
Distributing the iRODS Catalog: A Way Forward
Terrell Russell

Renaissance Computing
Institute (RENCI)
UNC Chapel Hill

unc@terrellrussell.com

Michael Stealey
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill

stealey@renci.org

Jason Coposky
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
jasonc@renci.org

Ben Keller
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
kellerb@renci.org

Claris Castillo
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
claris@renci.org

Ray Idaszak
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
rayi@renci.org

Alex Feltus
Clemson University

Clemson, SC
ffeltus@clemson.edu

ABSTRACT

In the last few years, researchers in academia and in both governmental and corporate sectors have become more

interested in spanning greater physical distances within a single logical namespace for their files (iRODS Zone).

However, connecting to a distant iRODS Catalog Provider presents a significant, if not unbearable, hurdle. This

paper explores a solution to this new use case with a clustered database technology providing the iRODS metadata

catalog (iCAT).

Keywords

iRODS, database, SQL, MariaDB, Galera, cluster, metadata

INTRODUCTION

An iRODS[1][2][3] use case was presented in which geographically disparate participants wanted to belong to the same

iRODS Zone for ease of search and discovery, but they also wanted all iRODS servers to be provider nodes serving

their own catalog. There was a desire to be able to decentralize the traditionally singular iCAT catalog database

in a way that all participants could make use of whichever iCAT provider was closest to them rather than having

to federate with separate iRODS Zones in distant physical locations. A multi-master solution would provide local

authentication and improved metadata read performance while continuing to provide locality of reference for data at

rest.

The initial requirements for such a system:

• Every iRODS provider node would contain the iCAT catalog and local storage space that could be uniquely

assigned to that node as a resource.

• Files would be transferred to the iRODS provider node deemed closest to the point of file origination with

respect to network latency and disk I/O metrics.

• All nodes must pass some sort of quality assurance test beyond the standard iRODS test suite which only

exercises a single node via the default demoResc resource.

iRODS UGM 2017 June 13-15, 2017, Utrecht, Netherlands
[Author retains copyright.]

1

PROOF OF CONCEPT

The proof of concept solution being presented here uses MariaDB[4] configured as a Galera cluster to decentralize

the iCAT catalog database across all participating iRODS provider nodes.

WAN replication will use ample latency values commensurate for an international WAN deployment.

A proof of concept testbed comprised of three iRODS provider nodes was deployed to form a single zone named

tempZone within a MariaDB Galera cluster. Each node within the testbed is a single CentOS 7 VM, and can

be configured to use differing latency values via NetEm[5] to simulate the kind of network traffic that would be

experienced in a WAN configuration. Each VM is configured with a user account named galera which has rights to

run Docker.

Figure 1. Baseline Docker deployment of three iRODS Catalog Providers via MariaDB Galera Cluster.

The iRODS provider node[6][7] is using MariaDB Galera cluster in Docker[8] and is based on a centos:7 image[9].

Design

The proof of concept has been designed to run in Docker and does not prohibit storing the files for iRODS and

MariaDB to the host. Generally an iRODS system deployment would use service level accounts named irods and

mysql to retain/own the iRODS service files and the MariaDB files respectively. The Docker image used herein has

defaulted these system users to be:

irods: UID=996, GID=996

mysql: UID=997, GID=997

If the user chooses to deploy the irods-provider-galera image using local volume mounts, then these UID and

GID values would be found on the local system for the user:group in charge of the shared volumes. The UID and

GID for both the irods and mysql user can be set at runtime to be any valid combination within the host system

the container is being run from.

2

Setup

A set of directories in /var are set aside to mount to the irods-provider-galera container to hold the iRODS and

MariaDB files. The following setup-galera script outlines the creation and initial permissions for these directories:

1 #!/ usr /bin /env bash

2 sudo rm −r f / var / ga l e r a

3 sudo mkdir −p /var / ga l e r a / i n i t

4 sudo mkdir −p /var / ga l e r a / vau l t

5 sudo mkdir −p /var / ga l e r a / var mysql

6 sudo mkdir −p /var / ga l e r a / va r i r od s

7 sudo mkdir −p /var / ga l e r a / e t c i r o d s

8 sudo chown −R ga l e r a : g a l e r a /var / ga l e r a

9 e x i t 0

The user named galera will be in charge of running irods-provider-galera, and has the following attributes:

1 $ id ga l e r a

2 uid=2112(ga l e r a) g id=2112(ga l e r a) groups=2112(ga l e r a) , 992(docker)

When instantiating the iRODS container we set the environment variables of the irods and mysql users to use UIDs

and GIDs that are locally available:

-e UID_MYSQL=2000 \ # UID that is unassigned on the localhost

-e GID_MYSQL=2112 \ # GID assigned to user galera on the localhost

-e UID_IRODS=2112 \ # UID assigned to user galera on the localhost

-e GID_IRODS=2112 \ # GID assigned to user galera on the localhost

View of /var/galera before irods-provider-galera is run:

1 $ l s −a lh /var / ga l e r a /

2 t o t a l 4 . 0K

3 drwxr−xr−x 7 ga l e r a ga l e r a 77 Jun 11 11 :34 .

