

iRODS
User Group Meeting 2018

Proceedings

© 2018 All rights reserved. Each article remains the property of the authors.

10TH ANNUAL CONFERENCE SUMMARY

The iRODS User Group Meeting of 2018 gathered together iRODS users, Consortium members, and

staff to discuss iRODS-enabled applications and discoveries, technologies developed around iRODS,

and future development and sustainability of iRODS and the iRODS Consortium.

The three-day event was held from June 5th to 7th in Durham, North Carolina, hosted by the iRODS

Consortium, with over 110 people attending. Attendees and presenters represented over 50 academic,

government, and commercial institutions.

Contents

Listing of Presentations ……………………………………………………………………………. 1

ARTICLES

Using iRODS to manage, share and publish research data: Yoda ………………….…………… 5

Ton Smeele, Lazlo Westerhof – Utrecht University ITS/RDM

iRODS Capability: Automated Ingest …………………………………………………………… 13

Hao Xu, Alan King, Terrell Russell, Jason Coposky, Antoine de Torcy – RENCI, UNC-Chapel Hill

Listing of Presentations

The following presentations were delivered at the meeting:

iRODS Consortium Update

Jason Coposky – iRODS Consortium

iRODS Technology Update

Terrell Russell – iRODS Consortium

Towards a Parallel and Restartable Data Transfer Mechanism in iRODS

Zoey Greer and Hao Xu – iRODS Consortium

Virtues of Combining Locally Managed Storage with iRODS

Mark Pastor – Quantum

iRODS Deployment Seven Years On

John Constable – Wellcome Sanger Institute

Using iRODS to Manage, Share and Publish Research Data: Yoda

Ton Smeele and Lazlo Westerhof – Utrecht University

Data Archiving in iRODS

Matthew Saum – SURFsara

Deployment of a National Research Data Grid Powered by iRODS

Ilari Korhonen – KTH Royal Institute of Technology

The NIEHS Data Commons

Mike Conway – NIEHS

WDC, HGST, and iRODS

Linda Zhou – Western Digital Corporation

High-ish Availability Genomics

John Constable – Wellcome Sanger Institute

OpenID Connect Authentication in iRODS

Kyle Ferriter – RENCI at UNC-Chapel Hill

1

iRODS for Clinical and Instrument Data Lifecycle Management and Archiving

Masilamani Subramanyam – Genentech / Roche

iRODS Capability: Automated Ingest

Terrell Russell and Hao Xu – iRODS Consortium

iRODS Capability: Storage Tiering

Jason Coposky – iRODS Consortium

iRODS in the Cloud: SciDAS and NIH Helium Commons

Claris Castillo – RENCI at UNC-Chapel Hill

iRODS Usage at CC-IN2P3/CNRS

Yonny Cardenas – CC-IN2P3

The Brain Image Library

Derek Simmel – Pittsburgh Supercomputing Center, Carnegie Mellon University

FAIR Data Management and Disqoverability

Maarten Coonen – Maastricht University

Metalnx 2.0 – The Future of Metalnx

Stephen Worth – Worthwize Consulting

Terrell Russell – iRODS Consortium

Implementing a Storage Abstraction Service with iRODS

Jordan de La Houssaye – Bibliothéque nationale de France (BnF)

Discovery Environment and UNC’s Implementation of a Community Edition

Don Sizemore – Odum Institute at UNC-Chapel Hill

A Pilot of iRODS for Managing Next Generation Sequencing Data

Todd Moughamer – Syngenta

Integrating Scale-Out NAS into an iRODS Data Fabric

Paul Evans – Daystrom

HydroShare: How iRODS Manages Data for a Hydrology Community of 1000’s of Users

Ray Idaszak – RENCI at UNC-Chapel Hill

Lightning Talk: Scientific Animal Image Analysis (SANIMAL)

Tony Edgin – CyVerse at University of Arizona

2

ARTICLES

3

4

Using iRODS to manage, share and publish research
data: Yoda

Ton Smeele
Utrecht University ITS/RDM
Heidelberglaan 8, Utrecht,

The Netherlands
a.p.m.smeele@uu.nl

Lazlo Westerhof
Utrecht University ITS/RDM
Heidelberglaan 8, Utrecht,

The Netherlands
l.r.westerhof@uu.nl

ABSTRACT

Researchers face challenges when they want to manage, share and publish their research data.

In 2014, Utrecht University commenced development of Yoda, a research data management system to meet these

challenges. More recently features have been added to facilitate researchers to describe, deposit and publish research

data in compliance with the FAIR principles.

Yoda deploys iRODS as its core component, customized with approximately 10,000 lines of rules and extended with

a graphical user interface. It accommodates multiple metadata schemas to support varying requirements across fields

of science.

We will discuss Yoda design principles related to the new features and their iRODS realization.

Keywords

Research data management, iRODS, FAIR, metadata.

