
Davrods enhancements as part of the Grassroots
Infrastructure

Simon Tyrrell
The Earlham Institute

Norwich Research Park,
Norwich, NR4 7UZ, UK

simon.tyrrell@earlham.ac.uk

Xingdong Bian
The Earlham Institute

Norwich Research Park,
Norwich, NR4 7UZ, UK

xingdong.bian
@earlham.ac.uk

Robert P. Davey
The Earlham Institute

Norwich Research Park,
Norwich, NR4 7UZ, UK

robert.davey@earlham.ac.uk

ABSTRACT

This paper explains the enhancements we have made to the Davrods Apache module to expose a range of iRODS

functionality that was previously unavailable, and configuration improvements to allow the default interface to be

made more user-friendly. We have made changes to Davrods so that iRODS can be used as the storage mechanism

for public facing websites without the need for users to be authenticated, making it easier to produce web-based data

repository interfaces. We provide code to expose iRODS metadata as cross-referencing links between data objects

and collections. We also describe a REST API that has been added for metadata functionality within iRODS to

facilitate metadata manipulation by end users with the supplied client-side code from within their web browsers or

from other web services.

Keywords

iRODS, Apache httpd web server, infrastructure, web client, RESTful web service

Introduction

The Grassroots[1] Infrastructure project aims to create an easily-deployable suite of computing middleware tools to

help users and developers gain access to scientific data infrastructure that can easily be interconnected.

With the data-generative approaches that are increasingly common in modern life science research, it is vital that

the data and metadata produced by these efforts can be shared and reused. The Grassroots Infrastructure project

wraps up industry-standard software tools along with our own custom open-source software tools to give a consistent

API that can be federated with others in terms of both data and services. This means institutions and groups can

deploy a simple lightweight software suite, locally or as a virtual machine, to expose institutional data, connect up

any existing data services, and federate their instance of Grassroots with other remote instances.

One of the major aims of the Grassroots Infrastructure is to allow users to share their wheat data, although it is by no

means organism-specific, as easily and seamlessly as possible. For data storage, we use the iRODS[2] data grid system

that gives users access to potentially differing file systems and data resources through a single data abstraction layer.

Users are able to carry out typical filesystem actions as normal, such as creating files and directories and maintaining

permissions, but with extra features such as distributed storage viewable across different institutions and the ability

to add extensive metadata to files and directories.

iRODS ships with command-line clients to provide access to data storage managed by the platform, and many

Application Programming Interfaces (APIs) exist in a variety of languages to support programmatic development

such as PyRods[3] and Jargon[4]. An Apache httpd[5] module based on the WebDAV protocol, Davrods[6], exists

to allow access to iRODS data stores using standard WebDAV commands. This project supports much of the basic

functionality of a web-based data dissemination stack, but there were a set of missing features of Davrods that we

have developed that can improve data searching, as well as the general user experience.

iRODS UGM 2017 June 13-15, 2017, Utrecht, Netherlands
Copyright (c) 2017, The Earlham Institute

1



Themed listings

The standard web pages produced by Davrods resemble the basic directory listings produced by Apache. Whilst

simple and effective, the functionality of these pages is lacking, and there is little configuration ability to make

their look and feel customisable. Therefore, using the concepts from the autoindex module[7], we have developed

a mechanism to insert themes into Davrods listing pages using typical HTML and Cascading Style Sheets (CSS)

elements. Three points in the web page were identified to allow the insertion of custom HTML chunks: the head

section of the web page and the sections before and after the iRODS directory listings. These HTML chunks can either

be set as strings in the Apache configuration file or point to separate files on disk to allow for easy modification. Any

changes made to the files are instantly available for all subsequent requests whereas any changes to the string-based

configuration require a restart of the Apache server. Additionally, the columns of the listings table have been marked

up with consistent CSS classes to allow for easy customisation by server administrators when developing CSS for

use on their own project or institution pages. For each of its generated pages, Davrods includes a link to the parent

collection as a form of breadcrumbs. However if the iRODS instance has a multi-level hierarchy in its iRODS zone

this can become unwieldy as a user can only travel up one level in the hierarchy at a time. We replaced this single

level breadcrumb with a navigation element containing the full breadcrumb chain for the set of parent collections up

to the root collection, thus resembling the navigation concept commonly used on many websites.

The autoindex module also includes the ability to specify default icons for various arbitrary data types, typically

denoted by file extension. We have developed this within Davrods so that custom icons can be used for the iRODS

data objects and collections. This can be further refined and default icons can be specified for data objects with

unknown file types. For example, to use the icon stored within the image file at /davrods_files/images/picture

for PNG, GIF and JPEG images, the directive would be:

DavRodsAddIcon /davrods_files/images/picture .png .gif .jpg .jpeg

An example screenshot of various parts of the theming functionality is shown in figure 1.

Public access

The iRODS data workflow is based around the concept that users log in to see the data that they have permissions

to access. Often for public websites serving open access data, there is a desire to give full read access to browse a list

of files and directories without the need for dedicated login credentials. We have added the ability to have a default

user to be specified within the Apache server configuration, that would be used to log into the iRODS system without

the need for any user intervention. For example, to specify that the iRODS user called public user, with a password

of anonymous, is used, the following configuration would be used:

AuthType None

Require all granted

DavRodsDefaultUsername public_user

DavRodsDefaultPassword anonymous

In effect, this creates a public-facing website using the data stored in an iRODS storage system that is indistinguishable

from a site generated from a regular directory on the local filesystem.

Metadata

One of the major benefits of iRODS is its ability to add metadata as attribute-value pairs to any data objects or

collections stored within it. Previously with Davrods, any metadata held in an iRODS instance was not exposed.