4 drwxr−xr−x . 21 root root 4 .0K Jun 11 11 :34 . .

5 drwxr−xr−x 2 ga l e r a ga l e r a 6 Jun 11 11 :34 e t c i r o d s

6 drwxr−xr−x 2 ga l e r a ga l e r a 6 Jun 11 11 :34 i n i t

7 drwxr−xr−x 2 ga l e r a ga l e r a 6 Jun 11 11 :34 va r i r od s

8 drwxr−xr−x 2 ga l e r a ga l e r a 6 Jun 11 11 :34 var mysql

9 drwxr−xr−x 2 ga l e r a ga l e r a 6 Jun 11 11 :34 vau l t

The next three sections will step through testing the clustered iCAT, first with Docker deploying all three nodes on

a single machine, then Docker deploying an iRODS catalog provider on three VMs, and finally on three VMs with an

additional latency introduced to simulate longer distances.

LAN - LOCAL MACHINE

The first test runs on a single VM and was created to demonstrate the basic principles of using the MariaDB Galera

cluster as the iRODS catalog for multiple provider nodes. The test script does the following:

• Creates a local Docker network named galeranet so that known IP addresses can be assigned to each node.

• Stands up the initial bootstrap node using mostly defaults as set by the Docker image.

• Stands up two additional nodes in series that join the cluster named galera as they discover others on the local

galeranet network.

3

As each node completes its stand up routine, it reports the number of nodes participating as the wsrep_cluster_size,

lists the databases and the grants for user 'irods'@'localhost', and finally prints out all tables within the iCAT

database.

Since this initial test was performed on a single VM using a Docker network, it was not subjected to any external

testing and only subject to simple iCommands to validate synchronization between nodes and partitioning between

named node resource definitions.

The expected output was observed and showed that the three nodes were up and connected within the Docker network:

1 $ docker ps

2 CONTAINER ID IMAGE STATUS NAMES

3 b51fcb1501ec mjs tea l ey / i rods−provider−ga l e r a : 4 . 2 . 1 Up 44 minutes i rods−ga le ra−node−3

4 654 b094fc554 mjs tea l ey / i rods−provider−ga l e r a : 4 . 2 . 1 Up 45 minutes i rods−ga le ra−node−2

5 cc51c3413306 mjs tea l ey / i rods−provider−ga l e r a : 4 . 2 . 1 Up 45 minutes i rods−ga le ra−node−1

LAN - VIRTUAL MACHINES

The second test runs on three VMs with Docker running a clustered iRODS catalog provider on each and uses the

built-in iRODS test suite located at /var/lib/irods/scripts/run_tests.py. The limitation of the test suite is that

it was not necessarily designed to run against a clustered database, so the default notion of demoResc is problematic

when the goal is to test across a distributed iCAT cluster. Because of this limitation, we issued python run_tests.py

--run_python_suite on each VM/node within the cluster, one at a time.

Figure 2. Simple test run on one of the three nodes in a clustered catalog provider.

While the test suite runs on one node, the other nodes were manually monitored via various iCommands and SQL

queries validating that the test files and corresponding database entries were being created as expected and visible

from the other nodes.

The run_tests.py script is the default script used for iRODS testing and is part of a normal iRODS installation.

As an initial check, it was chosen to run with the --run_python_suite option which takes roughly four hours to

complete all its nearly 1500 tests.

4

Since iRODS is being run in Docker, it is necessary to invoke the test suite from within the Docker container. This

can be accomplished by connecting to the container as the irods user, changing to the scripts directory, and issuing

the test run call.

1 [ga lera@galera−1 ˜] $ docker exec − t i −u i r od s i rods−ga le ra−1 /bin /bash

2 bash−4.2$ cd ˜

3 bash−4.2$ pwd

4 /var / l i b / i r od s

5 bash−4.2$ cd s c r i p t s /

6 bash−4.2$ python run t e s t s . py −−run python su i t e

7 i r od s . t e s t . test xmsg . Test Xmsg . t e s t s end and re c e i v e one xmsg . . . ok

8 i r od s . t e s t . t e s t i admin . Test Iadmin . t e s t a dd ch i l d t o r e s c f o r b i dd en cha r a c t e r s 3 4 4 9 . . . ok

9 i r od s . t e s t . t e s t i admin . Test Iadmin . t e s t a dm i n l i s t i n g s . . . ok

10 i r od s . t e s t . t e s t i admin . Test Iadmin . t e s t authent i ca t i on name . . . ok

11 i r od s . t e s t . t e s t i admin . Test Iadmin . t e s t c r e a t e and r emove coo rd i na t i n g r e s ou r c e . . . ok

12 . . .

