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ABSTRACT 

The iRODS middleware provides federation, virtualization, metadata integration and policy-oriented data 
management for static files. Real-time data streams (RTDS) from sensors and other sources pose a different challenge 
compared to static files. They are infinite in length and time line, comprise discrete packets of information which are 
time-specific, and the concept of byte-oriented i/o is not at all suited for accessing and managing real-time data 
streams. Moreover, because of the nature of the sources, the volume and velocity of the flow can be very low 
(temperature data) to very high (HDTV). They are also time-sensitive in two ways. The data must be captured 
immediately or they will be lost forever; and in many cases, the analysis has to be done immediately as the decision 
making can be time sensitive (eg. earthquake or tsunami detection).  We have developed new features in the iRODS 
system to capture, store and archive RTDS. Our model captures RTDS into a continuum of discrete files and archives 
them in a few different standardized formats. It also provides packet-based and time-oriented access for replay of 
sensor data. By folding in the management of RTDS into iRODS we have extended the four main functionalities - 
federation, virtualization, metadata integration and policy-oriented automation – for real-time data management. 
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INTRODUCTION 

Sensors are electronic devices which detect or measure a physical property and convert them to electrical signals 
suitable for processing to be consumed by other electronic circuitry. Commonly detectable properties include 
biological, environmental, chemical, electrical, electromagnetic, mechanical, optical, radioactivity, etc. Sensors have 
been used for monitoring the environment [1,2,3,4], biological systems [5] and the human body [6]. A sensor grid 
[7,8,9] is a system that integrates sensor networks with grid computing and data grids. Sensor grids provide seamless 
access to distributed and heterogeneous sensors in a pervasive manner. It allows for applying large-scale 
computational power for analyzing sensor data, data fusion across multiple sensors, and developing novel algorithms 
for pattern recognition, sensor data discovery and decision making, using advanced techniques such as deep learning, 
machine learning, deep indexing, data mining, and distributed database processing.  With the coming prominence 
of Internet of Things (IoT), more and more common everyday physical devices, buildings vehicles, and appliances 
are being embedded with electronic sensors leading to an enormous data volume that can be collected and processed 
[10,11,12].  Hence, there is a need for integrated data management of sensor data for collecting, storing, analyzing, 
sharing, discovery, and curating sensor data.  

With the advent of IoT, Wearable Computers, Smart Cities and Connected Communities, and with large numbers of 
Science instruments being deployed, the amount of sensor-generated data is growing at a very fast pace. As of now, 
most of the sensor data are gathered, and analyzed in near-real-time, in situ or very close to the source and seldom 
archived for the long term (there are exceptions such as Incorporated Research Institutions for Seismology (IRIS), 
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Integrated Ocean Observing System (IOOS), NASA, etc.) This does not allow many options for reuse, replay and 
reanalysis of sensor streams. No sensor data management system is currently available, which can deal with millions 
of sensors, to store, access, analyze and manage sensor streams as is done with file storage and archives.  The main 
reason is a lack of an ability to transport, store and retrieve sensor stream data at scale. When sensor streams are stored 
for later analysis, as in seismic data at the IRIS, or oceanographic data at IOOS, they are stored as files and access is 
to individual files through web links and ftp. Hence the problem is not only with storage, but also in retrieval and 
transport to users and sensor applications. The storage problem is compounded when dealing with millions of sensors. 

Over the past 15 years there has been an explosion of 
sensor network data from many scientific disciplines 
including satellites in space observing magnetic fields and 
solar wind, meteorological networks for real-time 
forecasting and climate research, geophysical 
observations of earthquakes and tectonic motion, and 
physical oceanographic measurements of currents, 
temperature/salinity, waves and acoustic 
tomography/thermometry. With the advent of virtually 
ubiquitous networking, environmental sensor data are 
being streamed to a variety of locations for immediate 
application (e.g. tsunami detection). Today, seismic and 
environmental scientists continue to work with file-based 
systems including the extraction of data from the field and 
storage of sensor data.  For example, field sensor data are 
first written to files, and at some later time the data are 
transferred to larger, community storage by copying the 
files and metadata over the Internet or actually mailing 
original physical media. The bulk of today’s sensor data 
are managed through file-based systems, but streaming 
data analysis is quickly replacing the file-based approach 
even though the software continues to rely upon the 
traditional file approach. This fundamental mismatch 
needs to be addressed to meet the growing reliance on 
sensor stream data through research and development of a 
sensor-centric data system that provides end-to-end 
optimal performance. 

