
iRODS user empowerment:
A matter of Sudo microservices

Chris Smeele - ITS/ResearchIT

ITS – Research IT

The need for automated privileged operations

Privileged operations can be needed to ensure

– process quality

– system security

Implementation:

– manually: by designated staff

– automated: policy controlled process (user empowerment)

Example of "manual" implementation: iadmin requires actor to be rodsadmin type user

Real-time response requirements drive automation of privileged operations

ITS – Research IT

Model of automated privileged operations

control
• start supervised process

check
• ensure that preconditions are met

execute
• execute operation with elevated privileges

return
• end supervised process

ITS – Research IT

So how can we empower our iRODS users?

Why not create a set of microservices that
1) wrap selected existing iRODS functions
2) execute them with 'rodsadmin'
privileges on behalf of the user

analog to the Linux "Sudo" command

ITS – Research IT

Design principles for our Sudo microservices

Security by design

• not enabled unless a precondition policy is defined

Each privileged operation must be singular and targeted

• to minimize impact of any potential flaws in design, implementation or configuration

A privileged operation should be able to take part in a workflow

• this allows for support of more complex use cases

ITS – Research IT

Extended model of privileged operations

control
• start supervised process

check
• ensure that preconditions are met

execute
• execute operation with elevated privileges

trigger
• optionally trigger next workflow step

return • end supervised process

ITS – Research IT

Implementation in Sudo microservices

control
• user rule calls Sudo microservice XXX

check

• acPreSudoXXX policy used to check preconditions and to
authorize user (process stops here if this policy fails)

execute
• execute XXX operation with elevated privileges

trigger
• acPostSudoXXX policy can initiate next workflow step

return • Sudo microservice returns control to user rule

ITS – Research IT

Index of the set of SUDO microservices

• iRODS User management

– msiSudoUserAdd

– msiSudoUserRemove

• iRODS Group management

– msiSudoGroupAdd

– msiSudoGroupRemove

– msiSudoGroupMemberAdd

– msiSudoGroupMemberRemove

•Access control

– msiSudoObjAclSet

•Metadata management

– msiSudoObjMetaAdd

– msiSudoObjMetaSet

– msiSudoObjMetaRemove

ITS – Research IT

Example use case: delegated group management

iRODS users 'ton' and 'chris' are regular rodsusers.

Via a policy they are allowed to manage the iRODS group 'humanities'

In a rule they can call a Sudo microservice to add user 'john' to this group:

....

....

msiSudoGroupMemberAdd ('humanities', 'john', *policyKv);

....

....

NB: *policyKv is a variable that can be used to optionally pass additional information

ITS – Research IT

Preparation for this use case by rodsadmin

Use metadata so that users "ton" and "chris" act as admins for group "humanities"

imeta add –u humanities Admin ton

imeta add –u humanities Admin chris

and add the following policy to the rulebase to allow admins to add group members:

acPreSudoGroupMemberAdd(*groupName, *username, *policyKv) {

foreach (*admin in SELECT META_DATA_ATTR_VALUE

WHERE USER_NAME = 'humanities'

AND META_DATA_ATTR_NAME = 'Admin'

AND META_DATA_ATTR_VALUE = '$userNameClient') {

succeed;

}

fail; # disallow all other users

}

ITS – Research IT

Sudo feature to overcome chicken and egg issue

Extended use case:

- we also want to use Sudo services to allow 'ton' and 'chris' to add groups

- (only) the actor should also act as the initial 'admin' of the newly created group

Preparation:

- establish policy to allow ton and chris to use msiSudoGroupAdd()

rule body that ton can use to add group 'science':

....

msiSudoGroupAdd('science', 'Admin', 'ton', '', *policyKv);

....

....

will be added by Sudo service
as initial metadata to the

'science' group object,
immediately after the group is

created

ITS – Research IT

Demo

ITS – Research IT

Status of the Sudo microservices set

• Used by our university in our Yoda production systems (iRODS 4.1.8 based)

• Microservices plugin set

– source and an RPM binary installable with iRODS 4.1.8 located at

– https://github.com/UtrechtUniversity/irods-sudo-microservices/

• Current plan: package and make available as open source by July

– with binaries for latest releases iRODS 4.1 and 4.2

https://github.com/UtrechtUniversity/irods-sudo-microservices/

ITS – Research IT

iRODS User Empowerment

A matter of Sudo microservices

For more information: yoda@uu.nl
Chris Smeele can be reached at c.j.smeele@uu.nl

mailto:yoda@uu.nl

ITS – Research IT

ITS – Research IT

SUDO microservices in detail: user management

• msiSudoUserAdd (

*userName,

*initialAttr,

*initialValue,

*initialUnit,

*policyKv

)

• msiSudoUserRemove (

*username,

*policyKv

)

ITS – Research IT

SUDO microservices in detail: group management

• msiSudoGroupAdd (

*groupName,

*initialAttr,

*initialValue,

*initialUnit,

*policyKv

)

• msiSudoGroupRemove (

*groupName,

*policyKv

)

• msiSudoGroupMemberAdd (

*groupName,

*username,

*policyKv

)

• msiSudoGroupMemberRemove (

*groupName,

*userName,

*policyKv

)

ITS – Research IT

SUDO microservices in detail: ACL management

• msiSudoObjAclSet (

*recursive,

*accessLevel,

*otherName,

*objPath,

*policyKv

)

*recursive flag is of type integer
0 = no recursion, 1 = apply recursion

*accesslevel can be any of "null", "read",
"write", "own", "inherit", "noinherit"
NB: do not specify an 'admin:' prefix, this will be
applied automatically

*otherName is the name of an existing
user or group

ITS – Research IT

SUDO microservices in detail: metadata management

• msiSudoObjMetaAdd (

*objName,

*objType,

*attribute,

*value,

*unit,

*policyKv

)

• msiSudoObjMetaSet:

(parameters similar to microservice

msiSudoObjMetaAdd)

• msiSudoObjMetaRemove (

*objName,

*objType,

*wildcards,

*attribute,

*value,

*unit,

*policyKv

)

*wildcard flag is of type integer
0 = no wildcard, 1 = apply wildcard
wildcards follow imeta command syntax

