

National Institutes of Health

iRODS in the Cloud: SciDAS and NIH Helium Commons Helium Commons

Claris Castillo

RENCI, UNC Chapel Hill

renci

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Not Scaling up Data Analysis is Not an Option

DatAPocaLypse Prediction (Genomics):

In 20 years, every CVS, subway, hospital, research lab, public health facility, police station, etc will have a DNA sequencer generating Exabytes of data in aggregate each week. Normal veteran (giga-/terascale) and newbie (megascale) users MUST ADVANCE to the peta/exa-scale in this generation. Issues:

- Limited computational skills (What is a C library?)
- Poor use of advanced networks (We need more HDs to mail!)
- Limited access to computational resources (awareness, \$\$\$)
- Unpredictable time to compute result (queue times, queue times, queue times, broken nodes, segfaults, OOM, data geography)
- Missing skillsets (I only know Perl)
- Data must be organized and good stuff deleted (Data policies)

- How many bioinformaticists are on the CVS payroll?
- How many faculty recruitments failed because campus X research computing resources are stuck in 2015?
- How many adverse drug reactions were not predicted because of limited/broken cyberinfrastructure?

Heterogeneous and Complex CI Ecosystems

Commoditization of Cloud computing and the convergence of compute, storage, data and network technologies enables the 'illusion' of a single large computer consisting of widely distributed systems.

Breakdown: One Layer at A Time -- Data

iRODS team connected iRODS to a MariaDB Galera Cluster to provide a *multi-master, distributed* iRODS catalog over the WAN.

"Distributing the iRODS Catalog: a way forward", M. Stealey, et. al. iRODS User Group Meeting (UGM), Netherlands, 2017.

Breakdown: One Layer at A Time -- Compute

Apache Mesos: A layer of abstraction, to utilize <u>an entire data center</u> as a single large server

Breakdown: One Layer at A Time – Scientific Tools

Scientific applications will be available in the form of SciApps "virtual appliances" (*NSF CC-ADAMANT, [works15]*)

[works15] Enabling Workflow Repeatability with Virtualization Support, Fan Jiang et.al. Workshop on Workflows of Large-Scale Science, Supercomputing Conference (SC15), Austin, Texas, 2015.

SciDAS: Bringing it All Together Into One System

Requester Orchestrator Orchestrator Cost-Aware Optimize IRODS Shim (aaS) API PerfSONAR Shim (aaS) API R map

- Network aware placement
 - Optimize for data locality
- Capability aware resource aware placement
 - GPU able nodes
- Authentication and authorization infrastructure
 - CiLogon

[works15] Enabling Workflow Repeatability with Virtualization Support, Fan Jiang et.al. Workshop on Workflows of Large-Scale Science, Supercomputing Conference (SC15), Austin, Texas, 2015.

Improving scientific productivity by the numbers

Thank you!

claris@renci.org