The integrated Rule Oriented Data Systems (iRODS) 
[13,14,15,16] is a second-generation data grid that 
provides a collaboration environment for large-scale data 
oriented enterprises. iRODS promotes four concepts: 
virtualization, federation, automation and discovery (see 
Side Bar A).  iRODS provides a rich client interface that 
supports a range of user-friendly interfaces for accessing 
data, ingesting and querying metadata, and for performing 
discipline-centric analysis and visualization through 
emerging social networking web applications. iRODS 
integrates and virtualizes distributed and heterogeneous data resources into a single logical file system (called the 
collection hierarchy) and provides a modular but uniform application processing interface to integrate new client-side 
applications as well as server-side data and compute resources.  

A. iRODS Concepts 
Virtualization allows users to create collections of dispersed 
data residing in distributed, heterogeneous resources and 
uniformly access them through single sign-on mechanisms.  
The data resources, the users and the access mechanism are 
represented by virtual name spaces that are mapped onto real 
objects. Virtualization implements technology independence 
and enables seamless access to data while hiding practical 
problems with authentication, authorization, arbitration and 
access to independently managed, heterogeneous resources. 
Virtualization also extends to compute services through 
containerization integrated with execution and data 
management.  The iRODS system provides virtualization 
through mapping name spaces for users, resources, data, 
collections and micro-services (apps). 
Policy-based Automation enables customization and 
realization of complex resource management services at a 
fundamental level through computer actionable rules. Data 
resource managers, project leaders, and individual users can 
chain basic operations (micro-services) in order to define 
their own access pipeline, life-cycle management, sharing 
and disposition. The iRODS system used a rule engine to 
enforce policies stored in a rule base. 

Federation interconnects third party data, compute servers, 
and resources through the virtualization mechanisms. This 
enables a robust extensible framework for sharing resources 
owned and operated by third parties in a seamless manner.  
Multiple levels of interconnection are based on trust models 
and protocol brokering. iRODS system deployed tight and 
loosely coupled models as well as asynchronous federation 
mechanisms. 

Metadata integration is essential for discovery and sharing. 
Multiple types of metadata can be associated with data 
collections and need to be integrated through a common 
query mechanism. Metadata can range from key-value pairs, 
RDF and relational data to semi-structured and unstructured 
data. The iRODS system provided a common query 
mechanism through its logic-based QueryArrow system 
which provides a virtual query interface for both SQL and 
NoSQL databases.  

 
 



 

3 

The iRODS system has been used in multiple large-scale projects [17,18,19,20] and easily scales to 100s of millions 
of data objects in Petabyte storage systems and supports high-speed data transport including parallel streaming. In 
performing distributed data management, iRODS acts as a third-party intermediary providing authentication, 
authorization and auditing, and other functionalities that may or may not be supported by the underlying data 
resources.  iRODS also provides optimized data movement protocols  and  rich support for metadata for data files as 
well as  data collections.  iRODS provides automation for data management as  well as support for user-defined 
processing pipelines through its built-in distributed rule-engine. Administrators and collection owners can encode 
pipelines and policies as rules for managing and analyzing their data collections. The rule engine in iRODS provides 
a way to customize the community policies to meet the demands of each discipline and also encode trust relationships 
for sharing data across disciplines. Using the policy-based data management, one can encode data preservation and 
access functionalities such as data accession workflows, archival processes, dissemination processes, and  analyses 
and access provisioning – all functions needed by large-scale digital sharing and curation systems.  iRODS also 
provides a full range of services for long-term data management, including tracking replicas, versions, backup, and 
restoration. iRODS uses checksums to validate the integrity and supports  automatic checking and repair  of corrupted 
copies at user-defined intervals. 