The running tests can be observed from the other nodes via iCommands or mysql queries (in this case, ils ../ from

irods-galera-2:

1 [ga lera@galera−2 ˜] $ docker exec − t i −u i r od s i rods−ga le ra−2 i l s . . /

2 /tempZone/home :

3 C− /tempZone/home/ a l i c e

4 C− /tempZone/home/bobby

5 C− /tempZone/home/ i s s u e 3 1 0 4 u s e r

6 C− /tempZone/home/ other rods

7 C− /tempZone/home/ pub l i c

8 C− /tempZone/home/ rods

Over nearly twelve hours, the three test runs completed, in turn, from each node in the cluster and the outputs were

consistent with running the test suite in a single server configuration.

1 $ python run t e s t s . py −−run python su i t e

2 i r od s . t e s t . test xmsg . Test Xmsg . t e s t s end and re c e i v e one xmsg . . . ok

3 i r od s . t e s t . t e s t i admin . Test Iadmin . t e s t a dd ch i l d t o r e s c f o r b i dd en cha r a c t e r s 3 4 4 9 . . . ok

4 i r od s . t e s t . t e s t i admin . Test Iadmin . t e s t a dm i n l i s t i n g s . . . ok

5 i r od s . t e s t . t e s t i admin . Test Iadmin . t e s t authent i ca t i on name . . . ok

6 i r od s . t e s t . t e s t i admin . Test Iadmin . t e s t c r e a t e and r emove coo rd i na t i n g r e s ou r c e . . . ok

7 . . .

8 i r od s . t e s t . t e s t i rmd i r . Test I rmdir . t e s t i rmd i r o f c o l l e c t i o n c o n t a i n i n g d a t a o b j . . . ok

9 i r od s . t e s t . t e s t i rmd i r . Test I rmdir . t e s t i rmd i r o f d a t a o b j . . . ok

10 i r od s . t e s t . t e s t i rmd i r . Test I rmdir . t e s t i rmd i r o f emp t y c o l l e c t i o n . . . ok

11 i r od s . t e s t . t e s t i rmd i r . Test I rmdir . t e s t i rmd i r o f n o n e x i s t e n t c o l l e c t i o n . . . ok

12 i r od s . t e s t . t e s t i q u e s t . Te s t Ique s t . test iquest MAX SQL ROWS results 3262 . . . ok

13

14 −−
15 Ran 1468 t e s t s in 13106.840 s

16

17 OK (skipped=89)

18 < main . Reg i s t e redTestResu l t run=1468 e r r o r s=0 f a i l u r e s=0>

5

WAN - VIRTUAL MACHINES

The third test was designed to run a parallel test script that puts and gets large files into iRODS in a continuous

loop until broken by the user. This script uses GNU parallel[10].

The parallel put/get test was first run on the testbed without any additional latency introduced to the nodes and

allowed to run for six hours without error.

Then, varying amounts of latency were added to each node using NetEm to simulate the distances involved with

real world WAN deployments of iRODS. The parallel test script was again allowed to run against the nodes in this

configuration for multiple hours.

Figure 3. Concurrent parallel test scripts running on a three-node clustered catalog provider.

The following real-world latency approximations were used to add delay to each node, respectively:

Low National (Chicago/RENCI): 20ms

Medium National (Coast to Coast - SanFrancisco/RENCI): 60ms

International (RENCI/Netherlands): 117ms

The approximations were implemented via NetEm as follows:

1 ga le ra −1: sudo tc qd i s c add dev eth0 root netem delay 20 .0ms

2 ga le ra −2: sudo tc qd i s c add dev eth0 root netem delay 60 .0ms

3 ga le ra −3: sudo tc qd i s c add dev eth0 root netem delay 120 .0ms

6

Since NetEm affects both incoming and outgoing traffic, the effect was cumulative across nodes which can be observed

in the RTT between nodes.

galera-1 galera-2 galera-3

galera-1 n/a 80.5ms 140.5ms

galera-2 80.5ms n/a 180.4ms

galera-3 140.5ms 180.5ms n/a

Table 1. Round Trip Time (RTT) within the three-node testbed

After the initial parallel test on a single node, the parallel_get_put.sh script was launched simultaneously on all

three nodes. The scripts first generate 256 40 MB files and then start sending them via iput in 30 parallel threads

to the local iRODS server instance onto its local storage resource. Once all 256 files have been transferred, they

are retrieved using iget in 30 parallel threads. This process is embedded in a loop and continues until an error is

encountered or is manually stopped.

