Spec White Paper

Metadata Templates

Abstract

This document outlines the addition to iRODS of metadata templates. In particular, we present
the rationale behind and some use cases driving the development of metadata templates, we
discuss the design of metadata template functionality, and we present a draft JSON schema and
a reference implementation of metadata templates using the iRODS Java client library, Jargon.

Use Cases and Design Considerations

Metadata templates represent a significant addition of functionality to iRODS’s handling of
metadata. In base iRODS, metadata is stored in the catalog as unadorned attribute-value-unit
(AVU) triples of strings. This is flexible for many use cases, but does not afford the grid
administrators much control of any stored metadata. By extending iRODS metadata, specifically
by associating the AVU triples stored in the catalog with metadata templates which can provide
additional information about these metadata elements (or meta-metadata), we can now
support a variety of interesting functions.

iRODS metadata templates allow administrators and curators to:
¢ View and interact with AVUs in a user-friendly interface
* Require specified metadata elements to be associated with iRODS objects
e Validate metadata elements
e Standardize the metadata associated with types or collections of iRODS objects
e Uniformly apply metadata to many iRODS objects simultaneously
* Provide rendering guidance regarding objects or metadata to iRODS GUIs

Metadata templates, therefore, benefit many classes of iRODS users. A domain scientist or a
research group can create a template that stores common metadata AVUs (such as creator
name, creator contact information, funding source, etc.), enabling these common metadata to
be quickly, easily, and uniformly applied to many iRODS objects. An iRODS administrator or
curator can create a template that requires and validates specific metadata, ensuring that
iRODS objects in a particular location or of a particular type have valid and consistently-applied

metadata. A front-end developer can use information from metadata templates to inform how
to organize and render metadata or iRODS objects themselves.

Draft JSON Schema

The following draft JSON schema describes the data format of an iRODS metadata template.
(Note that while this schema provides default values for some template and element
properties, the JSON schema specification does not actually require that defaults are enforced,
since doing so would require modifying the data instance. In the Jargon implementation of
metadata templates discussed in the next section, these default values are enforced in the Java
code. Any other implementation of metadata templates would also require special
consideration for handling default values.)

"$schema":"http://json-schema.org/draft-04/schema#",
"title":"Metadata template",
"description":"JSON schema defining an iRODS metadata template",
"type":"object",
"properties": {
"name" : {
"description":"The name of the template, e.g. 'dublinCore'",
"type":"string"
by
"type":{
"description":"The type of the template, i.e. FORM BASED",
"type":"string",
"enum" : [
" FORM_BASED "
1,
"default":"FORM BASED"
by
"source": {
"description":"Where the data to populate the template will come from, i.e.

'"USER'",
"type":"string",
"enum" : [
"USER"
1,
"default":"USER"
b
"destination": {

"description":"How the filled-out metadata will be stored, i.e. 'IRODS'",
"type":"string",
"enum" : [
"IRODS"
1,
"default":"IRODS"
b
"description": {

"description":"Helpful text about the specific metadata template",
"type":"string"
b
"author": {
"description":"The creator of the template, e.g. 'John Smith'",
"type":"string"
by
"version": {
"description":"The version of the template, e.g. '1.0'",
"type":"string"
b
"required": {
"description":"Whether this template is required to be applied",
"type":"boolean",
"default":false
by
"elements": {
"description":"A list of MetadataElements that make up the template",
"type":"array",
"items":{
"type":"object",
"properties":{
"name" : {
"description":"The name of the metadata element (should be unique
template)",
"type":"string"
I
"il8nName": {
"description":"The internationalized name of the metadata element
(should be unique per template)",
"type":"string"
bo
"description":{
"description":"Helpful text about the metadata element",
"type":"string"
by
"il8nDescription": {
"description":"The internationalized help text",
"type":"string"
bo
"type":{
"description":"The data type for this element",
"type":"string",
"enum": [
"RAW_STRING",
"RAW_TEXT",
"RAW_URL",
"RAW_INT",
"RAW FLOAT",
"RAW BOOLEAN",
"RAW_ DATE",
"RAW_TIME",
"RAW_DATETIME",
"REF_IRODS QUERY",
"REF_IRODS_CATALOG",
"REF_URL",
"LIST STRING",

per

"LIST INT",
"LIST FLOAT",
1,
"default":"RAW STRING"
by

"source": {

"description":"Where the data to populate the

i.e. 'USER'",
"type":"string",
"enum": [
"USER"
1,
"default":"USER"
by
"defaultValue": {

"description":"The default value of this element",

"type":"string"
}l
"validationOptions": {

"description":"Options for wvalidation,

validationStyle",
"type":"array",
"items": {
"type":"string"

}l
"validationStyle": {

"description":"Validation style for this element,

with validationOptions",
"type":"string",
"enum": [
"DEFAULT",
"Is",
"IN LIST",
"IN RANGE",
"IN RANGE EXCLUSIVE",
"REGEX",
"FOLLOW_REF",
"DO_NOT_VALIDATE"
1,
"default":"DEFAULT"
b
"required": {

"description":"Whether this element is required to

"type":"boolean",
"default":false

by

"required": [
"name",
"type",
"source",
"validationStyle",
"required"

element will come from,

used in combination with

used in combination

be populated",

}I

"required": [
"name",
"type" 4
"source",
"destination",

"required"

Discussion of the JSON Schema

In addition to the properties discussed above, Metadata Templates and Metadata Elements
also have associated universally unique identifiers (UUIDs). These are used to find templates
and to associated individual AVUs with Metadata Templates in the
getAndMergeTemplateListForPath function, discussed in greater detail below. The
unit string of an AVU that is governed by a Metadata Template will contain, for example,
fromTemplate:01234567-01234-01234-01234-0123456789%ab.

