leverage existing components to

keep development time short.

4. To enable us to leverage a planned federated authentication infrastructure, Davrods should support PAM as

an iRODS authentication scheme.

5. To maximize its long term use and relevance to the iRODS community at large the software should be

managed and packaged as an open source product.

Webdavis provides additional features beyond WebDAV not used by our university, notably a browser oriented user

interface. In contrast we shall focus Davrods development on our business needs and aim for it to be lightweight: ‘to

do one thing well’.

DAVRODS ARCHITECTURE AND DEVELOPMENT TECHNIQUES

We select Apache HTTPD as the underlying WebDAV server technology because Apache HTTPD has a modular,

extensible architecture [4] and includes a module that serves the WebDAV Class 2 protocol [5]. This allows us to

support all major WebDAV client platforms and save significant development effort. We can benefit from other

Apache modules to enhance Davrods services or customize implementation. The downside of a tight integration is

that we are locked in to Apache technology. Other advantages are that we already deploy Apache as a webserver in

our ResearchIT infrastructure, it is open source software and Apache is one of the most popular webservers on the

1
 https://code.google.com/archive/p/webdavis

2
 A New Zealand initiative currently seeks to refactor this code, see https://github.com/nesi/webdavis

3
 In North Carolina USA the DICE research group develops irods_webdav. An initial release has been cut in

December 2015, see: https://github.com/DICE-UNC/irods-webdav

42

market. To interface with the iRODS server we select the C client library [6] which also leverages the full potential

of the iRODS architecture that includes amongst others advanced data transfer strategies, authentication and

networking options. The iRODS C client library is the reference implementation of the iRODS API protocol. We

develop Davrods in the C language to fit in with the C based Apache and iRODS interfaces.

Architectural overview

Apache HTTPD handles WebDAV requests in a modularized extensible manner.

Figure 1: Davrods provides iRODS-oriented implementations for several Apache HTTPD interfaces

mod_auth_basic is an Apache module that processes HTTP headers to authenticate the client according to the basic

authentication protocol. Davrods is an authentication provider to this module. We opt to use a combination of

connection encryption and basic authentication rather than digest authentication as the latter is considered a less

secure configuration
4
.

mod_dav is the module responsible for handling DAV requests. This module parses and generates the message body

of DAV requests and responses, and contains most of the logic specified by the WebDAV standard. mod_dav allows

for multiple implementations of backend functionalities, called 'DAV providers'.

mod_davrods is a DAV provider that translates storage and property access requests from mod_dav to iRODS API

calls and handles locking requests. In addition it is an authentication provider to mod_auth_basic.

4
 See note on Digest authentication in http://httpd.apache.org/docs/current/mod/mod_auth_digest.html

43

Session management

iRODS connections made by Davrods are strictly tied to the HTTP connection of the corresponding client. A

connection is opened for each new authentication, and is maintained until either the WebDAV client or the HTTPD

server (upon authentication failure or when enforcing KeepAlive restrictions) closes the HTTP connection.

Technically, sessions are bound to the APR memory pool for the corresponding HTTP connection, and the iRODS

disconnect is invoked by the pool's cleanup function.

We noticed that the iRODS server process queues connections upon high concurrent use. Therefore the use of

prolonged open connections would have a negative impact on performance. Our approach ensures that iRODS

server agent allocation time is minimized while still allowing bursts of DAV requests to reuse an open iRODS

connection.

Authentication

Davrods implements a HTTPD basic authentication provider that sets up iRODS connections and performs logins

via either iRODS native authentication or PAM authentication scheme. When HTTP keepalive is used, Davrods

authenticates with iRODS on the first request, and for subsequent requests only when the username changes.

The DAV repository backend

The Davrods DAV repository component contains functionality for traversing iRODS collections, downloading and

uploading data objects, and copying and moving objects.

The DAV property backend

The propdb component of Davrods is responsible for retrieving and storing properties of collections and data objects

(collectively called resources in DAV speak). Currently Davrods supports read operations on DAV properties that

map directly to iRODS rcObjStat() output (information similar to the output of a verbose ils command). This

could be extended to allow DAV clients to access iRODS metadata.

The DAV locking backend

WebDAV Class 2 servers are required to support locking. We considered the following methods to support locking:

 Using the iRODS locking functions

Making use of available locking functions in iRODS would offer interoperability with other iRODS clients.

Unfortunately iRODS locking is incompatible with WebDAV locking: WebDAV allows locking collection

resources, iRODS does not. Collection locks are needed for lock inheritance (with variable depth) and for

gaining exclusive access to a collection's content in a single operation.

 Using iRODS metadata

Storing lock bookkeeping information as metadata on the respective collections and data objects allows multiple

Davrods instances to cooperate and respect each other's locks. However other iRODS clients such as

icommands would not respect these locks. Properly synchronizing lock and unlock actions would involve

multiple metadata operations to iRODS for a lock action on a single data object. We expect that performance

would suffer greatly with this approach.

 Using mod_dav_lock

Apache provides the generic DAV locking module mod_dav_lock which stores locking information in a local

DBM database. mod_dav_lock would not support sharing locking information between Davrods instances.

However, it would provide a well-tested locking solution.

44

Unfortunately there are several issues with mod_dav_lock that prevent us from using it directly: mod_dav_lock

does not expose an interface for querying so called 'lock-null' entries. DAV repository providers depend on this

functionality. Also mod_dav_lock locks resources using DAV URIs, which do not necessarily map to the same

iRODS objects for different users, since the root collection of the DAV may e.g. point to the connected user's

home directory.

Because it came closest to providing an acceptable solution we decided to make a fork of mod_dav_lock. Our

version of mod_dav_lock is integrated into the Davrods module and resolves the issues mentioned above. We have

added a lock-null query feature and we have adapted the provider to use canonical iRODS paths instead of DAV

URIs.

Configuration

The behavior of Davrods is necessarily controlled by two configuration files.

Firstly, Davrods is configured just like other Apache modules using a file located in the Apache configuration

directory (/etc/httpd/conf.d). It follows Apache configuration conventions and it allows setting iRODS

connection parameters such as server location details, default resource and authentication scheme. The

authentication scheme can be set to either native or PAM. Furthermore, for ease of use, Davrods can be configured

to expose only a subtree of the iRODS virtual filesystem to the WebDAV client. Other directives are available to

influence file upload completion behavior and to tune the size of send/receive buffers used for file transfer to/from

iRODS.

Secondly, an irods_environment.json file is required
5
 by the iRODS client library that Davrods depends upon.

This file follows iRODS client configuration conventions. Advanced iRODS protocol options can be configured

here such as parallel data transfer settings, SSL options and parameters that influence backwards compatibility with

iRODS3 grids. Some configuration parameters such as zone name can be defined in both files. In such cases the

definition in the Davrods configuration file takes precedence.

CHALLENGES

Unfortunately the iRODS C client library is not well documented. To discover appropriate library functions we

consult source code including examples from other client implementations such as icommands and Kanki
6
 [7].

Memory management responsibilities related to library function call parameters are not always clear. In those cases

we assume the intended behavior and document our concerns inline.

Our initial development environment is a Linux CentOS 7 platform with Apache 2.4, Apache Portable Runtime

1.4.8 and iRODS 4.1.4. The Davrods binary, dynamically linked against iRODS 4.1.4 client libraries, did not work

in an environment with iRODS 4.1.8 client libraries due to an added dependency on the irods_client_plugins library.

To resolve this issue we had to relink against iRODS 4.1.8 client libraries.

While we expected the original mod_dav_lock code to be stable we discovered (and were able to fix after many

troubleshooting hours) a serious bug that caused lock database corruptions.

5
 We must admit that the iRODS client library version 4.1.8 allowed us to refer to a non-existing file in which case it

would use default values.

6
 https://github.com/ilarik/kanki-irodsclient

45

0

10

20

30

40

50

60

70

80

90

100

Curl PUT
1GB

Curl GET
1GB

Cadaver
PUT 1GB

Cadaver
GET 1GB

Cadaver
PUT

500x2MB

Cadaver
GET

500x2MB

av
er

ag
e

ti
m

e
(s

)

WebDAV file transfer time

Davrods

Webdavis

PRODUCT ASSESSMENT

Support of major client platforms

Davrods passes the Litmus WebDAV server protocol compliance test [8] which asserts that our WebDAV server

meets the WebDAV Class 2 specifications according to IETF RFC2518. Compatibility tests have been executed on

target platforms using popular WebDAV clients: on Linux we have executed tests using davfs2, cadaver, and curl;

on Mac OS X we have tested using Finder; on Windows 7 we have tested with NetDrive and Cyberduck.

Performance benchmark

We have compared performance of our Davrods based configuration with our old Webdavis based configuration to

test if and how the configuration change would impact user experience.

One web application server is configured with Apache HTTPD, Tomcat and Webdavis on a RHEL 6 system. This

configuration mimics our old web application server environment. Another web application server in the same local

network is configured with Apache HTTPD and Davrods on a CentOS 7.2 system to mimic our new web server

environment. Both web servers access the same iRODS server via the local network using the native authentication

scheme. The iRODS server is iRODS3.3 on a RHEL 6 system with a local ICAT database. All hosts are virtual

servers just like our production environments. We compensate for interference by other activities by running the

tests repeatedly in various time slots.