We have implemented a scalable sensor grid architecture that can be used to dynamically access packets of data in a 
stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based 
on the integrating iRODS with a new type of resource called the Antelope Real Time Data System (ARTS) [21], and   
providing virtualized access and handling to collections of data streams. The iRODS system brings to sensor 
processing features and facilities such as single sign-on, third party access control lists (ACLs), location transparency, 
logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. 
Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data 
provenance.  The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. APIs 
for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate 
metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic 
sensors, environmental sensors, LIDAR and video streams are available through this interface [22]. We discuss the 
implementation of these features in some detail in the rest of the paper. 

SENSOR DATA REQUIREMENTS  

Sensor data have some peculiar properties compared to static data.. Unlike files, the sensors are highly distributed and 
their geographic location is an important property of their metadata and need to be captured. Another important feature 
of sensor data is that they are potentially infinite, but produced at discrete time intervals and referenced to a canonical 
time system. Hence the data stream from a sensor, unlike that from a file, can be unlimited and growing and cannot 
be defined in terms of bytes. Sensor streams comprise quanta of bytes called ‘packets’ and we can view a sensor data 
stream as a time-stamped series of packets. Hence, when accessing and storing data from sensors, one needs to deal 
with packets instead of byte buffers. These packets consist of a header, which can be used as an identifier (there are 
other metadata also part of the header) and a body (or payload) which contains the data. Moreover, a packet can be a 
complex, concentrated structure, having multiple sensor measurements either from many sensors collected over a 
period of time, or measurements taken by several co-located sensors at the same time and packed together in a single 
packet. Also, in many cases, the datum coming from the sensor can be a representation, example and electrical voltage 
value, which may be converted to the actual measurement of the physical entity before it can be stored or used in 
analysis. Hence, dealing with the ingestion and storage of each sensor stream may need to be customized and pre-
processed.  

Access to sensor data is normally done directly from sensors or at a concentrator (such as the ARTS systems). 
Currently most sensor processing is done in (almost) real time and seldom done afterward. When anyone wants to do 
post-facto analysis of archived sensor data, they are provided access to one or more files that contain the sensor data 
(stored in a standard format) and they have to deal with how to unpack that file and extract the time-series sensor data. 
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Replay and fast replay of sensor streams is very rare, but such a relay capability will be highly necessary if the 
interpreter wants to compare real time data with archived data.  

If one wants to use data from multiple sensors in their analysis, unless they are available through the same concentrator, 
it is almost impossible to perform such analysis; this will need access to multiple sensor systems or concentrators 
(many of them have proprietary access control and authentication) as well as perform application-level time-alignment 
and data fusion. Hence providing capabilities for easy fusion of data from diverse and distributed sensor streams will 
be very useful for complex data analysis.  

In our Datanet federation Consortium (DFC) [23,24,25] project, multiple usage models have been identified. The type 
of sensors that we need to access include marine, seismic, hydro  and other  environmental sensors, engineering sensors 
(as from smart buildings as well as infrastructures such as bridges), biological sensors, and diagnostic sensors such as 
MRI. The main needs of this group of scientists include ease of access to sensor data, export to standard formats so 
that it is easy to manipulate, access for archived sensor data, synchronized playback and integrated metadata for 
discovery and ease of integration into workflows and access through tools and applications. In order to meet these 
needs, we have developed an extension to the iRODS system enabling access, store, archive, discover, replay and 
analyze real-time data streams. 

