Implementing a Storage Abstraction Service with iRODS

iRODS User Group Meeting 2018

Jordan de la Houssaye
June 7, 2018
Introduction
The national library of France (BnF)

Some facts

- a public institution
- ~2200 agents and dozens of professions
- ~1M readers/year

Some figures (December 31th 2016)

- ~15 000 000 books
- ~15 000 000 posters and photographs
- ~1 930 000 audiovisual material
- ...

Some dates for legal deposit

- 1537: printed material
- 1648: engravings and maps
- 1793: musical scores
- 1925: photographs
- 1938: phonograms
- 1941: posters
- 1975: videograms and multimedia documents
- 1992: audiovisual and electronic documents
- 2006: web
preservation is at the heart of BnF’s missions

decree #94-3, January 3, 1994: The National Library of France has for mission to collect, preserve, enrich and make available in every field of knowledge the national heritage of which it has the guardianship (...)

digital preservation is the direct continuity of BnF’s collections preservation

• digitization as a mean to preserve,
• born digital documents
The BnF – technical stakes

loss of data is an evermore worrying risk

1. from valorization digitization to preservation digitization
2. legal deposit of substitution
3. born digital documents

a mass to manage

- number of packages
- size (Go)
OAIS (Open Archival Information System)

An OAIS is [...] an organization of people and systems that has accepted the responsibility to preserve information and make it available for a Designated Community.

SPAR (Scalable Preservation and Archiving Repository)

- an implementation of OAIS,
- the tool of digital preservation at the BnF
- in operation since may 2010
- replicated on two sites (operations and storage)
Information packages
It is a normalized way to present data, ensuring it has a contour and is addressable and findable.

First job of an OAIS

- normalize data that enters,
- verify it conforms to quality standards,
- augment it with different kind of metadata,
- index it and securely store it,
- ...
Approach
A Storage Abstraction Service – divide and conquer

We divided the storage problematic in two parts

1. a [Storage] module that understands business and is able to apply preservations policies,

2. a [Storage Abstraction Service] modules that know nothing about business but reliably exposes offers of services on storage.
SPAR and OAIS

Preservation planning

Data management

Administration

Access

Ingest

Storage

Preservation digitization

Records Management

WEB Archiving

Gallica (digital library)

Records Management

wayback

SPAR - Realization

SPAR - Infrastructure

SPAR
A Storage Abstraction Service – stakes

Abstract the technical complexity for the [Storage] module

- notion of storage unit, records, ...
- application of a policy based on an offer of services

Abstract the business complexity for the storage administrators

- migrate records with no impact on information packages,
SAS – model and notions

Objects

- Record
- Replica
- Storage Unit
- Storage Element

Data notions

Containers notions

Principles

- the SAS exposes storage units where we put records
- it manages automatically storage, replications, retrievals, ...
Virtual file system

- data-objects
- collections
- replicas

Not concerned with physical location of data-objects.

Resources/Storage devices

Concerned with physical location of data-objects.

Zones, servers

- iCat (iRODS metadata catalog)
- IES (iCat Enabled Server)
- Resource servers

Concerned with the system’s deployment.
Implementation
CRAUD rules
Create a record, Read it, Audit it (verify and repair its integrity), Update it, Delete it.

Homemade hierarchical resources

```
storageUnit/storageElement
  iRODS resc.
  unix filesystem
formed into
storageElement
  iRODS resc.
  unix filesystem
```

```
storageElement
  iRODS resc.
  unix filesystem
formed into
storageElement
  iRODS resc.
  unix filesystem
```
View of the resources

> ilsresc capsCONSA01
capsCONSA01
> ilsresc elemCONSA01-2
elemCONSA01-2
> ilsresc elemCONSA01-3
elemCONSA01-3
iRODS 4 hierarchical resources

- storageUnit
 - coordinating resc.
 - passthru(r1,w1)
- storageElement
 - coordinating resc.
 - passthru(r1,w1)
 - storage resc.
 - unixfilesystem
- storageElement
 - coordinating resc.
 - passthru(r1,w1)
 - storage resc.
 - unixfilesystem
- storageElement
 - coordinating resc.
 - passthru(r1,w1)
 - storage resc.
 - unixfilesystem
View of the resources

> ilsresc capsCONSA01

capsCONSA01:replication

--- vanneCONSA01-1:passthru
 --- elemCONSA01-1:unix file system

--- vanneCONSA01-2:passthru
 --- elemCONSA01-2:unix file system

--- vanneCONSA01-3:passthru
 --- elemCONSA01-3:unix file system
Migration from iRODS 3 to iRODS 4

Context

- r_data_main: approx. 16 million entries
- r_meta_main: approx. 24 million entries
- backend database is postgresql
- development started with iRODS 4.1.7
- migration of the production system with iRODS 4.1.10 (then upgrade to 4.1.11)

Steps

1. upgrade iCat schema from v3 to v4
2. rename some of our meta_attr_name
3. migrate SAS implementation to v4
Migration i — upgrade iCat schema to v4

Intent
Because of huge "row update" we need to drop index and perform full vacuum and recreate index.

Actions
1. drop all index
2. upgrade-3.3.xto4.0.0.sql
3. perform vacuum
4. recreate index
Migration ii — rename some of our meta_attr_name

Intent
Because of huge "row update" we need to drop index and perform full vacuum and recreate index.

Actions
1. drop index
2. update metadata
3. perform vacuum
4. recreate index
Retrieve all storage element from attribute 'replicaResources'
> iquest %s "SELECT META_RESC_ATTR_VALUE WHERE META_RESC_ATTR_NAME = 'replicaResources' AND RESC_NAME = '${UNIT}'"

Get name of storageElement from a storageUnit (v3)
> ilsresc -l ${UNIT} | grep "^vault"

Homebrew rename resource with clause where with sql in iCAT
> resc_id="select resc_id from irods.r_resc_main where resc_name='${old_name}' and zone_name='SAS' limit 1"
> update irods.r_resc_main set resc_name='${new_name}' where resc_id=${resc_id}
> update irods.r_data_main set resc_name='${new_name}', resc_hier='${new_name}' where resc_name='${old_name}'''
Remove useless AVU from storageElement
> imeta rm -R

Create replication resource storageUnit
> iquest %s "SELECT RESC_LOC WHERE RESC_NAME = '$ELEMENT_1'"
> iadmin mkresc $UNIT replication $UNIT_HOST:'FAKE_CAPS_PATH'

Transfer AVUs from storageElement to storageUnit
> imeta cp -R "${ELEMENT_1}" "${UNIT}"

Remove storageElement AVUs from storageUnit
> imeta rm -R

Remove storageUnit AVUs from ELEMENT_1
> imeta rm -R
Attach floodgate (passthru) + storageElement

> iadmin mkresc $GATE_NAME passthru $UNIT_HOST:'FAKE_GATE_PATH'
 'read=1.1;write=1.1'

> iadmin addchildtoresc $GATE_NAME $ELEMENT_NAME

> iadmin addchildtoresc $UNIT_NAME $GATE_NAME

Proceed with others storageElements
Conclusion
Our Storage Abstraction Service allows SPAR to enforce its daily operations without stopping.

iRODS is its central element.

Migration from iRODS 3 to iRODS 4 was not an easy task.

We are now ready to investigate an upgrade to iRODS 4.2, in particular study what it has to offer in terms of rebalance (we need fine grain capacities).
Questions?