Each of our tests comprises a single WebDAV session. During a session we either transfer a single 1 GB file or we

transfer 500 files of 2 MB each using cadaver as a WebDAV client. During a session we either upload or download

files, we do not mix them. We also test uploading and downloading a 1GB file using curl as an alternative WebDAV

client.

Figure 2: Comparison of file transfer performance between Davrods and Webdavis

Davrods outperforms Webdavis by 15-30% for nearly all of the above file transfer operations. However Webdavis

performance beats Davrods by more than a factor two upon download of a single 1GB file when combined with

cadaver as the WebDAV client. Analysis of the HTTP protocol shows that cadaver incudes headers in the web client

HTTP request to indicate acceptable response formats that curl does not add. Further investigation might help us to

improve Davrods performance in similar situations.

46

CONCLUSION AND FUTURE WORK

The fast and successful realization of Davrods provides us with a successor to Webdavis and it has enabled us to

migrate from iRODS3 to iRODS4 in Q1 2016. Davrods is now used in all our iRODS grids. Researchers much like

the WebDAV access to iRODS for its ease of use and cross-institute/country potential. Future developments of

Davrods will focus on performance (the benchmark results indicate that there is potential for faster file transfers) and

support for future iRODS server releases.

REFERENCES

[1] Internet Engineering Task Force, https://tools.ietf.org/html/rfc4918, Visited last on 13.05.2016

[2] Zhang, S., Coddington, P.D., Wendelborn, A.L.: Davis: A generic interface for iRODS and SRB. GRID.

October, pp. 74--80 (2009)

[3] Consortium on Individual Development, http://www.individualdevelopment.nl, Visited last on 13.05.2016

[4] Apache Modeling Project, http://www.fmc-

modeling.org/category/projects/apache/amp/3_3Extending_Apache.html, Visited last on 13.05.2016

[5] Apache Software Foundation, http://httpd.apache.org/docs/current/mod/mod_dav.html, Visited last on

13.05.2016

[6] iRODS Documentation, https://docs.irods.org/master, Visited last on 13.05.2016

[7] Korhonen, I., Nurminen, M.: Development of a native cross-platform iRODS GUI client. In: 7th iRODS

User group Meeting, pp. 21—28. iRODS Consortium, Chapel Hill (2015)

[8] WebDAV Resources, http://www.webdav.org/neon/litmus, Visited last on 13.05.2016

47

http://www.individualdevelopment.nl/
http://httpd.apache.org/docs/current/mod/mod_dav.html
https://docs.irods.org/master/
http://www.webdav.org/neon/litmus/

48

NFS-RODS: A Tool for Accessing iRODS Repositories
via the NFS Protocol

D. Oliveira, A. Lobo Jr.,
F. Silva, G. Callou, I.
Sousa, V. Alves, P.

Maciel
Center for Informatics
UFPE, Recife, Brazil

{dmo4,aflj,faps,grac,isf2,
valn,prmm}@cin.ufpe.br

Stephen Worth
EMC Corporation

Massachusetts, U.S.A.
stephen.worth@emc.com

Jason Coposky
iRODS Consortium
Chapel Hill, U.S.A.
jasonc@renci.org

ABSTRACT

Data center and data evolution have been dramatic in the last few years with the advent of cloud computing and the
massive increase of data due to the Internet of Everything. The Integrated Rule-Oriented Data System (iRODS) helps
in this changing world with virtualizing data storage resources regardless the location where the data is stored. This
paper presents a tool implemented for accessing iRODS repositories through the NFS protocol. This tool integrates
NFS to the iRODS server through common operating system commands on a remote iRODS repository via the NFS
protocol.

Keywords

iRODS, storage, Network File System

1. INTRODUCTION

The data center has evolved dramatically in recent years due to the advent of the cloud computing paradigm, social
network services, and e-commerce. This evolution has massively increased the amount of data to be managed in data
centers. In this context, the Integrated Rule-Oriented Data System (iRODS) has been adopted for supporting data
management. The iRODS environment can virtualize data storage resources regardless of the location where the data
is stored as well as the kind of device the information is stored on.

IRODS is an open source platform for managing, sharing and integrating data. It has been widely adopted by
organizations around the world. iRODS is released and maintained through the iRODS Consortium [2] which involves
universities, research agencies, government, and commercial organizations. It aims to drive the continued development
of iRODS platform, as well as support the fundraising, development, and expansion of the iRODS user community.
iRODS is supported by CentOS, Debian, and OpenSuse operating systems.

Network File System (NFS) is a distributed file system originally developed to share data (e.g., files or directories)
between computers connected through a network, which forms a virtual directory locally represented for users. In
order to increase the NFS utilization, this work proposes a tool for accessing data repositories (e.g., iRODS). In
order to accomplish this, the developed tool, named NFS-RODS, transparently integrates the NFS protocol with the
iRODS data repositories, i.e., users are able to execute the common file system operating commands, but all the
operations are remotely performed accessing the iRODS repositories through NFS. This new functionality provided
by the implemented tool is presented in this paper.

This paper is organized as follows. Section 2 introduces the basic concepts needed for a better understanding of this
work. Section 3 presents the developed tool named NFS-RODS as well as shows some examples related to its use.

iRODS UGM 2016 June 10-11, 2016, Chapel Hill, NC
[Author retains copyright. Insert personal or institutional copyright notice here.]

49

Section 4 concludes the paper and makes suggestions on future directions.

2. DISTRIBUTED DATA SHARING

This section presents basic concepts of this work. First, the Network File System (NFS) protocol is detailed, which
is followed by the integrated Rule-based Data management System(iRODS). This work combines these two concepts,
in which both similarities and differences must be emphasized. The NFS protocol is an open standard defined in the
following RFCs [8] [4], that provides a distributed file system. A distributed file system consists of a shared storage
accessed via a network protocol, that provides an interface with the same semantics of a local file system. On the
other hand, the iRODS consists in a Storage Resource Broker: a middleware for a data grid that provides a single
logical namespace for a set of heterogeneous storage systems, that can span across multiple administrative domains.

In short, NFS is a standardized network protocol that allows us to treat a remote folder as a local one, and iRODS
is a data-grid middleware that provides management, sharing, publication, and long-term preservation of distributed
data [7]. They are different concepts that provide the same basic functionality: accessing remote files in a client-server
architecture. In the next sections, we will examine in more details each of them.

2.1 Network File System

The primary goal of a NFS client is to turn the remote access transparent for the computer users. To accomplish
this, the NFS adopts the client-server interface, in which the user can request a file present on the server as it was
locally stored. Its interface is public and widely used for the sharing of readings and academic organizations, due to
its benefits such as transparency; command unification; reduction of local space; independent of operating systems
and hardware.

For a client-server system, once logged in, the client can automatically import the directories and files previously
created in the personal area. However, to implement this file import system associated with one particular user, a
system with LDAP must have been configured in addition to NFS.

2.2 iRODS

iRODS has become a powerful, widely deployed system for managing a significant amount of data that requires
extendable metadata. Typical file systems provide only limited functionality for organizing data and a few (or none)
for adding to the metadata associated with the files retained. Additionally, file systems are unable to relate or
structure what limited metadata is available and provide only a platform from which to serve unstructured file data.
Within several fields, scientific research evolving instrumentation capabilities have vastly expanded the amount and
density of unstructured file data, in which standard file systems can be a limiting factor in the overall use of data.

iRODS can be classified as a data grid middleware for data discovery, workflow automation, secure collaboration and
data virtualization. The middleware provides an uniform interface to heterogeneous storage systems (POSIX and
non-POSIX). iRODS lets system administrators roll out an extensible data grid without changing their infrastructure
and accessing through familiar APIs. The reader should refer to [6] and [5] for more details about iRODS environment.

3. NFS-RODS

The NFS-RODS server is an implementation of the NFS protocol that exports folders located at an iRODS server to
the clients. It allows the clients to use a NFS client to access iRODS folders, typically by using the mount command
and treating the remote folder as a local one.

This section explains the architecture of the NFS-RODS server, and present some details about the implementation.
Then, the next section presents some examples of its utilization.

System Architecture

50

Figure 1 depicts the NFS-RODS tool architecture. As previously mentioned, the main goal of this tool is to provide

access to iRODS repository through the NFS protocol. To accomplish this, a client-server system architecture is

adopted. In the client, a local folder must be mounted into the NFS-RODS Server. Besides that, the NFS-RODS

server folder must be exported to allow iRODS iCAT-Server to be able to write and read through the NFS protocol.

More details about how it works is provided in the utilization example section.

Figure 1. System Architecture.

Package Diagram

Figure 2 presents the structure of the NFS-RODS implementation as a UML package diagram. It shows the folders

used to organize the source files, and the main C files of the project (the header files are omitted).

The daemon.c file holds the main function. Once running the NFS-RODS server, that function is called and the RPC

server is started as a background process. The callbacks functions are implemented in the nfs.c file, which is registered

on the RPC server and implements the specification described at the RFC 1813 [4]. Those functions correspond to

the basic file/folder operations like: read directory (READDIR), remove file (RM), remove directory (RMDIR), read

file (READ), etc. All those callbacks must operate on the iRODS file system. Therefore, the callbacks perform calls

to the functions present on the iRODS C API [1] in order to allow the client to access the iRODS server via the NFS

protocol.