Several of the properties on the Metadata Template object require explanation. The type
property is an enum that indicates what type of metadata template this is. Right now, only
FORM BASED is a valid value, indicating that a list of metadata elements will displayed for the
user in, for example, an HTML form, and that these elements will be listed in this metadata
template as the elements property. We have also discussed the possibility of automatically
generating a template from, for example, a schema.org schema (perhaps SCHEMA REF).

The source property is an enum that indicates where the data that will be used to populate a
metadata template comes from. Right now, only USER is a valid value, indicating that metadata
values will be populated manually by a user. We have given some thought to allowing metadata
to be generated or harvested from an iRODS rule (perhaps RULE) or a combination of the two
(MIXED), but these represent future work.

The destination propertyis an enum that indicates how the actual metadata AVUs will be
stored on disk. Right now, only TRODS is a valid value, indicating that the metadata will be
stored as AVU triples in the iRODS metadata catalog. This property was included with the
intention of enabling users who wish to use a separate metadata management database to do
so while still taking advantage of the functionality of metadata templates. For example, CyVerse
(formerly the iPlant Collaborative) uses an external PostgreSQL database to manage metadata,
so perhaps POSTGRES would be added to the enum, for example.

The required property is a boolean flag that indicates whether or not this template must be
applied to all collections in which it is visible. If required is true, this template must be
populated.

Several properties of the Metadata Element object also require additional explanation. The
type property is an enum that indicates what type element this is, and is used for both
validation and display. At present, a Metadata Element can be of the following types:

RAW STRING, RAW TEXT, RAW URL, RAW INT, RAW FLOAT, RAW BOOLEAN,
RAW DATE, RAW TIME, RAW DATETIME, REF TRODS QUERY,

REF IRODS CATALOG, REF URL, LIST STRING, LIST INT, LIST FLOAT.The
RAW types are those whose values will be stored directly in the metadata catalog.

RAW STRING, RAW TEXT, and RAW URL are all treated as strings; the different types are
used to suggest to the Ul how the form will be rendered (RAW TEXT might be rendered as a
multi-line text input box, for example.) The REF types indicate that the metadata value of
interest might reside elsewhere, as a webpage, or an image file stored in iRODS storage, or a
property of a data object stored in the catalog. REF TRODS QUERY is used to access
properties of a data object, collection, or user (similar to what might be returned from a
GenQuery), and REF TRODS CATALOG is used to specify the logical path to a file stored in
iRODS. The LIST types are used to store multiple metadata values with the same attribute
name on an object, for example, if an object has multiple authors.

The source property is an enum that indicates where the data that will be used to populate a
metadata element comes from. This is simply a more fine-grained application of the source
property described above regarding Metadata Template objects. Right now, only USER is a
valid value, indicating that metadata will be populated manually by a user.

The validationOptionsand validationStyle properties are used in combination to
define what validation, if any, will be performed on the value of this metadata element.
validationStyle is an enum that can take on the following values: DEFAULT, IS,

IN LIST, IN RANGE, IN RANGE EXCLUSIVE, REGEX, FOLLOW REF,

DO NOT VALIDATE.DEFAULT validation checks that the value is non-empty and of the type
specified in type, and does not make use of validationOptions. IS validation checks
that the value is the same as the one(s) in validationOptions. IN LIST validation
checks to see that the value is one of a specified list of possible values; the possible values are
inthe validationOptions array, and there can be an arbitrary number of them.

IN RANGE validation checks to see that the value is in between two values (inclusive); the two
values are in the validationOptions array. (If there are more than two options, only the
first two are used, and if there are fewer than two, no validation is performed.)

IN RANGE EXCLUSIVE validation works the same, except values equal to either endpoint

are not valid. REGEX validation tests to see if the entered value matches the regular expression
specified in the first element of validationOptions. FOLLOW REF validation applies only
to REF _types, and checks to see if the reference can possibly be valid (if the iRODS query is
valid, if the iRODS object exists, or if the URL can be resolved).

Reference Implementation Discussion

Metadata Template File Locations

For the Jargon reference implementation, it is assumed that the metadata template files
themselves reside in the iRODS Zone in the . i rods collections that are also used for storing
data related to other Jargon extensions, including starred files and virtual collections. This
makes locating templates that can apply to a particular iRODS object a nicely constrained
problem. Whenever one makes a call to the Metadata Template Service to request available
templates, the service checks the . i rods collections in the collection hierarchy above the
object, as well as any special "public" collections (which must be specifically indicated to the
Metadata Template service by calling setPublicTemplateLocations).