ANTELOPE REAL TIME SYSTEMS 

The Antelope Real Time Systems (ARTS) [21] sensor data 
concentrator is used by multiple projects. ARTS  (Figure 1) uses 
the concept of Object Ring Buffer (ORBs) to implement sensor 
data acquisition, transport, buffering, processing, archiving and 
distribution of environmental monitoring information. Antelope 
provides real time automated data processing and non-real time 
batch mode and interactive data processing. It has a built-in 
relational database for holding all raw data as well as processing 
results and other meta information. Antelope provides a 
comprehensive list of field interface modules for connecting 
with field sensor/digitizer/datalogger hardware to acquire data 
as well as state of health information and to control the field 
units. Antelope also has extensibility options in which 
application specific real time processing modules can be 
integrated easily for extracting information and knowledge from 
the raw data. Processing results are stored back into the same 
object oriented ring buffers as the raw data. These applications 
can be used for triggering new actions based on 
conditions/events emanating from one or more data streams. We 
use this facility to extract metadata automatically from a data stream. The Antelope System uses a relation-based 
database called Datascope which stores metadata in a relational schema as well as storing sensor data. It exposes a 
relational view of accessing sensor data as rows and allows time-interval querying. The ARTS system is used by 
multiple projects [26-29], including the SciON project [30], part of the DFC.  

IRODS SENSOR INTEGRATION 

The integration of the sensor data management in iRODS is done through an implementation of series of micro-
services. The micro-services interact with the ARTS system and perform operations that provide access to sensor data 
from ARTS. Other micro-services were implemented to manipulate packet data, perform conversion and store them 
into the iRODS system. We discuss them below. 

 

Figure 1 Antelope Real Time System 
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ARTS Micro-services 

As mentioned earlier, ARTS stores and disseminates sensor packets in an object ring buffer.  The ORBs store packets 
from multiple sensor streams.  In order to access sensor packets, we need to connect to the ARTS systems at the host 
where it is running and perform stream-oriented operations. 
We have implemented micro-services for connecting to an 
ORB and disconnecting from it. The stream-oriented micro-
services provide means to select a particular stream from the 
ORB and position the cursor for starting the read operation, 
using seek and position operations. The selection can also 
select one or more streams at the same time and can be used 
with wildcards for accessing data from multiple sensors, in 
interleaved time-series mode. Micro-services for getting the 
current packet, next packet in the time-series as well as 
installing a packet into the ORB are also implemented. Using 
these micro-services, one can open one or more streams and 
access packets in a row and then close the stream. Apart from 
these low-level micro-services for interacting with the ORB, 
two other micro-services called the msiAntelopeGet and the 
msiAntelopePut provide high level access for getting a stream 
in bulk mode and ingesting a stream back into the ORB 
systems. We also provide some heartbeat monitoring micro-
services for checking the status of the ORB.  

As mentioned before, a packet from a sensor stream can be 
quite complex with header and payload and the payload can 
also be quite complex. Micro-services are provided to decode 
and encode packets as well as unpack and repack a packet 
payload (using stuff and unstuff terminology which comes 
from ARTS). These micro-services along with another one 
which can perform format conversions of sensor data 
measurement form a suite of packet manipulation services 
that can be used in an iRODS workflow. Side Bar B provides 
brief explanations for these real-time sensor micro-services.  

Storage Formats 

The sensor data stream is stored in the iRODS system as files. We provide three different formats for storing the time-
series data. The first format is the compact format where the data packets are stored “as is”. This format conforms to 
the one exported by the ARTS ORB system and can be easily ingested back into the ORB if needed for playback. The 
space needed for this is also quite low compared to other formats. A second format of storage is in the netCDF/HDF5 
format called Common Data Language (CDL) format. This is human readable and is self-describing. We also provide 
storage in a third format using JSON. This format is useful for web-based apps. Figures 2 and 3 show some sample 
sensor data streams in the CDL and JSON formats. The schema for these two formats are defined such that the data 
can store a vector or a singleton measurement. Moreover, they are extensible as new data can be easily appended to 
the tail of these files.  

