
QueryArrow: Semantically Unified Query and Update
of Heterogeneous Data Stores

Hao Xu
University of North Carolina at Chapel Hill

xuhao@renci.org
Ben Keller

University of North Carolina at Chapel Hill
kellerb@renci.org
Antoine de Torcy

University of North Carolina at Chapel Hill
adtorcy@renci.org
Jason Coposky

University of North Carolina at Chapel Hill
jasonc@renci.org

ABSTRACT

Modern system applications often need to interact with metadata from multiple, heterogeneous data stores. An ad

hoc solution for integration of multiple data stores by issuing individual statements in the languages of the data

stores runs the risk of semantic incompatibilities. This paper describes QueryArrow, a generic software that provides

a semantically unified query and update interface to multiple types of data stores. QueryArrow has an algebra-based

language called QueryArrow Language (QAL), which can be partially translated to languages of different data stores.

We describe the design of QueryArrow, the syntax and semantics of QAL, how QAL is translated to languages of

different data stores, and demonstrates its applications as an iRODS database plugin.

1. INTRODUCTION

Modern system applications often need to interact with data from multiple, heterogeneous data stores. There are

several recurring tasks in such applications, including the aggregation, access control, discovery, and migration of

metadata. A software solution for this challenge is tricky because of the diverse range of types of data stores

that it must interact with, including, for example, relational databases, graph databases, and document-oriented

databases. Different types of data stores have different types of query languages and data manipulation languages,

different semantics of the languages, and different levels of capabilities (such as support for features such as regular

expressions).

Some existing solutions aim to bridge the gap between these data store, by either creating a unified query language

or API, such as SQL++ [9] and UnQL [6], or refitting a current popular query language or API designed for one type

of database into other types of databases, such as Presto [1] and Spark SQL [2]. However, there are at least one of

the following two drawbacks in the current solutions:

● The solution does not have a formal definition of the semantics of their query language. Therefore, an ad hoc

solution, where results are aggregated from multiple data stores by issuing an individual query in the query

language of each database, runs the risk of semantic incompatibilities.

● The solution is query-only and lacks bidirectional support for both query and update. Without support to

update, we cannot provide an abstraction of data stores that makes data access transparent to client applications

where the metadata is mutable.

iRODS UGM 2017 June 13-15, 2017, Utrecht, Netherlands
Copyright ©2017 Hao Xu

1

Client Application QAS QAP
QAL

Figure 1: Architecture Diagram

A more principled approach would require complete semantic decoupling of client API from underlying data stores

where data are allowed to be mutable. This allows migrating the underlying data stores without modification to

the client application. This requires a unified query and data manipulation language. Such a language inevitably

is a superset of capabilities of actual data store languages. Therefore, we need to integrate the notion of partially

supported features and schemata into this framework, so that we can combine multiple data stores with different

capabilities into a unified data store which provides full support to the features and schemata required by the client

application.

QueryArrow [14, 16] is built on theoretical developments that allow us to create software that is based on rigorous

treatment of semantic foundations of a unified query and data manipulation language. Categorical models of databases

allow us to represent the same information in both relational databases and graph databases and transform between

the two different representations [13], which is used in QueryArrow for automatic generation of graph database

translators. QueryArrow Language (QAL) is structured as near-semiring [8], which allows us to model both query

and update, and provide general laws for optimization. QueryArrow is similar to Transaction Logic [5], but we give

QAL a monadic semantics [4], which is formalized in Coq [7].

This paper introduces the design of QueryArrow, the syntax and semantics of QAL, how QAL is translated to different

database languages, and demonstrates its applications.

2. DESIGN OF QUERYARROW

QueryArrow is made up of three elements: the QueryArrow Service, the QueryArrow Language, and the QueryArrow

Plugins (QAP), as shown in Figure 1.

● QueryArrow Service: Register QAP and support execution of QAL

● QueryArrow Language: Provide a semantically unified configuration language, query language, and data ma-

nipulation language.

● QueryArrow Plugins: Provide mappings between QAL and external data stores.

A QueryArrow instance includes a QueryArrow Service and a composition of QAPs.

There are three types of QAPs. A data store QAP interfaces with a data store by translating QAL to the language of

the data store and interpreting the results returned by the data store. A meta QAP allows users to add aggregation,

policy and distributed support to our architecture without additional complexity to the core codebase. An in-memory

QAP provides various in-memory functionalities. Currently supported QAPs are shown in the Table 1.

A translation QAP enables translation of the QAL back into QAL, according to user defined rewriting rules written

in the configuration fragment of QAL. This allows user to define policy on their metadata. This enables the definition

of policies such as metadata access control, distribution, and retrieval optimization. A typical QAP composition is

show in Figure 2.

