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Introduction
Current iRODS implementation supports limit parallel transfer and
restart capability.
We introduce a design that extends current iRODS to support
multiple tasks related to parallel transfer and restart in a unified,
general solution.
We want to

I extend rather than completely rewrite the current iCAT.
I put, get, replication symmetrically.
I build API up from microservices.
I support parallel transfer
I support distributed storage of data.
I support partial replicas.
I support automatic restart.
I support partial synchronization.
I support distributed strorage of ICAT efficiently
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The Design: Parallel and Restart
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Block Level

I Block level
put get

client to server y y
client to client n n
server to server y y/n

I Data Object level: put-get-replicate



Data Types

type Error
type Range -- = (Int, Bitmap)
type Block
type Data_object -- = (Path, Timestamp)
type Replica -- = (Data_object, Host, Replica_num)



block_put

Push a block to a resource using block_put. In the following, we
use a default block size of 4MB.

block_put : (Replica, Range, [Block]) -> ()

This can be used in various operations.



data_object

The put operation is initiated by the client by the data_object
operation.

data_object : Data_object -> [(Replica, Range)]

This request can be to any server.



replica

For each resource, the client start putting blocks into replicas using
the replica operation.

replica : (Replica, Range) -> Range

The returned range is a range of existing blocks on the resource in
the input range. Based on returned range, the client sends the
blocks to the resource.



block_get

Pull a block from a resource using block_get.

block_get : (Replica, Range) -> [Block]
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Storing incomplete replica
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Metadata contain Replica and Range of available blocks



Parallel put
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Parallel get
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