The three nodes ran without error for over two hours until manually interrupted and forcibly quit. During this period

each node completed a number of put/get loops based on the distance from its peers:

galera-1 48 loops

galera-2 12 loops

galera-3 3 loops

There was a single multi-master deadlock error during this testing where the database complained of a timeout

during the concurrent writes. This was due to the relatively large number of operations that occur within the

database transaction during a single iRODS connection. We have since heard anecdotal evidence of this same case

from others; concurrent load tripping a cluster timeout when the latency is high between cluster nodes. The clustered

nodes have a default timeout setting that interprets a delay as their peer not responding. We expect that adjusting

the default timeout can reduce the rate of incidence.

In addition to adjusting the timeout, there are two main ways that iRODS can improve to avoid deadlock errors

of this type. The first would be to add a simple retry upon network timeout. Such a retry would push back the

threshold where the concurrent writes trigger a timeout, but ultimately, would be a temporary fix and would not

solve the problem for a growing system. A more robust path would be to reduce the number of operations that occur

within the database transactions themselves. If the database is doing less work within each transaction, it is less

likely that the system will hit a timeout and interpret it as a deadlock.

7

FUTURE WORK

This exercise has demonstrated that a distributed cluster for the iCAT is feasible, but that there is much more work

to do. The most straightforward efforts will be to spend more time testing on real networks over real distances,

rather than simulated. A second focus should be to test other database technologies besides MariaDB’s Galera. We

are interested in working with CockroachDB as the next viable candidate. The third type of future work should be

testing targeted edge cases that will push on the overlap and potential friction between the database itself and how

iRODS aims to present a consistent surface to its clients. And lastly, we need to investigate the upgrade or migration

path for how an existing iRODS Zone moves from a singular iCAT to a clustered iCAT.

CONCLUSION

iRODS works when using a clustered SQL database and can satisfactorily address the use case defined by global

organizations that want to leverage a unified namespace. Like with all new use cases, some defaults settings should

be adjusted to accommodate a different set of assumptions. The iRODS architecture proved flexible enough to easily

adapt to this new use case of a high latency, WAN, multi-master deployment, however we need more testing and real

world use cases to drive the next set of improvements.

ACKNOWLEDGEMENTS

The authors would like to thank the ongoing support of the Renaissance Computing Institute (RENCI) at UNC-

Chapel Hill for the networking and virtual machine infrastructure to conduct these tests. In addition, the expertise

and use case support from the SciDAS[11] project and BioTeam[12] proved invaluable.

REFERENCES

[1] iRODS website. https://irods.org

[2] iRODS. https://github.com/irods/irods

[3] iRODS Primer 2: Integrated Rule-Oriented Data System (2017). Hao Xu, Terrell Russell, Jason Coposky,

Arcot Rajasekar, Reagan Moore, Antoine de Torcy, Michael Wan, Wayne Schroeder, and Sheau-Yen Chen.

Synthesis Lectures on Information Concepts, Retrieval, and Services, March 2017, Vol. 9(3):1-131.

https://doi.org/10.2200/S00760ED1V01Y201702ICR057

[4] MariaDB website. https://mariadb.org/

[5] Stephen Hemminger (2005). NetEm - Emulating Real Networks in the Lab. . Linux Conf, Canberra, Australia.

April 2005. https://linux.org.au/conf/2005/Papers/Stephen%20Hemminger/index.html

[6] Michael Stealey (2017). iRODS Provider, Galera. https://github.com/mjstealey/irods-provider-galera

[7] Michael Stealey (2017). Documentation for iRODS Provider, Galera.

https://mjstealey.github.io/irods-provider-galera/

[8] Michael Stealey (2017). MariaDB Galera Docker Container. https://github.com/mjstealey/mariadb-galera

[9] Docker Hub - CentOS. https://hub.docker.com/_/centos/

[10] O. Tange (2011). GNU Parallel - The Command-Line Power Tool. login: The USENIX Magazine, February

2011:42-47.

[11] Frank Feltus, Claris Castillo, Ray Idaszak, Melissa Smith, Stephen Ficklin (2017). National Cyberinfrastructure

for Scientific Data Analysis at Scale (SciDAS). NSF Award 1659300.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1659300

[12] BioTeam website. https://bioteam.net/

8