QueryArrow can be run in a distributed environment. A remote QAP is implemented to allow using a QAS as a data

store.

3. SYNTAX AND SEMANTICS OF QAL
3.1 Syntax

2

Name Description

Sum QAP aggregation

Translation QAP policy support

Cache QAP caching

QAS QAP remoting

Mutable Map QAP in-memory mutable map

Immutable Map QAP in-memory immutable map

ElasticSearch QAP interfacing with ElasticSearch

Neo4j QAP interfacing with Neo4j

PostgreSQL QAP interfacing with Postgres

SQLite3 QAP interfacing with SQLite3

CockroachDB QAP interfacing with CockroachDB

FileSystem QAP file system

Table 1: Available QAPs

Cache QAP

Translation QAP

Sum QAP

QAP 1

Data store 1

QAP 2

Data store 2

QAP 3

Data store 3

Figure 2: Example QAP Composition

3

p literal

prty primitive type

v variable

P primitive predicate name

N namespace

QP ∶∶= P ∣ N.QP predicate name

ty ∶∶= prty ∣ list ty types

t ∶∶= p ∣ v ∣ [t1, . . . , tn] ∣ ty t terms

a ∶∶= QP (t1, . . . , tn) atom

c ∶∶= a ∣ insert a ∣ delete a ∣ g c ∣ b

∣ 1 ∣ 0 ∣ c⊕ c ∣ c⊗ c command

g ∶∶= ¬ ∣ ∃ ∣ distinct ∣ limit n ∣ order by (asc ∣ desc)

∣ let v1 = s1, . . . , vn = sn (group by v1 . . . vn)? aggregation

s ∶∶= max v ∣ min v ∣ average v ∣ sum v ∣ count ∣ count distinct v ∣ some v summary

pt ∶∶= input? output? key? ty

R ∶∶= rewrite (a ∣ insert a ∣ delete a) c

∣ predicate P (pt1, . . . , ptn)

∣ import qualified? (all ∣ P1, . . . , Pn ∣ all except P1, . . . , Pn) from N

∣ export P1, . . . , Pn

∣ export qualified? (all ∣ P1, . . . , Pn ∣ all except P1, . . . , Pn) from N configuration

prog ∶∶= R1 . . .Rn program

Figure 3: QAL Syntax

The syntax is given in Figure 3. A term t is either a literal p, a variable v, a list of terms, or a type coercion. An

atom a is QP (t1, . . . , tn) where QP is a predicate name. c includes four primitive commands: a query command a,

an insert command insert a, a delete command delete a, and an aggregation command g a, where g is functions such

as max, min, average, sum, count, and count distinct, limit results to first n results, order results by ascending order,

order results by descending order, return distinct results, test that results does not exist, test that results exists,

or keep certain columns in the results. A command c is either a primitive command or one of the four composite

commands: skip 1, stop 0, choice c⊕ c, sequencing c⊗ c.

In addition to commands, QAL also allows declaring new predicates and specifying rewriting rules, which are essential

for defining policies. The rewriting rules allows us to rewrite a query command, an insert command, or a delete

command to arbitrary commands. Also, we have import and export statements. The details of these declarations are

given in [16].

Examples applications of QAL are described in Section 5.

3.2 Semantics

The abstract semantics of QAL is formally specified in [15] using Coq. In this subsection, we give a brief description

of the formalization.

The key to the formalization is specifying various Haskell typeclasses including Functor, Applicative, Monad,

Traversable, Alternative, Foldable, and Monoid. We also defined their instances. In addition, we specified

NearSemiRing. We model all of these in terms of setoids.

The semantics of commands are given in a “store-and-heap” monad, written sh, which is a specialization of the ContT

monad transformer. We define a semantic equivalence relation between commands in terms of this semantics. We

have proved that not only is sh a monad, but also that QAL forms a near-semiring (L(c),0,1,⊕,⊗), where L(c) is

4

P
A B C

.
Q

A B C

.

(a) Example SQL Tables

:P

A : . . .

B : . . .

:Q

A : . . .

B : . . .

C : . . .

P.C

(b) Example Cypher Graph

”type” : ”P”

”A” : . . .

”B” : . . .

”C” : . . .

”type” : ”Q”

”A” : . . .

”B” : . . .

”C” : . . .

(c) Example ElasticSearch Documents

Figure 4: Examples

the language generated by c. This allows us to give an interpretation of 0, 1, ⊕, and ⊗. Other language constructs

are interpreted in the monadic instance of sh.