For the sake of modularity, and for avoiding the code repetition for opening iRODS connections, we provide wrappers

files for performing those basic operations (readdir, rm, rmdir, etc.), which is the irodsapi.c file. Other general utility

functions are listed on the utils.c file (e.g. for debugging, and handling paths strings).

Figure 2. Package Diagram.

51

Utilization examples

To to be able to use our NFS-RODS tool, the user can download and install the source code, that is available at [3].

Executing using the source files

To use the NFS-RODS source code, users must download the source files and use a tool as the QTCreator. After

compiling the source code, the user must execute the project. This project works as a daemon which carries out the

requests that the NFS receives. In addition, users must have mounted a folder from the client into the NFS server.

For instance, the command mount serverName:/serverFolder /clientFolder, mounts the specific folder present on the

client (e.g., clientFolder) on a specific folder on the server (e.g., serverFolder). Figure 3 shows an example used for

mounting a server folder running on the same machine than the client.

Figure 3. Mounting example.

Once the mount command has been executed, users can test this operation success by executing the df command

presented on Figure 4. This shows that the local client folder has mounted on the server folder, which is also the

local machine for this example. Additionally, the export file must be set to allow the iRODS iCAT server to read

and write using the NFS protocol. This is configured in the /etc/exports file, in which the following line must be

present: /serverFolder serverName(rw).

Figure 4. Checking the mount operation.

Examples

This section shows some examples to illustrate that the NFS-RODS tool utilization corresponds to the usual common
operations for manipulating files on operating systems. However, it is important to stress that instead of dealing with
the local data, the data has been remotely stored, and is accessed via NFS protocol. Figure 5 depicts the examples
through three commands: mkdir, for creating a folder; rm, for removing a folder; and, mv for renaming also a folder.
The reader should notice that all these commands are exactly the same ones used for manipulating local data.

To show the creating process example (Figure 5 (a)), we first executed the ils command to list the data content of our
iRODS repository, which corresponds to exemp1, exemp3, exemp4 and exemp8 folders. Therefore, after executing
the mkdir exemp0, we also needed to list the new content of our repository on the iRODS server to show that the
exemp0 folder was created.

Similarly to the previous example, to show the remove directory operation (Figure 5 (b)), we first executed the ils
command to list the data content of our iRODS repository, which corresponds to exemp0, exemp1, exemp3, exemp4

52

Figure 5. NFS-RODS utilization examples: (a)creating a folder - mkdir, (b) removing a folder - rm, (c) renaming

a folder - mv.

and exemp8 folders. Therefore, after executing the rm -R exemp8 command, we also needed to list the new content
of our repository on the iRODS server to show that the exemp8 folder was deleted.

Finally, the last example shows the rename operation (Figure 5 (c)). Again, we first executed the ils command to
list the data content of our iRODS repository, which corresponds to exemp0, exemp1, exemp3 and exemp4 folders.
Therefore, after executing the mv exemp4 exemp5 command, we also needed to list the new content of our repository
on the iRODS server to show that the exemp has been renamed for exemp5 folder.

53

4. FINAL COMMENTS

The evolution of data center due to the advent of cloud computing as well as the Internet of Everything has been

increasing the amount of data to be managed by that systems. The iRODS helps in this changing world with

virtualizing data storage resources regardless the location where the data is stored. This work has presented and

demonstrated the NFS-RODS tool for accessing iRODS repositories through the NFS protocol. As a future direction,

we are extending the proposed approach to consider other data repositories (e.g., Amazon S3).

REFERENCES

[1] irods c apis documentation. https://wiki.irods.org/doxygen_api/html/index.html, 2012. Last access in:

2016-02-25.

[2] Irods consortium web page. http://www.irods.org/, 2015. Last access in: 2016-02-25.

[3] Nfs-rods: A tool for accessing irods repositories via the nfs protocol, 2016.

[4] B. Callaghan, B. Pawlowski, and P. Staubach. Nfs version 3 protocol specification. Technical report, RFC 1813,

Network Working Group, 1995.

[5] iRODS. Using an integrated rule-oriented data system (irods) with isilon scale out nas.

http://www.emc.com/collateral/white-papers/h13232-wp-irodsandlifesciences-isilonscaleoutnas.pdf. Acessed:

04/25/2015.

[6] iRODS. The integrated rule-oriented data system (irods). http://irods.org/, 2014. Acessed: 04/25/2015.

[7] A. Rajasekar, R. Moore, C.-y. Hou, C. A. Lee, R. Marciano, A. de Torcy, M. Wan, W. Schroeder, S.-Y. Chen,

L. Gilbert, et al. irods primer: integrated rule-oriented data system. Synthesis Lectures on Information

Concepts, Retrieval, and Services, 2(1):1–143, 2010.

[8] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck. Rfc 3530: Network file

system (nfs) version 4 protocol. IETF, April, 2003.

54

iRODS UGM 2016, June 10-11, 2016, Chapel Hill, NC.
Copyright Randall Splinter, 2016

Academic Workflow for Research Repositories Using
iRODS and Object Storage

Randall Splinter, Ph.D.
DataDirect Networks

238 Serenoa Drive
Canton, GA 30114

RSplinter@ddn.com

ABSTRACT

Traditionally, the sharing and retention of research data has been a contentious issue. Sharing data over WANs has
been limited by the available storage technologies. NAS solutions while excellent for sharing data over a LAN have
never had the same success over WANs. The successful implementation of object storage solutions has opened a door
into the ability to share data over WAN links.

Coupling that ability to share objects over a WAN with middleware like iRODS provides the research community
with the ability to provide to provide more stringent controls over the data including

▪ Better control of ACLs including
o Implementing data retention policies to meet regulatory requirements
o Loss of IP due to faculty loss

▪ Virtualization of multiple storage silos under a single namespace
▪ Extensive metadata tags and searching of those tags
▪ Extensible rules engine to implement functionality such as

o HSM style functionality between storage devices
o Data migration based upon set criterion

Some of the advantages of this approach include

• Ease of administration – Once rules are tested and in place the system can be managed with a minimum of
administrative overhead

• Automating workflows to guarantee consistency and reproducibility in the science that is produced
• Ease of auditing for both usage and back charging and for maintaining adequate data security compliance
• Using storage platforms like DDN WOS remote replication becomes simple and provides a straightforward

way to manage DR systems

Keywords

Data Archives, Data Repositories, iRODS, Object Storage, WOS,

55

INTRODUCTION

Over the past few years as government funding agencies have begun to adopt requirements for data management plans
for research, universities and federal laboratories have struggled with the development of programs to provide long-
term storage of research data. The problem is not new per se, but the recent development of object storage has finally
provided an interesting solution by which data can be reliably stored long-term while providing solutions to

1. Data security from accidental deletion (retention policies), loss due to theft or hardware failures.
2. Satisfying regulatory restrictions such as HIPPA and FIPS-140-2
3. Changing hardware standards
4. Hardware availability

Historically, satisfying all of these simultaneously has been a challenge from traditional NAS and Fibre Channel
storage technologies.

In this brief we would like to summarize the existing state of affairs and show how a combination of object storage
and iRODS can provide a solution to long-term archiving and active research data repositories that is significantly
more cost effective and flexible than more traditional methodologies.

INTRODUCTION TO THE PROBLEM

Reducing the problem to its bare essence we are left with the problem of collaboration and research repositories. Both
have their challenges using traditional storage technologies. In the next two sections we wish to outline the problem
in some detail before moving on to a modern solution to both problems.

The Problem of Collaboration

The first significant attempt at providing an affordable solution to the problem of collaborative storage was provided
by Sun Microsystems in 1984 in the form of the Network File System (NFS)[1]. This was followed by the development
of Server Message Block (SMB) by IBM around 1990[2][3]. In 1996 Microsoft renamed SMB to Common Internet
File System (CIFS)[4]. Both of these technologies still enjoy a good measure of success in the marketplace, but they
also have their share of problems. The biggest single obstacle is a lack of interoperability between NFS and CIFS, but
they also suffer from being primarily local technologies in the sense that they do not scale well over WAN-type of
distances. This significantly limits their usefulness for collaborations that are over substantial distances such as we are
seeing today.

Therefore, the problem of collaboration reduces to one of finding the appropriate technology to enable the sharing
data over large distances. Two interesting solutions to this problem from a software perspective have emerged over
the last few years. The first is GlobusOnline[5] and the second is iRODS[6]. The GlobusAlliance has focused on the
ease of transferring data over arbitrary distances. The development of GridFTP has made that the transfer of data more
efficient by enabling parallel IO streams and enhancing the security of the data transfer. The iRODS team has focused
on providing solutions to

1. A virtual namespace spanning all available storage resources.
2. Providing mechanism by which end users can easily modify ACLs and permissions to share data.
3. Providing mechanism by which end user can easily add metadata tags to objects and search that metadata
4. Providing a rules engine which can be used to automate workflows and simplify the movement of data based

on rules

These four rules can be graphically summarized as a “Swiss Army” knife, with each blade representing one of the
above items

56

For the rest of this paper we will focus on iRODS. The Globus team is developing very interesting technology to
enable data transfers, sharing, and the publishing of data. But, is beyond the scope of this work.