B. ARTS Micro-services 
• Single Packet Microservices 

– msiAntelopeGet   - get a packet 
– msiAntelopePut   - put a packet 

• Connection Microservices 
– msiOrbOpen - open an orb 
– msiOrbClose - close an orb 
– msiOrbTell   - redirect to another orb 

• Stream-level Microservices 
– msiOrbSelect   - select streams 
– msiOrbReject   - reject streams 
– msiOrbPosition - position read pointer 

by packetid 
– msiOrbSeek  - position read pointer by  

                              skipping  n packet 
– msiOrbAfter - position  by time 
– convertExec - format conversion 

    
• Packet Low-level Access Microservices 

– msiOrbGet   - get current packet 
– msiOrbReap   - get next packet 
– msiOrbReapTimeout - get next with 

timeout (return after timeout) 
– msiOrbPut  - push a packet into stream 

• Packet Manipulation Microservices 
– msiOrbUnstuffPkt - unpack a packet 
– msiOrbDecodePkt - decode a packet  
– msiOrbStuffPkt - pack a new packet 
– msiOrbENcodePkt - encode a packet 

• Heartbeat Microservices 
– msiOrbStat – get info on streams 
– msiOrbPing – check on an ORB  

 



 

6 

 

Demonstrating iRODS Sensor Workflows 

The micro-services implemented for real-time data access and manipulation can be used along with other object-
oriented micro-services in iRODS to perform many types of applications. Using the iRODS rule language we, can 
write applications that can be run interactively from the client or on the server side for continuous data reaping 
operations. We have developed several workflow programs to demonstrate the system capabilities. These include 
applications for (a) reaping n packets and storing them directly in the compact format in iRODS; (b) archiving one or 
more packets from a data stream in JSON format; (c) same as for CDL format; (d) ingesting packets into a sensor 
stream; ( e) perform an orb2orb copy of a sensor data stream. (f) Access data from iRODS-stored files in CDL format 
through the iRODS Cloud Browser; (g) Show plots of data streams using the HDFViewer.  Appendix A shows a few 
of the workflows that we have developed to showcase the application of these micro-services.    

Demonstrating Real-time Sensor Data Access 

One of the requirements for DFC is to show the streaming access of data from the iRODS system for sensor data. By 
its nature, the iRule command does not do streaming output and cannot deal with continuous data access. To perform 
this operation, we implemented a new iCommand called isense that can continuously reap packets from the iRODS-
ARTS integration and show it on the screen.  

       isense   orbHost    sensorName 

The command takes the ORB hostname, and a sensor name to continuously display the datapacket 

       isense "anfexport.ucsd.edu:cascadia" "TA_J01E/MGENC/SM100" 

 

Figure 2 CDL Format: Pressure Data 

 

netcdf barometric_pressure {
types: 
compound pressure_vector_t {

double  timestamp;
float pressure ;
float infrasound ;

}; // barometric_vector_t
dimensions:

time = UNLIMITED;
variables:

pressure_vector_t barometric(time) ;
barometric:standard_name = "two vector barometric pressure 

data" ;
barometric:long_name = "Barometric" ;

// global attributes:
:srcname = "TA_O03E/MGENC/EP1";
:packettype = "waveform";
:net = "TA";
:sta = "O03E";
:chan = "LDO";
:loc = "EP";
:sampratepersec = " 1.000";
:calib = "           1";
:calper = "-1.000";
:segtype = "5s";
:nsamps = "120";
:epochtime = "1446064294.9710000";
:epochstarttime = "Wed 2015-301 Oct 28 20:31:34.97100";
:epochendtime = "20:33:34.97100";

data:
barometric = 

{1446064294.9710000,   717022,   10159},
{1446064295.9710000,   717021,    8821},
{1446064296.9710000,   717023,   15918},
{1446064297.9710000,   717026,   21402},  

Figure 3JSON Format: Seismic VData 

 

{
"packets":[
{

"srcname":"TA_J01E/MGENC/SM100",
"pkttime":" 6/25/2015 (176)  0:30:23.968",
"bytes":"535",
"packettype":"waveform",
"channels":[
{