One challenge to the applicability of this abstract semantics is how to incorporate concrete semantics of different

data stores. Inevitably some QAL commands cannot be translated to one statement of one data store. In this case,

the QAL command is partially translated, and each subexpression that can be translated into one statement of one

data store is executed, and the non-translatable part are executed by a generic execution function. To illustrate

this, consider the following example. Suppose that we have three data stores, exporting predicates P , Q, and R,

respectively. When a user issues a command such as P (x, a) ⊗ (Q(x, y) ⊕ R(x, y)), the predicates are translated

into the languages of the respective data stores, dispatched, and the results are collected and combined according

to the abstract semantics. How do we integrate the semantics of different data stores, thereby giving semantics to

the whole command? The solution is using built-in commands: we can specify statements in the languages of data

stores as built-in commands and plug them into the abstract semantics, as long as they can be interpreted in the sh

monad. For each language L of a data stores, a translator from QAL then is a partial function from commands to

that language trans ∶ L(c) → L. The sh monad is designed such that it is parametric to module types AbstractStore

and AbstractHeap. This way, we can choose different concrete implementations of these data structures for different

combinations of data stores. An ongoing effort is to integrate SQL into this abstract semantics.

4. TRANSLATION

In this section we list three types of data stores and how QAL is translated into their statements. Our goal is to

translate the same commands into multiple data stores which are semantically equivalent based on the concept of

observational equivalence: informally, given two data stores, define a relation R of related states of the data stores,

if a translation of every successful command from QAL to the languages of the two data stores takes related states

to related states, and returns the same set of results, then we say that under the translation, the two data stores

are observationally equivalent. For a formal treatment of bisimulation, see [11]. In this section, we assume x, y, z are

variables, and a, b, c are primitive values.

4.1 Relational Database

SQL is the query language and data manipulation language for relational databases. In the PostgreSQL QAP,

a primitive command is translated to an SQL statement. Users are allowed to defined arbitrary predicates and

5

translations. In addition, QueryArrow provides an automatic translation generator based on a database schema to

reduce the coding needed to create QAPs. We illustrate the translation in an example as show in Figure 4a, where

P.A and Q.A are primaries keys and P.C is a foreign key to Q.A. The automatic translator generates six predicates

in two categories: object predicates PA(x) and QA(x), and property predicates PB(x, y), PC(x, y), QB(x, y), and

QC(x, y). Object predicates and property predicates differ in how they are translated in insert and delete commands.

Object predicates are translated to INSERT and DELETE statement. Property predicates are translated to UPDATE

statements. For example, we translate PB as follows:

● query PB(a, x): SELECT B FROM P WHERE A = a

● insert insert PB(a, b): UPDATE P SET B = b WHERE A = a

● delete delete PB(a, b): UPDATE P SET B = NULL WHERE A = a

and QA as follows:

● query QA(x): SELECT A FROM Q

● insert insert QA(a): INSERT INTO Q (A) VALUES (a)

● delete delete QA(a): DELETE FROM Q WHERE A = a

Composite commands are translated as nullary and binary partial functions that combine SQL queries. This allows

us to, for example, insert a table with columns with NOT NULL constraints. For example, if P.B is not null, then the

translation of insert PA(a),

INSERT INTO P (A) VALUES (a)

is not valid SQL insert. And insert PB(a, b) is translated to

UPDATE P SET B = b WHERE A = a

But insert PA(a) ⊗ insert PB(a, b) should be translated to

INSERT INTO P (A,B) VALUES (a,b)

which is valid.

4.2 Graph Database

Cypher is the query language and data manipulation language for Neo4j [3]. In the Neo4j QAP, a primitive command

is translated to an Cypher statement. A graph schema is automatically generated by a translation generator from a

SQL schema by QueryArrow as follows, following a variation of the mapping given in [12]: Each table is translated

into a node and each column is translated into one of the three: A primary key is translated into a property of the

node. A foreign key is translated into an edge. Other columns are translated into a property. Special clauses are

added to the translation of insert commands to ensure that primary keys are unique. For example, given SQL table

schema as shown in Figure 4a, we can generate a model as shown in Figure 4b.

We may translate PB as follows:

● query PB(a, x): MATCH (n:P) WHERE n.A = a RETURN n.B

● insert insert PB(a, b): MATCH (n:P) WHERE n.A = a SET n.B = b

6

● delete delete PB(a, b): MATCH (n:P) WHERE n.A = a SET n.B = NULL

and QA as follows:

● query QA(x): MATCH (n:Q) RETURN n.A

● insert insert QA(a): MERGE (n:Q{A:a})

● delete delete QA(a): MATCH (n:Q) WHERE n.A = a DELETE n

One subtle issue is failure modes. The semantics of relational database and graph database usually do not match. For

example, in some graph databases, users are not able to specified unique properties or required properties. Therefore,

a translation of insert PA(a) is a valid statement, even if the key value a already exists. There are currently two

solutions. We can simulate. For example, in the unique property case, we can simulate using the ON CREATE clause.