The Problem of Research Repositories

As commented above as government agencies have started to demand data management plans as part of grant funding
the development of adequate solutions to the long-term storage of data has become more pressing. A brief list of the
problems that are encountered can be summarized as

1. Insure long-term availability of the data
a. Hardware availability/failure
b. Changing hardware standards

2. Data security
a. Retention policies are needed
b. Loss due to theft – loss of IP

3. Regulatory restrictions
a. HIPPA, FIPS-140-2, etc.

4. Enable ease of data sharing

Each of these presents their own set of problems, and frequently they can contradict one another. For instance, the
need to be able to share data or research results may well provide issues for data security. External users may need
access to some objects, but not to all objects. Or as another example, should a researcher leave one institution they
may have a need to take some data with them, but their former employer may view that data as institutional IP.

OBJECT STORAGE AS A BRIDGE

The first proposal for object storage was given by Mesnier, et al[7]. Since then a number of competing object storage
technologies have been released into the market, for example

1. DDN WOS
2. Scality RING
3. IBM Cleversafe
4. OpenStack SWIFT
5. CEPH

6. Amazon S3
7. Amplidata
8. EMC Atmos
9. Caringo
10. Plus others……

Some of these are Open Source products while most of them are commercial platforms. Nonetheless, all of them share
some common features that make them ideal for the user in collaborative/repository storage.

57

1. In order to scale filesystems to very large scale it has been realized that POSIX locking can be a significant
hurdle. Therefore, all object store technologies have abstracted away the underlying POSIX filesystem.

2. In order to avoid the POSIX issues above all limit the number of operations that an end-user can exercise,
usually some combination of create, read, update and delete (CRUD).

3. Rich custom metadata for an object. This is allows end users to add metadata tags to objects and search
metadata at a bare minimum.

4. The use of standards such as ReST.
5. The use of data replication. The effectiveness of replication over WAN distances depends largely on the

object storage platform.
6. Erasure encoding to provide data security (in place of RAID)

HOW IRODS ENABLES OBJECT STORAGE

The role of research repositories and archives will become increasingly important over the next few years as funding
agencies push for increased openness in supported research. This provides the ideal environment for bringing together
object storage and iRODS.

Object storage is ideal in a Write Once, Read Many (WORM) environment. By removing the limitations imposed by
POSIX locking object storage enables the growth of storage environments to massive sizes. Furthermore, the native
replication techniques that object storage platforms implement provides data protection for extended periods of time.
Further, some object storage platforms, such as DDN WOS, also implement erasure encoding at the local level to
provide additional data protection.

On the other hand, object storage platforms in their raw form tend to be difficult to use. Most support the ReST
interface natively, but the use of ReST can be problematic for less sophisticated users. Gateways, on the other hand
regardless of the protocol they support (NFS, CIFS, S3, Swift, to name a few) act to provide a simple and often POSIX
like interface to the raw object storage. That is somewhat counter intuitive since a great deal of work has gone into
removing POSIX from the object storage in the first place. The solution, of course, is software.

iRODS stands as the best alternative for a software stack to layer on top of an object storage platform and to provide
the best user experience in terms of usability. Recalling from above

1. A virtual namespace spanning all available storage resources.
2. Providing mechanism by which end users can easily modify ACLs and permissions to share data.
3. Providing mechanism by which end user can easily add metadata tags to objects and search that metadata
4. Providing a rules engine which can be used to automate workflows and simplify the movement of data based

on rules

The first item allows for the inclusion of multiple storage platforms into the overall solution. This can simplify data
movement between storage resources. For instance, in a HPC environment the output of compute jobs can be easily
moved either by hand or through the use of the Rules Engine from high speed filesystems to the long-term object
storage. Metadata tags can be added to the dataset prior to moving the data to the object storage platform to
accommodate later searches. Finally, the end user can modify ACLs or create tickets to enable the straightforward
sharing of data with colleague on or off campus.

AN EXAMPLE IMPLEMENTATION OF A DDN WOS WITH IRODS REPOSITORY

The following is an example of a research data repository that has been recently delivered to the Texas Tech
University. The system uses DDN WOS storage as the object storage backend and iRODS as the software layer
providing the needed functionality to make the repository functional.

Some critical features of the repository are

58

1. Two WOS zones for replication of all data between two geographically separated data centers, and local
erasure encoding to provide additional data safety.

WOS Policy Name WOS Zone Description

wosresUDC UDC Only Local Object Assure with one
copy at UDC

wosresRDC RDC Only Local Object Assure with one
copy at RDC

wosresREPL UDC and RDC Local Object Assure at both sites
with one copy at both UDC and
RDC

2. A highly available environment using Corosync and Pacemaker to provide an active/passive HA cluster for
the PostgreSQL/iCAT database, HAProxy services and the iRODS Cloud Browser.

3. A scale-out environment using WOS back-end storage to enable simple capacity upgrades. The simplicity of
adding more WOS capacity is a critical feature of the overall design. The customer did not want to perform
extensive reconfiguration after adding more capacity.

4. Multiple ingest methods including, iCommands, iRODS Cloud Browser and the GridFTP/iRODS connector.
Future work will include adding a 10GbE link to the campus HPC Lustre filesystem to provide resource to
move data directly into the back-end WOS storage from the HPC Lustre filesystem.

5. Authentication must use the PAM and Kerberos in order to tie into the existing campus-wide eRaider
authentication system that is used campus wide.

59

The complete solution will provide a Research Repository for TTU that will scale into the foreseeable future and
provide campus researchers a long-term storage platform for the storage of long-term research data. The system has
been opened for beta customers and upon completion of beta testing the system will be opened for campus wide use
later this year.

It also demonstrates the flexibility and robustness that can be built into an iRODS deployment. The use of HA
clustering enables resistance to downtime from hardware or software failures, while employing a scale-up and scale-
out design provides a WOS cluster that scales out simply and the use of multiple iCAT servers to handle any peaks in
work load that may occur during normal usage.

CONCLUSION

In conclusion we have presented arguments for the use of iRODS as a middleware stack with object storage as the
physical hardware storage for use in long-term archives or repositories. By combining the two we believe that we have
demonstrated through our work at TTU that it is possible to build a highly available and scalable iRODS/WOS
environment.

The choice of iRODS is simple, the combination of a virtualized namespace, end-user ACLs and permissions,
metadata tagging and searching and a highly extensible rules engine make iRODS the ideal middleware stack for use
in an archive/repository environment. Using the iRODS rules engine, data can be migrated between multiple iRODS
storage resources transparently and provide data retention policies for data that cannot be lost to accidental deletion
or theft.

The ability of object storage to scale to very large numbers of Petabytes, with local erasure encoding and replication
provides an ideal method for the long-term storage of data, while keeping the data secure and safe from hardware
failure. The DDN WOS hardware platform was used in the example here. A WOS cluster scale out easily in terms of
capacity so growth can be handled without extensive changes to the existing environment. Finally, WOS has flexibly
storage policies so virtually any situation can be accommodated, from local erasure encoding to replication of objects
between multiple WOS zones in the cluster.

ACKNOWLEDGMENTS

The author would like to thank the iRODS consortium for the opportunity to present this material at the 2016 iRODS
User’s Group Meeting.

REFERENCES

[1] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, Bob Lyon (1985). "Design and
Implementation of the Sun Network Filesystem". USENIX.

[2] "Common Internet File System". Microsoft TechNet Library. Retrieved 2013-08-20. The Common
Internet File System (CIFS) is the standard way that computer users share files across corporate intranets
and the Internet. An enhanced version of the Microsoft open, cross-platform Server Message Block (SMB)
protocol, CIFS is a native file-sharing protocol in Windows 2000.

[3] "Microsoft SMB Protocol and CIFS Protocol Overview". Microsoft MSDN Library. 2013-07-
25. Retrieved 2013-08-20. The Server Message Block (SMB) Protocol is a network file sharing protocol, and
as implemented in Microsoft Windows is known as Microsoft SMB Protocol. The set of message packets that
defines a particular version of the protocol is called a dialect. The Common Internet File System (CIFS)
Protocol is a dialect of SMB. Both SMB and CIFS are also available on VMS, several versions of Unix and
other operating systems.

[4] Tridgell, Andrew. "Myths About Samba". Retrieved 2016-01-03.

[5] Globus Alliance established as international consortium to advance Globus grid
software" (Press release). Globus Alliance. September 2, 2003. Retrieved 2007-08-08. the Globus Project

60

today transformed itself into the “Globus Alliance.” ... The Globus Project was established in 1995 by the
U.S. Argonne National Laboratory, the University of Southern California's Information Sciences Institute
(ISI) and the University of Chicago (UofC).

[6] Conway, Mike; Moore, Reagan; Rajasekar, Arcot; Nief, Jean-Yves (2011). "Demonstration of Policy-Guided
Data Preservation Using iRODS". Proceedings of the 2011 IEEE International Symposium on Policies for
Distributed Systems and Networks: 173–174. doi:10.1109/POLICY.2011.17. ISBN 978-0-7695-
4330-7.

[7] Mesnier, Mike; Gregory R. Ganger; Erik Riedel (August 2003). "Object-Based Storage" (PDF). IEEE
Communications Magazine: 84–90. doi:10.1109/mcom.2003.1222722. Retrieved 27 October 2013.