We therefore provide Davrods functionality to make metadata both viewable and editable, as well as a REST API

interface to allow programmatic interrogation and modification of iRODS metadata. For giving read-only access to

the metadata, the configuration directive DavRodsHTMLMetadata is used and it takes one of the following values:

2



Figure 1. The themed interface showing the breadcrumbs, icons and HTML sections that can be configured

• off : The metadata display is disabled.

• full: All of the metadata is displayed for each data object and collection.

• on demand: None of the metadata is initially included with the HTML pages sent by Davrods. Instead it can

be delivered upon demand and inserted into the web page via AJAX requests from when the user clicks on the

appropriate link associated with a given data object or collection.

Searching and linking

Each of the metadata attribute-value pairs are exposed as hyperlinks giving users a straightforward and standard

method to find data objects or collections also containing the same pair. Additionally there is a general search

mechanism provided to search across the entire metadata collection and this is available as a form within each page

that Davrods delivers.

REST API

As well as adding a read-only view of the metadata, the ability to add, edit or delete metadata from within in a

web browser for users with the appropriate permissions is also provided. For this feature to be active, the following

3



Figure 2. The metadata editor

configuration directive needs to be set:

DavRodsHTMLMetadataEditable true

The manipulation of metadata is facilitated by a REpresentational State Transfer (REST) API for querying and

manipulating the iRODS metadata. The base URL for this API is at /api/metadata although the prefix can be

changed by altering the DavRodsAPIPath parameter in the Apache configuration. The REST API contains the

following functions:

• get: Retrieve all of the associated metadata for an iRODS item. It takes a single parameter, id, which is the

iRODS id of a data object or collection to be queried. For example, to get the metadata for a data object with

the id of 1.10021, the URL to call would be:

api/metadata/get?id=1.10021

4



• search: Retrieve a list of all data objects and collections that have a given metadata attribute-value pair. It

takes two parameters: key, the attribute to search for, and value which specifies the metadata value. There is a

third optional parameter, units, for specifying the units that the metadata attribute-value pair must also have.

So, to search for all of the data objects and collections that have an attribute called volume with a value of 11:

api/metadata/search?key=volume&value=11

• add: Add a metadata attribute-value pair to a data object or collection. It takes three parameters: id, the

iRODS id of a data object or collection, key, the attribute to add, and value which specifies the metadata value

to be added. As with the search call listed above, there is a fourth optional parameter, units, for specifying

the units that the metadata attribute-value pair will have. So, to add an attribute called volume with a value

of 11 to a data object with the id of 1.10021:

api/metadata/add?id=1.10021&key=volume&value=11

• edit: Edit a metadata attribute-value pair for a data object of collection and replacing one or more of its

attributes, values, or units. It takes the following required parameters: id, the iRODS id of a data object or

collection, key, the attribute to edit, and value which specifies the metadata value to edit. There is an optional

parameter, units for specifying the units that the metadata attribute-value pair must also have to match. There

must also be one or more of the following parameters to specify how the metadata will be altered: new key,

which is for specifying the new name for the attribute, new value, for specifying the new metadata value and

new units for specifying the units that the metadata attribute-value pair will now have. So, to edit an attribute

called volume with a value of 11 and units of decibels, for a data object with the id of 1.10021 and give it a new

value of 8 and units of litres:

api/metadata/edit?id=1.10021&key=volume&value=11&units=decibels&new_value=8&new_units=litres

• delete: Delete a metadata attribute-value pair from a data object of collection. It takes three parameters: id,

which is the iRODS id of the data object or collection to delete the metadata from, key, which is the attribute

to delete for and, value, which specifies the metadata value to delete. As before, there is an optional parameter,

units for specifying the units that the metadata attribute-value pair must also have to be deleted. So to delete

an attribute called volume with a value of 11 and units of decibels from a data object with the id of 1.10021:

api/metadata/delete?id=1.10021&key=volume&value=11&units=decibels

We have included a set of JavaScript functions to allow a davrods administrator to easily give a user to access each

of these API functions from within the browser. An example screenshot of the editor is shown in figure 2.

Future Work

Currently the REST API functions all return HTML fragments. However, in future, we would like to develop the

possibility of specifying other datatypes such as JSON fragments to allow for integration and automation with other

consuming web services.

Acknowledgements

The Grassroots project is strategically funded through the BBSRC cross-institute Designing Future Wheat programme

grant, BB/P016855/1, and aims to develop a lightweight reusable set of open source software tools to allow researchers

to share and federate life science datasets.

Availability

The source code is available at https://github.com/billyfish/davrods.

5



REFERENCES

[1] Grassroots Infrastructure, https://grassroots.tools, Visited last on 06.06.2017

[2] Hao Xu, Terrell Russell, Jason Coposky, Arcot Rajasekar, Reagan Moore, Antoine de Torcy, Michael Wan,

Wayne Shroeder, Sheau-Yen Chen: iRODS Primer 2: Integrated Rule-Oriented Data System. Synthesis

Lectures on Information Concepts, Retrieval, and Services, Morgan Claypool (2017)

[3] Python iRODS Client (PRC) https://github.com/irods/python-irodsclient, Visited last on 06.09.2017

[4] Jargon, https://github.com/DICE-UNC/jargon, Visited last on 06.09.2017

[5] The Apache HTTP Server Project, http://httpd.apache.org/, Visited last on 06.06.2017

[6] Ton Smeele, Chris Smeele: Davrods, An Apache WebDAV interface to iRODS. iRODS UGM 2016 proceedings,

pp. 41-47 (2016)

[7] Apache Module mod autoindex. https://httpd.apache.org/docs/2.4/mod/mod_autoindex.html, Visited last

on 06.06.2017

6