We can also create an abstraction layer in which both types of databases implement the same semantics. For example,

in the required property case, we can create a predicate P (x, y, z) and hide the more primitive PA(x). This can be

done using rewriting rules, import, and export features of the QAL.

4.3 Document-oriented Database

ElasticSearch provides a JSON-based query language and data manipulation language which are radically different

from traditional databases. In particular, ElasticSearch is an example of Document-oriented Database. In this type

of databases, each predicate is naturally translated to a partial document. For example, given SQL table schema as

show in Figure 4a, we can generate a model as show in Figure 4c. This model, unlike the Cypher’s case, is often

weaker than the SQL model, because it doesn’t explicitly encode relations. The translation of predicates is similar

to that of graph databases. Because of lack of operators like SQL’s JOIN or UNION, the translation function is mostly

undefined on commands with nontrivial combinations of composite commands.

5. APPLICATION EXAMPLES

iRODS QueryArrow database plugin enables iRODS [10] to use QueryArrow as iCAT. This enables the following

application examples.

Metadata Access Control. iRODS allows users to tag data object with metadata in the forms (attribute, value,

unit) triples. The data management solution stores such metadata in a relational database and is not designed

with metadata access control. QueryArrow allows us to add metadata access control using QueryArrow, by defining

rewriting rules, without changing the schema of the original database. The extra information such as access control

list (ACL) is stored an external database and integrated into the application by QueryArrow.

Metadata Migration. In iRODS, metadata are stored in a relational database. QueryArrow allows us to migrate part

of the metadata into a graph database.

Metadata Indexing. As the number of data objects grows, regular queries for data objects become slow. QueryArrow

allows us to write rewriting rules so that some of the metadata are put into a search engine based on their attribute

name. When user add or remove a metadata item with an indexed attribute name, it is added or removed to the

search engine. When the user queries data object by those metadata attribute names, the search engine is utilized

accelerate the query.

All of this is transparent to the client application.

7

6. SUMMARY

In this paper, we introduced design of QueryArrow, the syntax and semantics of QAL, how QAL is translated, and

its application examples in iRODS.

REFERENCES

[1] https://prestodb.io/.

[2] http://spark.apache.org/sql/.

[3] https://neo4j.com/.

[4] Computational Lambda-Calculus and Monads, 1989.

[5] Anthony J. Bonner and Michael Kifer. Transaction logic programming. In International Conference on Logic

Programming, pages 257–279, 1993.

[6] Peter Buneman, Mary F. Fernandez, and Dan Suciu. UnQL: a query language and algebra for semistructured

data based on structural recursion. VLDB Journal: Very Large Data Bases, 9(1):76–110, ???? 2000.

[7] Adam Chlipala. Certified Programming with Dependent Types : A Pragmatic Introduction to the Coq Proof

Assistant. 2013.

[8] Jules Desharnais and Georg Struth. Domain axioms for a family of Near-Semirings. In José Meseguer and

Grigore Roşu, editors, Algebraic Methodology and Software Technology, volume 5140 of Lecture Notes in

Computer Science, pages 330–345. Springer Berlin Heidelberg, 2008.

[9] Kian W. Ong, Yannis Papakonstantinou, and Romain Vernoux. The SQL++ query language: Configurable,

unifying and semi-structured, December 2015.

[10] Arcot Rajasekar, Reagan Moore, Chien-Yi Hou, Christopher A. Lee, Richard Marciano, Antoine de Torcy,

Michael Wan, Wayne Schroeder, Sheau-Yen Chen, Lucas Gilbert, Paul Tooby, and Bing Zhu. iRODS primer:

Integrated rule-oriented data system. Synthesis Lectures on Information Concepts, Retrieval, and Services,

2(1):1–143, January 2010.

[11] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80, October 2000.

[12] David I. Spivak. Simplicial databases. April 2009.

[13] David I. Spivak. Functorial data migration. Information and Computation, May 2012.

[14] Hao Xu. https://github.com/xu-hao/QueryArrow, 2017.

[15] Hao Xu. https://github.com/xu-hao/CertifiedQueryArrow, 2017.

[16] Hao Xu, Ben Keller, Antoine de Torcy, and Jason Coposky. Queryarrow: Bidirectional integration of multiple

metadata sources. 8th iRODS User Group Meeting, University of North Carolina at Chapel Hill, June 2016.

8

https://prestodb.io/
http://spark.apache.org/sql/
https://neo4j.com/
https://github.com/xu-hao/QueryArrow
https://github.com/xu-hao/CertifiedQueryArrow