61

62

Application of iRODS metadata management for
cancer genome analysis workflow

Lech Nieroda
Regional Computing

Center (RRZK)
University of Cologne,

Cologne, Germany
lnieroda@uni-koeln.de

Martin Peifer
Department of

Translational Genomics,
Center for Molecular
Medicine Cologne,

Medical Faculty
University of Cologne,

Cologne, Germany
mpeifer@uni-koeln.de

Viktor Achter
Regional Computing

Center (RRZK)
University of Cologne,

Cologne, Germany
vachter@uni-koeln.de

Janna Velder
Regional Computing

Center (RRZK)
University of Cologne,

Cologne, Germany
jvelder@uni-koeln.de

Ulrich Lang
Regional Computing

Center (RRZK)
University of Cologne,

Cologne, Germany
ulang@uni-koeln.de

ABSTRACT

In this paper we describe our design and experiences with the integration of iRODS with a partially automated
pipeline, which was developed to optimize a cancer genomics workflow. In order to facilitate an efficient and secure
data processing several challenges have to be overcome. The massive amount of data stemming from Next generation
sequencing (NGS) requires a well structured data management system that allows basic storing and retrieval but
also reviewing and sharing of both input as well as result data. It depends on the organization of the corresponding
metadata whether it can be put to good use in subsequent analyses, thus we need to provide sufficient information
for various levels – from a general overview to detailed comparisons of computation runs. The aspect of security and
privacy is especially important when dealing with patient data, thus a fine grained approach to access authorization
is an indispensable requirement. Finally, while High performance computing (HPC) systems provide the necessary
compute power to perform high throughput data analysis, they also require careful handling to allow a robust workflow
that can react accordingly to system or application errors. Our proposed solutions to the above mentioned aspects
can be adapted to similar data processing workflows.

Keywords

Next generation sequencing, genome analysis, IRODS, workflow integration, High Performance Computing, Bioinfor-

matics

INTRODUCTION

Next generation sequencing (NGS) is an increasingly cost efficient and reliable method to provide whole genomes or
exomes (i.e., the protein coding part of the genome) in a relatively short time. Due to falling costs it became feasible
to widen the scope of sequencing research and applications, for example from assembling a single human genome
in the nineties, through analysis and comparison of thousands of genomes in the last decade up to the point where
personalized medicine has been partially realized. The massive amounts of resulting data pose various challenges
that need to be addressed in order to enable their exploration, analysis and effective dissemination. In particular,

iRODS UGM 2016 June 8-9, 2016, Chapel Hill, NC
©c 2016 Nieroda et al.

63

genetic data runs through a lifecycle: the generated input is organized and stored depending on its type and origin,
later on it is retrieved, processed and analyzed by high throughput machines in an HPC Cluster and finally, once the
final results have been computed, they are made available for reviewing and further comparison. At each step the
correct data needs to be identified, located, and processed in a secure way. Each time, a potential user access needs
to be evaluated whether it is authorized and whether the proposed additions conform to the existing data schema or
format. Those additions, e.g., quality control values or statistics regarding genome alignment are usually too extensive
to be added to the file name and too valuable to be dumped into a text file without adequate means of search or
aggregation. Traditional file systems quickly meet their limits both in terms of fine grained authorization as well as
metadata, where content based information, e.g., about the project, sample ID, performed analysis and results are
required. They operate with a simple username and -group principle and, if supported, with more advanced Access
Control Lists (ACL) to manage access. The metadata is limited to system properties like ownership, size, date of
creation or modification. It becomes apparent that a more sophisticated system is required.

As a computing center that has been driving NGS workflows for many years [1]-[2], we are constantly looking for
solutions to meet such requirements and optimize these workflows to maximize output and quality. We have decided to
use the comprehensive data management system IRODS, since it allows customized metadata attributes, fine grained
protection rules as well as a query system to quickly organize and review the results. The integration in a HPC
cluster provides the computing power necessary to perform high throughput data analysis framework. To facilitate a
streamlined and robust workflow, we have automated the pipeline and introduced error handling procedures to react
to both internal, content based as well as external, system based errors.

The described cancer genomics workflow or pipeline is an in-house development that has been successfully applied to
a variety of large-scale genome sequencing projects [3, 4, 5, 6]. In the first step, the pipeline aligns raw whole genome
or exome sequencing data to the reference genome using bwa-mem [7]. After alignment, the data is preprocessed to
allow mutation detection. To this end, alignments are sorted, indexed, and potential PCR-duplications are masked.
The difference to reference genome is determined in the next step together with quality control parameters of the
sequencing run (e.g., mean coverage, insert size, etc.). Furthermore, genotype information as well as local read depths
are extracted from the data. These derived data sets are the basis for mutation detection, where single nucleotides
substitutions, small insertions and deletions, copy number changes, and genomic rearrangements (the latter only in
case of whole genomes) are determined. Except for the alignment method, the entire set of computational methods
are own developments that are uniformly implemented in C++ to allow an efficient processing of large genomic data
sets.

Numerous NGS workflows have been adapted to HPC systems with various methods, e.g., HugeSeq [8] detects and
annotates genetic variations by applying a MapReduce [9] approach, NGSANE [10] uses bash scripting with extensible
logging and checkpointing measures, SIMPLEX [12] offers a fully functional VirtualBox Image to reduce installation
issues. While they describe the analysis process in detail, few of them consider the requirements of data security and
the necessary framework to make the results as well the corresponding metadata available for further dissemination.
The WEP [11] pipeline for whole exome processing addresses the latter shortcoming by storing result metadata
in a self developed MySQL database with a PHP-based web interface. What is missing is a comprehensive data
management system that would encompass the employed input data, the results and the metadata within a secure
and reliable framework. Even though the metadata delivers necessary information, the underlying files should also
be stored in a controlled environment, so that they can be both retrieved at a moments notice.

There are organizations that have employed iRODS for their NGS workflows, namely the Wellcome Trust Sanger
Institute [13], Broad Institute, Genome Center at Washington University, Bayer HealthCare, University of Uppsala
and others, but to our knowledge only the Sanger Institute has published their experiences in a peer-reviewed journal
so far. However, they restrict the use of iRODS to store and manage alignment files (in BAM format) only.

In contrast, by merging our workflow with iRODS, we could not only store and annotate the input data with relevant
information but also parse the results and make them available for queries through self defined metadata within a

64

single system.

IRODS

We have based our data management system implementation on iRODS due to several reasons. The most prominent
feature is the possibility to add customized metadata to all stored files, thus allowing researchers to track and manage
their original input and results. This includes descriptions of sample origins, various types of performed tests and
analysis runs as well as their actual result values that can be subsequently searched via SQL like queries. It also
provides a rule-engine that enables the execution of predefined actions in regular intervals, triggered by certain events
or manual control. Any data operations can thus be augmented with matching actions, e.g., leaving an audit trail,
submitting HPC jobs once certain data files arrive or sending a message after particular events. IRODS uses a virtual
file hierarchy that can be adapted to various organizational structures and is independent from the actual physical
storage. The access control can be easily fine tuned from encompassing groups down to single users, giving a flexibility
similar to POSIX ACLs, regardless whether the underlying file system supports it.

IMPLEMENTATION

The CHEOPS Cluster is an HPC Cluster that provides processing power of 100 Teraflop/s Peak (85,9 Teraflop/s
Linpack) for scientists within the german state of North Rhine-Westfalia. It is comprised of 841 nodes using Nehalem,
Nehalem EX and Westmere Intel architectures. The primary interconnect is realized with Infiniband QDR hardware,
ensuring a low latency network with 40Gb/s bandwidth. A secondary network dedicated to managerial and NFS
functionality is built with 10 Gigabit Ethernet (10GbE). The storage system relies on a GridScaler for archival
purposes and Lustre for fast, temporary computations.

We have installed the IRODS ICAT server version 4.1.8 together with a MySQL database on a virtual machine (VM)
which is connected to CHEOPS and a few research institutes, among them CECAD, via 10 Gigabit Ethernet. The
actual bandwidth may be lower, due to shared connections with other VMs hosted by the ESX-server.

Security concerns

Since genome sequencing provides the complete genomic fingerprint of the patient, high security standards are an
indispensable requirement while handling of such data. To protect data transmissions en route as well as to restrict
access to predefined hosts, all IRODS iCommand clients have been set up to communicate through host-certificate
based SSL encryption. When we tested version 4.1.6, the kerberos plugin did not seem to be compatible with the rest
of the distribution and we have thus resorted to PAM based authentication. The tests have not been repeated for 4.1.8
and remain an option for future work. The IRODS Server has a main vault directory, which holds the data archive and
is owned exclusively by the irods user. It is physically located on the GridScaler Storage System and made available
to iRODS via an NFS mount, which can also be accessed only by the irods user. Only the VM provides iRODS
resources, all other machines have to use iCommand Clients or APIs to down-, upload and query the data. With such
a setup any data located in the vault is shielded from all CHEOPS users through locally managed file ownership and
permissions but the security within the vault depends entirely on the strength and infallibility of iRODS authorization
mechanisms. A plausible alternative was to use iRODS’ registering feature, which can register objects in the database
based on their physical storage path and allows to create respective metadata associations. While such an approach
would remove the reliance on iRODS’ internal security, it would also present several potential problems. It relays
file management entirely to the underlying file system, which has to support sufficiently fine grained access control.
The registering operation can be made either by the administrator or by the file owner which requires loosening of
iRODS permission checking rules as well as NFS export restrictions, which leads to further concerns. The direct
access plugin raises similar concerns, as it requires super user access. Furthermore, by ceding any control over the
files, iRODS information is no longer reliable and can point to non existent or, even worse, to altered or replaced files
with different contents. Instead, we have decided to let iRODS maintain its data within the vault but restrict it to a
dedicated server with stringent access policies.