Metadata Template Service

The Metadata Template Service has four major components:

1. Parser

2. Validator
3. Resolver
4. Exporter

In Jargon, these are implemented as separate classes.

Metadata Template Parser

The Metadata Template Parser handles the creation of Metadata Template objects from JSON
as well as the exporting of Metadata Template objects to JSON files.

The Metadata Template Parser should implement (at least) the following functions:
® createMetadataTemplateFromJSON (String json ...)
Creates a MetadataTemplate object given a JSON definition of one.

® createdSONFromMetadataTemplate (MetadataTemplate mt ...)
Creates a JSON definition from an existing MetadataTemplate object.

Metadata Template Validator

The Metadata Template Validator handles the validation of Metadata Templates and Metadata
Elements, as described in the previous section.

The Metadata Template Validator should implement (at least) the following functions:
® validate (MetadataTemplate mt ...)
Validate a MetadataTemplate.
e validate (MetadataElement me ...)
Validate a MetadataElement based on its currentValue, validationOptions,
and validationStyle.

Metadata Template Resolver

The Metadata Template Resolver handles the various file system calls relating to Metadata
Template files (list, find, create, rename, update, delete), as well as the very important merge
operation, which populates a Metadata Template object with the AVUs already associated with
an iRODS object.

The Metadata Template Resolver should implement (at least) the following functions:

® getPublicTemplatelLocations(...)
® setPublicTemplatelocations (List<String> locations ...)

Specify which iRODS collections will be searched for public templates.

listTemplatesInDirectoryHierarchyAbovePath (String path ...)
listPublicTemplates(...)

listAllTemplates (String path ...)
listRequiredTemplates (String path)

Retrieve lists of metadata templates.

findTemplateByName (String name, String path ...)

o findTemplateByNamelInDirectoryHierarchy (String name, String
path ...)

e findTemplateByNameInPublicTemplates (String name ...)

findTemplateByFgName (String fgName ...)

e findTemplateByUUID (String uuid ...)

Retrieve a single metadata template by name or unique identifier.

® saveMetadataTemplateAsJSON (MetadataTemplate mt, String path
-)

Given a populated metadata template object, save it out to a JSON file

® renameTemplateByFgName (String fgName, String newFgName ...)
® renameTemplateByUUID(String uuid, String newFgName, ...)

Change the name of a specified template

® cloneTemplateByFgName (String fgName, String
newTemplateName, String path ...)

® cloneTemplateByUUID(String uuid, String newTemplateName,
String path ...)

Create a copy (with a new name) of a specified template

® deleteTemplateByFgName (String fgName ...)
® deleteTemplateByUUID(String uuid ...)

Delete a specified template

® getAndMergeTemplatelListForPath (String objectPath ...)
Create the list of Metadata Templates that can apply to a given object, and populate

their Metadata Elements from the AVUs on the object.

getAndMergeTemplateListForPath

Since the merge function is so important to the functionality of Metadata Templates, it may
benefit from a more extended discussion. Given the path to a collection or data object,
getAndMergeTemplateListForPath generates a list of all Metadata Templates that
could apply to that object (searching both in public template locations and in the directory
hierarchy above the object), and populates those Metadata Templates with any metadata
values found on the object. Any AVUs which do not match any of the available Metadata
Templates are stored in a separate list of AVUs and are returned alongside the populated list of
templates. So the caller of getAndMergeTemplatelListForPath receives a List of
Metadata Templates, populated with any AVUs that were found to match the templates, as
well as a List of “orphaned” AVU objects that are not (yet) affiliated with any Metadata
Template.

Metadata Template Exporter

The Metadata Template Exporter handles the saving of populated Metadata Template files out
to the permanent metadata store. For example, in Jargon/iRODS, the JargonMetadataExporter
saves the populated Metadata Template out to a set of specially formatted AVUs.
® saveTemplateToSystemMetadataOnObject (MetadataTemplate mt,
String pathToObject)
Save the values in the Metadata Template with the object in the system metadata table
® saveklementToSystemMetadataOnObject (MetadataElement me,
String pathToObject)
Save the value in the Metadata Element with the object in the system metadata table

lllustration of system in use

User Front End FormBot MetadataTemplates iRODS (Jargon)

User uploads file st Checks to see if there
are any required
templates by calling
listRequired¥emplqres Builds a list of
MetadataTemplates
from required =) Opens .mdtemplate
.mdtemplate files dmmtm files
found in .irods
Builds a list of JSON ¢mtem= collections
representations of
HTML forms for each
Renders list of ¢==t= MetadataTemplate
Populates HTML forms « HTML forms
with required/
desired values,
attempts to save % For each form, calls
executeFormBotForm =4 For each form,
enerates a populated
%\efadcic Template » Validates each
MetadataTemplate

l

Executes each —t—p Writes AVUs onto
MetadataTemplate ¢ file(s)

l

D[iSP[GYS result t— R 0[S {—— R ctUrns
of execution

