
iRODS Capability: Automated Ingest
Hao Xu

Renaissance Computing
Institute (RENCI)
UNC Chapel Hill
xuh@cs.unc.edu

Alan King
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill

alanking@renci.org

Terrell Russell
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill

unc@terrellrussell.com

Jason Coposky
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
jasonc@renci.org

Antoine de Torcy
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill

adetorcy@renci.org

ABSTRACT

The iRODS Automated Ingest Framework is a new iRODS client that has been designed to scale up to match the

demands of data coming off instruments, satellites, or parallel filesystems and provide a front door to the policy-based

data management platform of iRODS.

Initial testing shows promising flexibility and a roughly linear performance curve.

Keywords

iRODS, capability, ingest, Celery, Redis, data management

INTRODUCTION

The iRODS Automated Ingest Framework[1] has been designed to solve two major use cases: registering large amounts

of existing data into an iRODS namespace without moving the source data (filesystem scanning) and ingesting new

or updated data from a known location in a filesystem (a landing zone) into place within an iRODS Vault.

Based on the Python iRODS Client[3], Celery[4], and Redis[5], the goal of this framework is to scale up to match the

demands of data coming off instruments, satellites, or parallel filesystems and provide a front door to the policy-based

data management platform of iRODS[2].

For testing, this framework has been deployed manually. For enterprise customers, this framework is prototyped as

Docker containers to be deployed and run on a Kubernetes cluster via Helm charts.

ARCHITECTURE

Overview

The motivation for this tool was to provide a parallel and distributed means of getting data into the iRODS catalog.

Celery and Redis provide the coordination mechanism for concurrent ’stat’ gathering from the source location as

well as concurrent iRODS connections for an initial scan. They also provide a very fast insulating layer for a ’delta

sync’ when a data source is scanned again and many of the source files have not changed. In this case, the Redis

cache reports that nothing has changed for a particular file, and the client determines that no connection to iRODS

is necessary. Delta scans are much faster than initial scans for this reason.

iRODS UGM 2018 June 5-7, 2018, Durham, North Carolina, USA
[Authors retain copyright.]

1



Client

Celery Queue

Redis

Celery Worker

Celery Worker

Celery Worker

iRODS

Filesystem

Figure 1. The number of Celery Workers can scale up to meet the required performance demand.

Client

The automated ingest client takes an initial path to scan, submits the job to the celery queue, and sets the following

necessary Redis metadata. If the job is to be run a single time, the job name is added to the singlepass list. If the

job is to be run continuously (scanning the same source again and again), then the job name is added to the periodic

list. These two lists keep track of jobs that are running. If the job is in singlepass, a restart task is called one

time synchronously to start the job. If the job is in periodic, a restart task is added to the restart queue which

will start the work again once the current pass is complete.

The client can also stop a job and all tasks under that job.

Celery Queue

The restart task resets the count and dequeue lists, and the tasks, retries, and failures counters. The restart

task calls a sync_path task that recursively and asynchronously walks the requested filesystem location (the source).

If the requested path is a directory, the sync_path task calls a sync_dir task that asynchronously creates and

populates the metadata for that directory in the Redis cache, creates the collection in iRODS, and then lists and

calls sync_path asynchronously on the immediate children of the directory. The sync_dir task compares the last

sync time with the mtime and ctime of the directory, and if the directory has changed, the collection in iRODS is

synchronized.

If the requested path is a file, the sync_path task calls a sync_file task that asynchronously creates and populates

the metadata for that file in the Redis cache, and then puts or registers the file into iRODS. If the Redis entry

already exists, the sync_file task compares the last sync time with the mtime and ctime of the file, and if the file

has changed, the file contents and system metadata in iRODS are synchronized.

Before a task is added to the queue, the count counter is incremented and the task id is added to the task list.

Each task has a retry handler, a failure handler, and an after return handler. The retry handler and failure handler

increments the retry and failure counter respectively. The after return handler decrements the count counter and

removes the task id from the tasks list. When the tasks counter is zero, it calls the cleanup function.

Redis

A Redis database can be used by Celery as a broker. Another Redis database is used to store metadata about jobs,

including the singlepass and periodic lists, the count and dequeue lists, and the tasks, retries, and failures

2



counters. The singlepass list contains all the names of single pass jobs, the periodic list contains all the names of

periodic jobs. These two lists are used to calculate running tasks for stopping a job. The count list contains all tasks

created by the job and the dequeue list contains all tasks that are finished (with either success or failure). These two

lists are used to calculate the list of running tasks. A running task can be stopped by name. The tasks counter is

used to keep track of the remaining tasks. When the tasks counter reaches zero, the cleanup function is triggered.

The retries and failures counters keep track of retried and failed tasks.