"channum":" 0",
"net":"TA",
"sta":"J01E",
"chan":"HNZ",
"loc":"",
"sampratepersec":"100.000",
"calib":"           1",
"calper":"-1.000",
"segtype":"5s",
"nsamps":"100",
"epochtime":"1435192223.9683931",
"epochstarttime":"Thu 2015-176 Jun 25  

0:30:23.96839",
"epochendtime":" 0:30:24.96839",
"data":[

{"v":"  -52727"},
{"v":"  -52729"},
{"v":"  -52729"},
{"v":"  -52731"},
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The hostname maps to a particular ORB 
and the stream identified by the second 
parameter, in this case, is a seismic stream 
coming from the Anza Seismic Network.  
One can easily pipe this output to a stream 
processing application and perform real-
time operations on the sensor stream. 

We have used the isense command to reap 
sensor data and have piped it over the web 
using the websocketd [31] command-line 
tool to send a stream of data over to the 
web. At the web client side, we used the 
SmoothieChart [32] to continuously plot 
the sensor data stream on a web browser.  
This setup is shown in Figure 4.  

CONCLUSION 

We have developed new features in the 
iRODS system to capture, store and archive RTDS. Our model captures RTDS into a continuum of discrete files and 
archives them in a few different standardized formats. It also provides packet-based and time-oriented access for 
replay of sensor data. By folding in the management of RTDS into iRODS we have extended the four main 
functionalities - federation, virtualization, metadata integration and policy-oriented data management – for real-time 
data. This extension to the iRODS system brings to sensor processing features and facilities such as single sign-on, 
third party access control lists (ACLs), location transparency, logical resource naming, and server-side modeling 
capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it 
straightforward to discover data streams of interest and maintain data provenance.  The workflow support in iRODS 
readily integrates sensor processing into any analytical pipeline. APIs for selecting, opening, reaping and closing 
sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into 
NetCDF/HDF5 and JSON formats. With this extension, iRODS is well on its way to being a urban platform for smart 
cities and connected communities. 
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APPENDIX A: SINGLE PACKET REAP 
reapAndConvertAntelopPacket { 

#Get Packet 

  msiOrbOpen(*orbHost,*orbParam, *orbId); 

  msiOrbSelect(*orbId, *Sensor,*sresOut); 

  msiOrbReap(*orbId, *pktId, *srcName, *oTime, *pktOut, *nBytes, *resOut); 

msiOrbDecodePkt(*orbId, *modeIn, *srcName, *oTime, *pktOut, *nBytes,  

*decodeBufInOut);                              

  msiOrbClose(*orbId); 

#Store Packet 

  *SColl = *Coll ++ "/" ++ *Sensor 

  *SFile = *SColl ++ "/" ++ "waveform.data"; 

  msiCollCreate(*SColl,"1",*STAT_1); 

  openForAppendOrCreate(*SFile, *Resc, *D_FD); 

  msiDataObjWrite(*D_FD, *decodeBufInOut, *WR_LN); 

  msiDataObjClose(*D_FD,*STAT_2); 

} 

 

openForAppendOrCreate(*SFile, *Resc, *D_FD) { 

# Sub Rule for appending if file already exists or creating header otherwise 

   *SObj = "objPath=" ++ *SFile ++ "++++openFlags=O_RDWR"; 

   msiDataObjOpen(*SObj, *D_FD); 

   msiDataObjLseek(*D_FD, *Offset,*Loc,*Status1);  

} 

openForAppendOrCreate(*SFile, *Resc, *D_FD) { 

   msiDataObjCreate(*SFile, *Resc, *D_FD); 

} 

INPUT Coll="/rajaanf/home/rods/newsenstest",   

    *Resc="destRescName=anfdemoResc++++forceFlag=", *Sensor= "TA_J01E/MGENC/SM100",  

     *orbHost="anfexport.ucsd.edu:cascadia", *orbParam="", *modeIn=2, *Offset="0",  

     *Loc="SEEK_END" 