Data consistency

65

To ensure metadata consistency both content- as well as format-wise, we have defined a simple schema for the data

import and run execution steps. The data provider preparing raw input data or, respectively, the scientist preparing

an analysis run fill out a metadata sheet with predefined attributes that must adhere to corresponding value domains

and check procedures. Those are parsed by perl scripts, which validate them and perform additional tests, if required

by the schema. See an excerpt in Table 1. The attributes depend on the step type – the import sheets are designed to

describe the data origin as thoroughly as possible while the run sheets focus on their application, e.g., the reference

to align the data against. Some of the attributes are generated by the scripts, depending on encountered file format,

creation date and other factors.

Attribute Example value Value domain Further tests

LocalPath /projects/username/sample [a-zA-Z0-9_-+/.] Path readability

Filename testfile_T.bam [a-zA-Z0-9_-+/.].{bam|fastq} File readability

Sample_ID P1234-PB03 [a-zA-Z0-9_-+.] None

Data Provider Max Mustermann [a-zA-Z-] None

Table 1. Excerpt from import schema

The perl scripts create Virtual Paths in iRODS according to certain attribute values, like the Projectname or Sam-

ple ID, to place and subsequently find the data in unique, predefined locations which have been cleared for the

submitting user or his group, e.g.

/<Zone>/archive/<Projectname>/<Sample_Type>/<Sample_ID>/input/

/<Zone>/archive/<Projectname>/<Sample_Type>/<Sample_ID>/run_1/

/<Zone>/archive/<Projectname>/<Sample_Type>/<Sample_ID>/run_2/

...

The upload can only succeed if the user has sufficient rights for the Zone, Project and Sample Type and thus the
generated Virtual Path. Once the metadata has been validated, tested and extended with dynamically generated
content, it is packed into Attribute-Value-Unit (AVU) triplets and sent together with the input files via iput command.

Use Case Scenario

The pipeline for sequencing and analysing cancer exomes and genomes is comprised of several steps. See Figure 1 for
an overview of the relevant data flow. The next-generation sequencer generates short snippets of genetic sequences or
“reads” in FastQ format, which are subsequently converted into the binary BAM format and stored in the institute’s
local storage. An employee prepares a corresponding metadata input sheet and launches the “import” script which
parses, validates, tests and extends it with dynamically generated content. It organizes the metadata into Attribute-

Value-Unit (AVU) triplets and uploads it together with the BAM files to the iRODS server via iput command.
The server tags the files, changes their ownership to the irods user and stores them in its vault directory on the
GridScaler, which it can access through an NFS mount. At the end of this step the input files are archived on the
CHEOPS cluster and associated with their respective descriptions.

For the analysis process, the metadata run sheet is prepared and launched with a “run” script, which validates it
and executes the remainder of the pipeline. First, it uses the parsed attributes, like Sample ID, Projectname and
Reference to locate and download the appropriate files from predefined paths. This is implemented with simple
iRODS rules, which are executed with the irule command. Below is a short example for retrieving samples files that
match given criteria.

getSampleFiles {

66

iRODS Server

Institute CHEOPS

Storage

iCAT

Rules

iCommands

NFS

mount

Run/Master

Script

SLURM

GridScaler

NextGen

Sequencer

Compute Nodes

iCommands

Import

Script

Import

Metadata

Run

Metadata

Figure 1. Data flow diagram

#Input parameters:

Sample_ID, Sample_Type, Project, Zone

#Output:

List of Matching input files

#Example launch:

irule -F getSampleFilesExt.r "*Sid=’testid’" "*Project=’testproject’"

*Coll="/*Zone/archiv/*Project/*Sid/*Stype/input"

msiExecStrCondQuery("SELECT DATA_NAME WHERE COLL_NAME = ’*Coll’ and \

META_DATA_ATTR_NAME = ’Sample_ID’ and META_DATA_ATTR_VALUE = ’*Sid’",*QOut);

foreach(*QOut) {

msiGetValByKey(*QOut,"DATA_NAME", *File);

writeLine("stdout","*Coll/*File");

}

}

INPUT *Sid="test", *Stype="exome", *Project="test", *Zone="SMOOSEzone"
OUTPUT ruleExecOut

With their locations known, they are downloaded with the iget command and the actual data analysis is started.
This process is divided into four distinct phases and during each one the script generates jobscripts for the SLURM
scheduling system, submits the jobs to the cluster, waits for their execution and depending on the outcome proceeds
to the next phase. Should an error be encountered, whether it is a failed job or inconsistent results, e.g., non matching
read numbers from the original and annotated BAM files, the pipeline is aborted with an appropriate error message.
Once the analysis is finished, the results including statistics, quality control and relevant logs are parsed and packed
into AVU triplets. As a final step, the script uploads the data and corresponding metadata to the iRODS server,
which archives it and makes it available for further analysis and dissemination.

CONCLUSION

The described pipeline automation and integration with iRODS empowers scientists to keep track of their data in an
efficient and secure manner. By employing verifiable data schemas, we could enforce metadata consistency and build
a hierarchical structure within iRODS’ virtual file space that placed files in predefined locations. While it provided

67

a straightforward means to narrow data searches down, it also made mapping of user permissions easier to manage.

The possibility to restrict access to certain projects or file groups is especially relevant in the clinical context, where

patient data is involved. We have decided to rely on IRODS’ authentication in order to let it manage contents in

their entirety, rather than using it as a sole metadata provider. For this means we have also tightened security and

restricted its services to a virtual machine. The inclusion of both the input as well as output data with matching

descriptions has resulted in a comprehensive system that allows to retrieve and compare analysis results with their

underlying sources.

ACKNOWLEDGEMENTS

We would like to thank Mr. Carsten Jahn from Bayer Business Services GmbH, HealthCare Research who has shared

his experiences with using iRODS. This work was supported by the German Ministry of Science and Education

(BMBF) as part of the e:Med initiative (grant no. 01ZX1303A).

REFERENCES

[1] Achter Viktor, Seifert Marc, Lang Ulrich, Götze Joachim, Reuther Bernd, Müller:Nachhaltigkeitsstrategien bei

der Entwicklung eines Lernportals im D-Grid, Lecture Notes in Informatics (LNI). Proceedings Vol P-149:

43–54, 2009

[2] Kawalia Amit, Motameny Susanne, Wonczak Stephan, Thiele Holger, Nieroda Lech, Jabbari KAmel, Borowski

Stefan, Sinha Vishal, Gunia Wilfried, Lang Ulrich, Achter Viktor, Nürnberg Peter: Leveraging the Power of

High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High

Throughput Exome Workflow. PLoS One, 2015

[3] Peifer M., Hertwig F., Roels F., Dreidax D., Gartlgruber M., Menon R., Krämer A., et al.: Telomerase

activation by genomic rearrangements in high-risk neuroblastoma. Nature 526:700-704, 2015

[4] George J., Lim J.S., Jang S.J., Cun Y., Ozretic L., Kong G., Leenders F., et al.: Comprehensive genomic

profiles of small cell lung cancer. Nature 524:47-53, 2015

[5] Fernández-Cuesta L., Peifer M., Lu X., Sun R., Seidel D., Zander T., Leenders F., et al.: Frequent mutations

affecting chromatin remodeling genes in pulmonary carcinoids. Nature Communications 5:3518, 2014

[6] Peifer M., Fernández-Cuesta L., Sos M.L., George J., Seidel D., Kasper L.H., Plenker D., et al.: Integrative

genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics 44:1104–1110,

2012

[7] Li H.: Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics

30:2843-2851, 2014

[8] Lam Hugo Y. K., Pan Cuiping, Clark Michael J., Lacroute Phil, Chen Rui, Haraksingh Rajini, O’Huallachain

Maeve, et al.: Detecting and annotating genetic variations using the HugeSeq pipeline. Nature Biotechnology

30(3): 226–229, 2012

[9] Dean J., Ghemawat S.: MapReduce: simplified data processing on large clusters. in OSDI’04 Proceedings of

the 6th Symposium on Operating Systems Design and Implementation, San Francisco, 2004.