Event Handlers

The automated ingest Celery workers can be deployed with a variety of options to describe their behavior around

gathering, preparing, and sending information to iRODS. These options are described in event handler files and

handed to the workers. This allows for custom behavior to be written for particular deployments of the Ingest

Framework. The event handler methods made available to the workers include:

method effect default

pre_data_obj_create user-defined Python none

post_data_obj_create user-defined Python none

pre_data_obj_modify user-defined Python none

post_data_obj_modify user-defined Python none

pre_coll_create user-defined Python none

post_coll_create user-defined Python none

pre_coll_modify user-defined Python none

post_coll_modify user-defined Python none

as_user takes action as this iRODS user authenticated user

target_path set mount path on the iRODS server

which can be different from client

mount path

client mount path

to_resource defines target resource request of

operation

as provided by client environment

operation defines the mode of operation Operation.REGISTER_SYNC

max_retries defines max number of retries on

failure

0

timeout defines seconds until job times out 3600

delay defines seconds between retries 0

Table 1. Available event handler methods

Where user-defined Python can be written, the event handler is just providing hooks for data preparation or book-

keeping. The other methods are either Celery-specific or iRODS-specific configuration options for the operation to

be performed.

Operations

The event handler method operation defines the mode for any iRODS connection. The following six operations are

available and determine whether data is transferred and how the iRODS catalog is updated:

3



operation new files updated files

Operation.REGISTER_SYNC (default) registers in catalog updates size in catalog

Operation.REGISTER_AS_REPLICA_SYNC registers first or addi-

tional replica

updates size in catalog

Operation.PUT copies file to target

vault, and registers in

catalog

no action

Operation.PUT_SYNC copies file to target

vault, and registers in

catalog

copies entire file again,

and updates catalog

Operation.PUT_APPEND copies file to target

vault, and registers in

catalog

copies only appended

part of file, and updates

catalog

Operation.NO_OP no action no action

Table 2. Available event handler operation modes

SOURCE AS S3

The Automated Ingest Framework was originally designed for ingestion from mounted filesystems. However, during

the framework’s development, an additional use case of ingesting from an existing S3 bucket was presented. Once a

suitable python library was identified (minio), ingesting data via the S3 protocol worked as expected.

FLEXIBILITY

With these different configuration options, the functionality required for a particular use case can be realized.

The two main use cases that are solved by this framework are the filesystem scanner (source files stay in place after

scanning) and the landing zone (source files are moved aside in some manner after being scanned). The good way

to think about the difference between these two ways of setting up the Automated Ingest Framework is to consider

where the source of truth will be once the scanning has been performed.

With the filesystem scanner use case, the truth remains in the original source location since that data could continue

to move as new science is performed and other systems are writing into that source location. This is most likely to

be useful when putting jobs into the periodic list.

With the landing zone use case, the truth now lies in the iRODS Catalog. iRODS has a copy of the data under

management and it is now owned and operated within a Vault that iRODS controls. This is most likely to be useful

when putting jobs into the singlepass list.

Within these two different use cases, there is the opportunity for registering new physical replicas of already registered

data, syncing updated data, or even only updating a delta if the source material has been appended.

These different settings, in addition to the pre- and post- methods for data object and collection creation and

modification, provide a full programmatic surface for writing data preparation policy and harvesting of metadata

from external sources on the way to having data ingested into iRODS.

EARLY PERFORMANCE

4



Initial Ingest

This data is preliminary, and we expect the rates to increase once we have more experience with enterprise configu-

rations and topologies.

However, we see that over 4M files can be ingested by 32 workers in an hour and a half with this initial codebase

(Table 3).

What is also notable is that the performance is relatively linear until the catalog provider itself is overwhelmed by the

number of incoming concurrent connections (and their subsequent concurrent connections to the underlying iCAT

database).

files workers minutes files/worker/minute

1585094 32 36 1375.95

4000000 32 90 1388.89

13564110 32 299 1417.65

Table 3. Three early samples of rate of ingest.

Delta Sync

When scanning the same data source again, the Redis cache handles most of the load and since it is an in-memory

data structure store, it never needs to touch the disk or the network. It can handle the lookups very quickly and

prevent the system from needing to go to the iRODS catalog except where a source file has changed.

For the most common of loads (a few files per thousand have changed), the delta sync (Table 4) runs nearly 10x as

fast as the initial ingest (Table 3).

files workers minutes files/worker/minute

247641 32 0.633 12219.13

2337705 32 6.166 11847.76

Table 4. Syncing data already in Redis is much faster.

SUMMARY

The iRODS Automated Ingest Framework is a new client that is being tested as it is being built. It has been designed

to solve a myriad of interesting data ingesting scenarios and scale out to keep up with incoming data rates from

batteries of sensors, microscopes, sequencers, and satellites.

Early indications show that the performance is roughly linear as the number of workers scales up.

We are actively looking for additional use cases and look forward to increased community feedback.

REFERENCES

[1] iRODS Capability Automated Ingest. https://github.com/irods/irods_capability_automated_ingest

[2] Xu, H., Russell, T., Coposky, J., et al: iRODS Primer 2: Integrated Rule-Oriented Data System. In: Synthesis

Lectures on Information Concepts, Retrieval, and Services. 131pp. Morgan Claypool. (2017)

[3] Python iRODS Client. https://github.com/irods/python-irodsclient

[4] Celery: Distributed Task Queue. http://www.celeryproject.org/

[5] Redis. https://redis.io/

5


