
Towards A Parallel and Restartable Data Transfer
Mechanism in iRODS

Zoey Greer Jason Coposky Terrell Russell Hao Xu

June 5, 2018



Introduction
Current iRODS implementation supports limit parallel transfer and
restart capability.
We introduce a design that extends current iRODS to support
multiple tasks related to parallel transfer and restart in a unified,
general solution.
We want to

I extend rather than completely rewrite the current iCAT.
I put, get, replication symmetrically.
I build API up from microservices.
I support parallel transfer
I support distributed storage of data.
I support partial replicas.
I support automatic restart.
I support partial synchronization.
I support distributed strorage of ICAT efficiently



The Design: Current

data object replica resource1-n 1-1

Figure: Entity-Relationship Diagram



The Design: Parallel and Restart

data object

replica

block

resource

1-n

1-n m-n

n-1

Figure: Entity-Relationship Diagram



Block Level

I Block level
put get

client to server y y
client to client n n
server to server y y/n

I Data Object level: put-get-replicate



Data Types

type Error
type Range -- = (Int, Bitmap)
type Block
type Data_object -- = (Path, Timestamp)
type Replica -- = (Data_object, Host, Replica_num)



block_put

Push a block to a resource using block_put. In the following, we
use a default block size of 4MB.

block_put : (Replica, Range, [Block]) -> ()

This can be used in various operations.



data_object

The put operation is initiated by the client by the data_object
operation.

data_object : Data_object -> [(Replica, Range)]

This request can be to any server.



replica

For each resource, the client start putting blocks into replicas using
the replica operation.

replica : (Replica, Range) -> Range

The returned range is a range of existing blocks on the resource in
the input range. Based on returned range, the client sends the
blocks to the resource.



block_get

Pull a block from a resource using block_get.

block_get : (Replica, Range) -> [Block]



put

client server1 server2

data_object

[(server2,0-128)]
replica

0-64
block_put(64-128)



get

client server1 server2

data_object

[(server2,0-128)]
replica

0-128
block_get(64-128)



replicate

client server1 server2 server3

data_object

[(server2,0-128)]
replica

0-128
replica

0-64
replicate

block_put



Storing incomplete replica

metadata

blocks

Figure: Incomplete replica

Metadata contain Replica and Range of available blocks



Parallel put

metadata 1

replica 1

metadata 2

replica 2

blocks

Figure: Multi-part put



Parallel get

metadata 1

replica 1

metadata 2

replica 2

blocks

metadata 3

Figure: Multi-part get