[10] Buske Fabian A., French Hugh J., Smith Martin A., Clark Susan J., Bauer Denis C.: NGSANE: A lightweight

production informatics framework for high-throughput data analysis. Bioinformatics. 30(10): 1471–1472, 2014

[11] D’Antonio Mattia, D’Onorio De Meo Paolo, Paoletti Daniele, Elmi Beradino, Pallocca Matteo, Sanna Nico,

Picardi Ernesto, Pesole Graziano, Castrignano Tiziana: WEP: a high-performance analysis pipeline for

whole-exome data. BMC Bioinformatics, 14(Suppl 7): S11, 2013

[12] Fischer Maria, Snaider Rene, Pabinger Stephan, Dander Andreas, Schossig Anna, Zschocke Johannes,

Trajanowski Zlatko, Stocker Gernot: SIMPLEX: Cloud-Enabled Pipeline for the Comprehensive Analysis of

Exome Sequencing Data. PLoS One, 2012

[13] Chiang Gen-Tao, Clapham Peter, Qi Guoying, Sale Kevin, Coates Guy: Implementing a genomic data

management system using iRODS in the Wellcome Trust Sanger Institute. BMC Bioinformatics, 12:361, 2011

68

Status and Prospects of Kanki: An Open Source
Cross-Platform Native iRODS Client Application

Ilari Korhonen∗, Miika Nurminen
IT Services, University of Jyväskylä

PO Box 35, 40014 University of Jyväskylä, Finland
ilari.korhonen@icloud.com, miika.nurminen@jyu.fi

ABSTRACT

The current state of development of project Kanki is discussed and some prospects for future development are laid out
with reflection on the results of the research IT infrastructure project at the University of Jyväskylä. Kanki is a cross-
platform native iRODS client application which was introduced to the iRODS community at the iRODS Users Group
Meeting in 2015, and later released as open source. A total of 9 releases have been made, from which the latest 6 have
been available in addition to the source code as pre-built binary packages for x86-64 CentOS Linux 6/7 and OS X
10.10+. The Kanki build environment at the University of Jyväskylä is running out of Jenkins continuous integration
for both previously mentioned platforms utilizing disposable containers instantiated from pre-built Docker images
for Linux builds. This provides an excellent framework for (regression) testing of the client suite. The immediate
goals of development include: stability, testing, ease of install and use, and a complete iRODS basic feature set for
graphical icommands alternatives. The prospects for more advanced future development include: a fully extensible
modular metadata editor with pluggable attribute editor widgets, a fully extensible modular search user interface
with pluggable condition widgets, data grid analytics, and visualization with VTK integration.

Keywords

Research data, iRODS, client software, graphical user interface, continuous integration, research support services.

INTRODUCTION

About a year ago in 2015, the cross-platform native iRODS client application Kanki was introduced to the iRODS
community at the 7th Annual iRODS Users Group Meeting [1]. The Kanki iRODS client features a responsive UI
with native look & feel to the desktop enabled by the Qt1 framework, integration to Kerberos authentication with
the option to use iRODS 4.x SSL secured connections. Metadata management features include a schema definition
language, field validators, and type-specific display views and filtering. The client application is targeted towards
researchers of various disciplines as well as other interest groups utilizing or curating research data (e.g. librarians).
Users can utilize the full power of an iRODS data grid complete with powerful data management functions via its
intuitive user interface. Kanki was released as open source with a 3-clause BSD license in GitHub2 in September
2015. Kanki has been used in pilot projects at the University of Jyväskylä and has attracted interest from other
research institutions as well.

In this paper, we focus on the recent development efforts of the Kanki iRODS client, as well as reflection on the research
IT infrastructure development project that enabled the development. The paper is concluded with development ideas
and a possible sketch on the role of Kanki and iRODS as part of the research support services at the JYU.

∗Present address: PDC Center for High Performance Computing, KTH Royal Institute of Technology, SE-100 44,
Stockholm, Sweden
1http://www.qt.io/
2https://github.com/jyukopla/kanki-irodsclient

iRODS UGM 2016 June 8-9, 2016, Chapel Hill, NC
[Authors retain copyright. Copyright (C) 2016 Ilari Korhonen and Miika Nurminen, University of Jyväskylä, Finland]

69

http://www.qt.io/
https://github.com/jyukopla/kanki-irodsclient

KANKI DEVELOPMENT

Kanki is being developed as a cross-platform project with a single C++11 code base. Currently Kanki builds
successfully on Linux (Red Hat and Ubuntu tested and documented) and Mac OS X 10.10/10.11. The multi-platform
portability of the source is enabled by the portability of the Qt framework and the C++11 standard library.

Build Process

Currently the multi-platform build is being done via the Qt qmake utility, which generates a build environment to be
executed with GNU Make. There is a simple build script in the GitHub repository called build.sh which builds the
source package on Linux and OS X. The build script can be provided the location of the Qt framework as well as
some other arguments. Help can be printed out with the -h switch.

Figure 1. Illustration of the kanki-irodsclient build process.

Since the iRODS project is migrating its build environment into CMake (which also enables very convenient VTK/Qt
linkage), work is currently in progress to switch the build environment to CMake. There is an experimental build
environment which builds via CMake in the develop branch of the GitHub repository. A shadow build via CMake
can be done as follows:

$ git clone https://github.com/ilarik/kanki-irodsclient.git -b develop
$ mkdir build_kanki-irodsclient; cd build_kanki-irodsclient
$ cmake -DCMAKE_PREFIX_PATH:PATH=/Users/tiilkorh/Qt/5.5/clang_64/lib/cmake ../kanki-irodsclient/src
-- The C compiler identification is AppleClang 7.3.0.7030031
-- The CXX compiler identification is AppleClang 7.3.0.7030031
-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc
-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++
-- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /Users/tiilkorh/tmp2/build_kanki-irodsclient
$ make -j 8
[... lots of nicely formatted CMake build output ...]
[100%] Linking CXX executable irodsclient.app/Contents/MacOS/irodsclient
[100%] Built target irodsclient

70

The build environment for the Kanki iRODS client at JYU is running out of Jenkins CI on two slaves, one with Docker
capabilities and another slave running OS X. Linux builds are currently being executed in disposable containers
instantiated from pre-built Docker images in a Jenkins slave with Docker. The OS X builds are being done against
a prebuilt (another Jenkins job) irods-icommands distribution for OS X from the 4-1-stable branch of the iRODS
GitHub repository. Instructions for the OS X build have been published in the iRODS blog3.

Figure 2. Object Finder component.

New and Prospective Features

Specific needs not properly accommodated by other existing freely available solutions included the graphical iRODS
search tool with arbitrary search criteria formation for data discovery, metadata schema management with visual
namespace and attribute views, and readiness for metadata schema validation for data quality assurance.

As the client is intended to eventually serve as a bona fide alternative user interface to iRODS icommands – the
reference user interface for iRODS. Implementing all of this functionality in a native ”desktop” application will enable
the users to harness the full power of iRODS with native application performance and easy-to-learn graphical user
interface. The following features are considered to be developed further:

• drag & drop inside iRODS and between desktop and iRODS

• synchronization of iRODS collections with local paths

• editing of access control lists and groups for groupAdmin role users

• metadata editor schema management with validation

• rule engine queue management and rule exec interface

• data discovery i.e ”Find” UI for arbitrary metadata search criteria execution (GenQuery) (see Figure 2)

• VTK4-based visualization tools for data grid analytics (e.g. object relations, see Figure 3)

3http://irods.org/2015/10/native-gui-access-to-irods-on-a-mac-or-linux-desktop/
4http://www.vtk.org/

71

http://irods.org/2015/10/native-gui-access-to-irods-on-a-mac-or-linux-desktop/
http://www.vtk.org/

Figure 3. Experimental iRODS Object Relations Visualizer.

Windows still remains as an unsupported platform since iRODS 4.0 isn’t Windows compatible at the time of writing
this paper. With Windows support added to the iRODS codebase our client can be built on Windows as well.

REFLECTION ON THE RESEARCH IT INFRASTRUCTURE DEVELOPMENT PROJECT

Initial implementation of Kanki client has been done under the development project for research IT infrastructure and
research data management, active in 2013-2015 at the University of Jyväskylä. One of the project goals was putting
the university-level principles for research data management [2] (e.g. processes for handling research data, secure
infrastructure for data storage and access, standard metadata descriptions, advancing open science) into practice.
Dataverse5 was first adopted, making it possible to publish datasets in citable format with on-line analysis capability
[3]. iRODS data grid has been adopted with additional development of server-side iRODS modules for e.g. automatic
metadata extraction and finally, the development of Kanki client. A recommended minimum metadata model has
been developed with JYU Library, providing also training for research data management practices.

iRODS and Kanki client have been utilized in several pilot projects, including the Jyväskylä Centre for Interdisci-
plinary Brain Research6, JYFL Accelerator laboratory7, and datasets from the Department of Music. Various datasets
– including video, audio, motion detection data, EEG measurements, and transcribed interviews – have been im-
ported to the system. Metadata extraction functionality has been implemented for DICOM8, EXIF9, IPTC10, and
FIFF11 formats. Faculty of Information Technology is evaluating the suitability of iRODS as the storage backend for
Faculty’s local computing cluster.