OUTPUT *pktId, *srcName, *oTime, *nBytes, *pktOut, *decodeBufInOut, ruleExecOut 
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APPENDIX B: ORB2ORB 
 

orb2OrbReapedPacketIngestion { 

#get a MGENC packet  from cascadia ORB and put it in demo  ORB 

# also write also in a file to compare 

 

# get the packet and the write into file 

      msiAntelopeGet(*pktSelectInfo, *firstPktId, *lastPktId, NumOfPkts,*outBufParam);  

     *SColl = *Coll ++ "/" ++ *Sensor 

     *SFile = *SColl ++ "/" ++ "*firstPktId" ++ "_" ++ "*lastPktId" ++ ".data"; 

     msiCollCreate(*SColl,"1",*STAT_1); 

     msiDataObjCreate(*SFile, *Resc, *D_FD); 

     msiDataObjWrite(*D_FD, *outBufParam, *WR_LN); 

     msiDataObjClose(*D_FD,*STAT_2); 

 

# write to orb 

     msiAntelopePut(*orbName, *srcName, *timeStamp, *outBufParam);  

} 

INPUT *pktSelectInfo="<ORBHOST>anfexport.ucsd.edu:cascadia</ORBHOST> 

<ORBSELECT>TA_J01E/MGENC/SM1</ORBSELECT><ORBWHICH>ORBOLDEST</ORBWHICH> 

<ORBNUMOFPKTS>1</ORBNUMOFPKTS><ORBNUMBULKREADS>1</ORBNUMBULKREADS> 

<ORBPRESENTATION>ONEPKT</ORBPRESENTATION>", 

*Resc="destRescName=anfdemoResc++++forceFlag=",  

*Coll="/rajaanf/home/rods/SensorData", *Sensor="TA_J01E_MGENC_SM1",  

*orbName="anfdevl.ucsd.edu:demo", *srcName="DFC_UNC/MGENC/T1", *timeStamp="" 

OUTPUT *outBufParam, *firstPktId, *lastPktId, *NumOfPkts,  ruleExecOut 
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APPENDIX C: CONTINUOUS REAP 
continuousReap { 

  delay("<PLUSET>30s</PLUSET><EF>10m</EF>") { 

     msiAddKeyVal(*KVP,"selectCriteria",*pktSelectInfo); 

msiAntelopeGet(*pktSelectInfo, *firstPktId, *lastPktId,     

           *NumOfPkts,*outBufParam);  

     *SColl = *Coll ++ "/" ++ *Sensor 

     *SFile = *SColl ++ "/" ++ "*firstPktId" ++ "_" ++ "*lastPktId" ++ ".data"; 

     msiCollCreate(*SColl,"1",*STAT_1); 

     msiDataObjCreate(*SFile, *Resc, *D_FD); 

     msiDataObjWrite(*D_FD, *outBufParam, *WR_LN); 

     msiDataObjClose(*D_FD,*STAT_2); 

     msiAddKeyVal(*KVP,"firstPktId","*firstPktId"); 

     msiAddKeyVal(*KVP,"lastPktId","*lastPktId"); 

     msiAddKeyVal(*KVP,"numOfPkts","*NumOfPkts"); 

     msiAssociateKeyValuePairsToObj(*KVP, *SFile, "-d"); 

    } 

    writeLine("stdout", "Delayed Rule Launched"); 

} 

INPUT *pktSelectInfo="<ORBHOST>anfexport.ucsd.edu:cascadia</ORBHOST> 

<ORBSELECT>TA_M04C/MGENC/EP40</ORBSELECT><ORBWHICH>ORBOLDEST</ORBWHICH> 

<ORBNUMOFPKTS>8</ORBNUMOFPKTS><ORBNUMBULKREADS>4</ORBNUMBULKREADS>", 

*Resc="destRescName=anfdemoResc++++forceFlag=", 

*Coll="/rajaanf/home/rods/SensorData", 

  *Sensor= "TA/M04C/MGENC/EP40" 

OUTPUT ruleExecOut 
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