iRODS for Data Management and Archiving UGM 2018

Masilamani Subramanyam

Agenda

- Introduction
- Challenges
- Data Transfer Solution
- iRODS use in Data Transfer Solution
- iRODS Proof-of-Concept
- Q&A

Introduction

- Genentech / Roche
 - Biotech Company
 - Fortune's "100 Best Companies to Work For" List
- Integration Services
 - Application Integration
 - Partner Integration
 - Data Integration
- Data Virtualization
 - Enterprise Information Integration

Challenges

The some of challenges faced by business with respect to data movement are:

- Bottlenecks in Hardware infrastructure and Network
- Data Transfer is too slow
- No Automated or Scheduled transfers
- No user-friendly GUI
- Custom developed scripts for every type of data transfer job
- Manually executing data transfer jobs
- Lack of visibility and traceability of data transfer jobs
- No Metadata managed related to transfer process

Data Transfer Platform system designed to support and manage high speed transfer of scientific data that includes capabilities such as:

- Optimized high-speed protocols
- API driven interface to monitor and manage transfers
- Metadata management related to transfer process
- Ability to automate the transfers
- Post-transfer workflows
- Store, search, and manage data and transfer metadata in the data management system
- Implement solution for first use case data replication.

Data Transfer Solution includes multiple components:

- Hardware
- Infrastructure Management
- Software
 - File Transfer Solution
 - Data Management (iRODS)
 - Pipeline Management
- User Interfaces
- Security

iRODS use in Data Transfer Solution

- iRODS as Change Log
- iRODS File System Scanner capability is used to scan the mount path of file system to ingest the system metadata
- To provide the list of all new, updated and deleted files to support for the data replication capability
- iRODS Data management system can be used to track file lifecycle and provenance

Scientific Data Archive and Replication

Business requirements to support for Disaster recovery and high availability:

- High Performance Transfer
- Storage agnostic solution
- Scalability to support large number of files
- Detecting the changes in the file system
- Preserving Unix, Windows permission and timestamp for file creation and modification

Replication Solution Options

Replication Solution Options

Replication using Data Transfer Solution

iRODS Architecture in Data Transfer Solution

iRODS Zone

Ingest Metadata using iRODS File System Scanner

META_DATA_ATTR_NAME = filesystem::mtime
META_DATA_ATTR_VALUE = 2018-06-05 13:02:11.914472000

META_DATA_ATTR_NAME = filesystem::deleted
META_DATA_ATTR_VALUE = Y

Ingestion using iRODS in DTP

- As part of the data transfer in DTP, iRODS will be used for the data management component to track file lifecycle and provenance.
- For the Data Replication use case, iRODS will be used to provide the system metadata of the storage that includes:
 - New files added since last ingest of metadata
 - Updated files since last ingest of metadata
 - Deletes files since last ingest of metadata
- The system metadata can be queried using iRODS CLI or Python iRODS Client

Next Step - iRODS Automated Ingest Framework

- We are planning to implement this new framework for ingest of new and updated files metadata
- It is required sync wrapper and some additional changes for our use case
- This framework will help to simplify ingestion of metadata and also improves the performance

PoC - Data Catalog using iRODS

- Enable simplicity of access with one namespace and want to make data locality transparent to the user
- Ability to search and access to data and metadata

PoC - Data Catalog using iRODS

PoC - Data Catalog using iRODS

ata Name 💲	Data Type 木	Instrument Type	Study 🔨	Instrument ID 🛧	Orga	🗷 Data Type	Study Title	File
Zuzia.xml	 Select All Instrument CRF 	6800	Select All HPV301 HPV301_1	 Select All 245 1252 1253 1254 		 Instrument Type Study Instrument ID Organization Team 	A Prospective Study to Evaluate the Prevalence Zika Virus in Blood Donations Using the cobas® Zika Test for use on the cobas® 6800/8800 System Roche Molecular Systems, Inc.\nPleasanton, California 94588	4
Found 1 results			 	Coll Name Data Path Life Cycle Owner				
			HPV435 [™] ZIK41 [™] ZIK427 [™] ZIK429 [™] ZIK4427			 Pattern Comment Study Title Last Updated Updated By Download 		

PoC - Enable Intentional Archive

PoC - Enable Intentional Archive

• To **enable self-service** for users to set the flag at folder or file level and then iRODS will automatically apply the tiering storage for the set flag files or folders

DELL	EMC meta lnx				🛎 rods 👻
Dashboard	Collections	Add Metadata Attribute	×	Search Results > Collections	
Resources Users	/ home / rods / foo.txt	ARCHIVE Value		* =	
Groups	S Metadata	Unit New Unit			≛ CSV + Metadata
Profiles	10 🕴 🖹 Delete selected	New Onit			Search Showing 1 to 1 of 1 entries
Collections	□ Ji Attribute		Cancel Save changes	11 Actions	
Q	irods::access_time	1521359946		🖋 Edit 👔 Delete	
Search Cemplates			(1)		

PoC - Enable Intentional Archive

-bash-4.2\$ imeta ls -R fastResc	
AVUs defined for resource fastResc: attribute: irods::storage_tier_query value: SELECT DATA_NAME, COLL_NAME WHERE DATA_RESC_ID IN ('123527') AND units: attribute: irods::storage_tier_group value: example_group	META_DATA_ATTR_NAME = 'ARCHIVE' AND META_DATA_ATTR_VALUE = 'Y'
units: 0	
attribute: irods::storage_tier_verification value: catalog units: 	
attribute: irods::storage_tier_time value: 60 units:	

- After the metadata is set to trigger the tiered storage framework, the file moved from Tier 1 to Tier 2 (AWS S3) automatically.
- When the file is accessed / read, the file will be moved automatically from Tier 2 (AWS S3) to Tier 1

Thanks! Questions?