There have been multiple, partly concurrent efforts related to research data management and, more generally, research
support services – most of these overseen at the JYU by Steering group for Research information systems12, Steering

5https://dvn.jyu.fi/
6http://cibr.jyu.fi/
7https://www.jyu.fi/fysiikka/en/research/accelerator/
8http://dicom.nema.org/standard.html
9http://www.jeita.or.jp/cgi-bin/standard_e/list.cgi?cateid=1&subcateid=4

10https://iptc.org/standards/photo-metadata/iptc-standard/
11http://www.aston.ac.uk/lhs/research/centres-facilities/brain-centre/facilities-clinical-services/meg-studies/downloads/
12https://www.jyu.fi/hallinto/tyoryhmat/tutkimuksen_tietojarjestelmat_or/en

72

https://dvn.jyu.fi/
http://cibr.jyu.fi/
https://www.jyu.fi/fysiikka/en/research/accelerator/
http://dicom.nema.org/standard.html
http://www.jeita.or.jp/cgi-bin/standard_e/list.cgi?cateid=1&subcateid=4
https://iptc.org/standards/photo-metadata/iptc-standard/
http://www.aston.ac.uk/lhs/research/centres-facilities/brain-centre/facilities-clinical-services/meg-studies/downloads/
https://www.jyu.fi/hallinto/tyoryhmat/tutkimuksen_tietojarjestelmat_or/en

group for the Digitalisation project13, and the Science council14. Nationally, Open Science and Research (ATT15)
project has produced services and recommendations related to e.g. open research data. All departments of the
University have provided documentation of their research infrastructures16. Procedures for digitising analogue content
have been implemented by the University Printing Services. JYU is currently replacing the legacy research information
system17 with a new CRIS18 (Current Research Information System). Jyväskylä University Library is planning a
model for centralized open science services and promoting parallel publishing in a joint development project with
University of Eastern Finland Library [4], expanding on highly successful centralized publication recording process
[5] in JYU, realized by close collaboration between the Library, Research management, and IT Services. National
Data Management Plan tool Tuuli19 is being tested by various Finnish universities. After the adoption of the new
CRIS, data management plans will be systematically collected as part of research project -specific records.

Despite the various efforts and activities in the IT Research infrastructure project, it has to be concluded that
even though the implementation of Kanki client and the technical infrastructure can be considered successful, the
wider goal of executing the principles of data management has turned out to be challenging. It has proved to be of
considerable difficulty to advance standard data management practices when the research itself is done more or less
independently of administrative processes, often using specialized tools and software for e.g. analysis on datasets. The
majority of JYU researchers have not yet used iRODS or Dataverse. IT Services unit has sometimes been perceived
as not sufficiently accommodating the needs of various research groups that may have differing requirements in terms
of hardware, software, scalability, or access rights. The services have been improved during the project, but yet more
steering may be needed related to job function scoping and e.g. pricing models – the cost of centralized storage has
not been competitive compared to ad hoc solutions such as portable drives. Another identified challenge has been
the lack of resources related to coordinating the activities of different actors related to research support services.

CONCLUSION

The development of Kanki client is still at relatively early stages. The solution has provoked interest from multiple
research institutions and developer community seems to be building up in GitHub. The build process utilizing Jenkins
and Docker seems promising considering regression testing and streamlined deployment, possibly utilizing Ansible
in the server-side in the future. iRODS maintenance at JYU is being transferred from IT development services to
storage services, thus making the iRODS environment as part of the standard service porfolio. Development of Kanki
client continues as open source project. The software can be considered adequate in production settings, but is by
no means ”ready”. Immediate goals of development include stability, testing, ease of install and use, and a feature
set for graphical icommands alternatives. Concerning the usage related to different stages of research data lifecycle,
longer-term development prospects include: a fully extensible modular metadata editor with pluggable attribute
editor widgets, a fully extensible modular search user interface with pluggable condition widgets, data grid analytics,
and additional VTK-enabled visualizations.

Even though iRODS or Dataverse have not yet been widely adopted by JYU researchers, the situation might change
in the near future. It is likely that as funders like Academy of Finland or EU (Horizon 2020) start to demand open
research data, repository services – be it university-specific, international (e.g. Zenodo, FigShare), or subject-based
(e.g. Finnish Social Science Data Archive20 – shall become more attractive. The general data protection regulation21

in EU will considerably raise the requirements for all systems containing personal data – this will likely generate new
use cases for iRODS.

13https://www.jyu.fi/hallinto/tyoryhmat/digitointityoryhma
14https://www.jyu.fi/hallinto/neuvostot/tiedeneuvosto/en/sciencecouncil
15http://openscience.fi/
16https://www.jyu.fi/palvelut/wolmar/palvelut/infrat
17http://tutka.jyu.fi/
18https://www.jyu.fi/yliopistopalvelut/str/erityistoiminnot/tietohallinto/cris-kayttoonottoprojekti
19https://www.dmptuuli.fi/
20http://www.fsd.uta.fi/en/
21http://www.consilium.europa.eu/en/policies/data-protection-reform/data-protection-regulation/

73

https://www.jyu.fi/hallinto/tyoryhmat/digitointityoryhma
https://www.jyu.fi/hallinto/neuvostot/tiedeneuvosto/en/sciencecouncil
http://openscience.fi/
https://www.jyu.fi/palvelut/wolmar/palvelut/infrat
http://tutka.jyu.fi/
https://www.jyu.fi/yliopistopalvelut/str/erityistoiminnot/tietohallinto/cris-kayttoonottoprojekti
https://www.dmptuuli.fi/
http://www.fsd.uta.fi/en/
http://www.consilium.europa.eu/en/policies/data-protection-reform/data-protection-regulation/

JYU Library and University Museum will form a new unit named Open Science Centre (OSC) as part of a more
extensive organizational transformation – the University’s structural development22 – effective in 2017. The University
is also mapping the present state of research support services and identifying potential development needs and
gaps wrt. National Open Science and Research Reference Architecture23. The new organization might provide
opportunities to further clarify service models and distribution of responsibilities – perhaps even establishment of
new centralized functions. For example, there is an emerging need for new services to support open research methods
(e.g. source code and notebooks [6]), and to perceive an expanding variety of tools related to different kinds or
research workflows [7]. The long term goal for research IT infrastructure (at least for data-intensive disciplines) could
be supporting fully reproducible research [8]: making the code and data available in a platform such that the data
can be analyzed in a similar manner as in the original publication.

In the new organization, OSC is to take more comprehensive responsibility on coordinating research data management
and digitisation activities. However, execution of the principles requires still substantial technical development, as
well as architectural steering. CRIS has potential to be used as a (meta)data hub combining information about
research infrastructures, projects, and outputs (e.g. publications and datasets), provided that sufficient resources are
reserved for data integration. There is also a partial overlap between functionalities of the Institutional repository24

and Dataverse. Further opportunities for integrating data or even establishing shared systems (cf. Tuuli DMP,
National ORCID consortium25) by multiple universities should be explored to minimize duplicated work [9]. An
important issue for the future is the acceptance of iRODS by the researchers. There is a growing need to support
data management during the research life cycle as a whole [10] – we believe that iRODS is the principal enabling
service to accomplish this, provided that it remains supported with sufficient advocacy and training.

REFERENCES

[1] I. Korhonen and M. Nurminen, “Development of a native cross-platform iRODS GUI client,” in Proceedings of
iRODS User Group Meeting 2015. The iRODS Consortium, 2015.

[2] A. Auer and S.-L. Korppi-Tommola, “Principles for research data management at the University of Jyväskylä,”
University of Jyväskylä, Tech. Rep., 2014. [Online]. Available:
https://www.jyu.fi/tutkimus/tutkimusaineistot/rdmenpdf

[3] M. Crosas, “The Dataverse network R©: an open-source application for sharing, discovering and preserving
data,” D-Lib Magazine, vol. 17, no. 1, 2011.

[4] P. Olsbo, A. Muhonen, J. Kananen, and J. Saarti, “Suomi rinnakkaistallentamisen mallimaaksi [Finland to
become a model country for parallel publishing],” 2015, Portti. [Online]. Available:
http://portti.avointiede.fi/tutkimusjulkaisut/suomi-rinnakkaistallentamisen-mallimaaksi

[5] M.-L. Harjuniemi, “Kirjasto yliopiston julkaisurekisterin ylläpitäjänä: kokemuksia keskitetystä kirjaamisesta
[Library as maintainer of university’s publication registry: experiences of centralized recording],” Signum, no. 2,
2015.

[6] A. Perrier, “Jupyter, Zeppelin, Beaker: The rise of the notebooks,” 2015, ODSC blog. [Online]. Available:
https://www.opendatascience.com/blog/jupyter-zeppelin-beaker-the-rise-of-the-notebooks/

[7] B. Kramer and J. Bosman, “101 innovations in scholarly communication - the changing research workflow,”
2015, poster at FORCE2015 Conference.

[8] V. Stodden, F. Leisch, and R. D. Peng, Eds., Implementing Reproducible Research. Chapman&Hall/CRC,2014.
[9] M. Nurminen, “Preparing for CRIS: Challenges and opportunities for systems integration at Finnish

universities,” 2014, poster at Open Repositories 2014.
[10] T. Walters, “Assimilating digital repositories into the active research process,” in Research Data Management –

Practical Strategies for Information Professionals, J. M. Ray, Ed. Purdue University Press, 2014.

22https://www.jyu.fi/hallinto/strategia/strategiat/strategian_toimenpideohjelma_en
23https://avointiede.fi/viitearkkitehtuuri
24https://jyx.jyu.fi/
25https://tutkijatunniste.fi/

74

https://www.jyu.fi/tutkimus/tutkimusaineistot/rdmenpdf
http://portti.avointiede.fi/tutkimusjulkaisut/suomi-rinnakkaistallentamisen-mallimaaksi
https://www.opendatascience.com/blog/jupyter-zeppelin-beaker-the-rise-of-the-notebooks/
https://www.jyu.fi/hallinto/strategia/strategiat/strategian_toimenpideohjelma_en
https://avointiede.fi/viitearkkitehtuuri
https://jyx.jyu.fi/
https://tutkijatunniste.fi/

75