INTRODUCTION

As the amount, complexity and use of digital research data grows, so does the need to manage data properly. The

requirements for research data management may vary during the research data life cycle [1]. For instance, during

creation, processing and analysis phases sensitive data typically is shared only between project members while the

data sharing and reuse phases imply the need for publication of metadata to the research community at large. Other

requirements such as compliance with law and institute policies have impact on the entire data life cycle.

Many research data management tools are focused only on the last phases of the data life cycle. Our approach is

to support data management during research so that researchers can benefit from services immediately and data

management integrates smoothly with existing research processes. In this paper we discuss key requirements and

principles related to the design of Yoda and their realization using iRODS [2].

CHALLENGES
Need to safely collaborate on research data

An internal survey held in 2014 at Utrecht University amongst 3200 researchers revealed that approximately two

third of the researchers work with research data which is at least partly sensitive. Half of the researchers that already

work with sensitive data expect this fraction to increase over time.

European, national and institutional funders stimulate international and cross discipline research cooperation. Therefore

while data may be sensitive, often there is a need to collaborate on data between research consortium members that

iRODS UGM 2018 June 5-7, 2018, Durham, North Carolina, USA

[Author retains copyright. Copyright

c� 2018 Ton Smeele and Lazlo Westerhof, Utrecht University, The Netherlands.]

1
5

originate from di↵erent institutes and countries. An example is the Consortium on Individual Development [3], a

longitudinal research project in the Netherlands that seeks to understand why most children develop well yet not all

children manage to do so.

Need powerful tool yet easy to use

Some disciplines such as Bioinformatics tend to prefer to use the command line e.g. Linux bash to access their data.

They may have to manage files with sizes in the order of many gigabytes for which fast and resumable data transfer

is a key requirement to minimize the impact of poor network connections. Large data files may also imply a need to

have multiple physical storage units act as one logical unit. The iRODS iCommands [4] are well suited to their needs.

Yet most disciplines demand a graphical user interface with intuitive access, informally summarized during a Yoda

requirements for I-Lab [5] workshop as “We need Dropbox [6] on steroids”. This workshop also revealed the wish to

be able to revert to a previous revision of a data file e.g. in case of accidental deletion.

Need to comply with data policies

For reasons of reproducibility, Utrecht University’s research data policy [7] requires researchers to retain data

underpinning research output for a period of at least 10 years after conclusion of the research. This is in line

with national [8] and European [9] guidelines. Patent, privacy or otherwise sensitive data necessitates appropriate

measures to protect against unauthorized access.

All the above policies require research data to be protected against loss as a result of hazards or data corruption.

Replication across multiple geographically distributed datacenters is adopted as a strategy against data loss by the

EUDAT project’s B2SAFE services [10].

Need support for data beyond the research project

Research data often has value beyond the scope of a research project. A UKRDS survey [11] reveals that duration

of the data life cycle tends to vary per discipline where less than 20 years is common for business & management

studies while e.g. geography data does not appear to expire. Therefore stewardship of data is unable to depend on

the existence of and funding by the research project. This underpins the importance of well described data packages

so that entitlements and reuseability of the data can be assessed at any time. The FAIR principles [12] provide

researchers with guidance on the required level of data description.

The availability of reusable data can benefit new research and is promoted via initiatives such as the European Open

Science Cloud [13].

Flexible cost coverage for data storage and data management is needed to support changes in stewardship and to

support reuse based billing.

SOLUTION
Communities and data compartments

Yoda stores data in compartments and access to the compartment is granted only to users that are a member, a

viewer or a data manager. Members have edit rights on data while viewers have read-only access to the data. Multiple

data compartments are jointly refered to as a community1. Each community can have one or more data managers.

Data compartments are implemented as a set of iRODS groups so that authorizations can be role based. Note that

in iRODS access rights granted on an object are equivalent to the sum of access granted to each group membership

(in addition to access granted to the user specifically) so this conveniently fits with our approach.

1in the Yoda portal a community is listed as a “category”

2
6

Given a compartment named X belonging to community C then (full) members are listed in the iRODS group

research-X and viewers are listed in the iRODS group read-X. Datamanagers are listed in a group datamanager-C.

Data compartments consist of a research “workspace” and an accompanying “vault”. The vault is a space where data

is deposited that must remain immutable forever for reasons of demonstrable data integrity. While data objects in

the workspace are editable for full members and readable for viewers and data managers, the data in the vault is

read-only for all roles. Researchers may opt to deposit data in the vault. Subsequently the data manager approves the

deposit and the Yoda system takes care of the actual deposit action. Hence even the data manager cannot directly

write to the vault.

Storage resource strategy

Each iRODS storage resource is tagged with a tier identifier that indicates its relative cost factor. Yoda administrators

can edit this tag. Hence a community can be invoiced for the total size of data stored on Yoda based on the tier rate

times the sum of data object sizes for each storage tier. This information is collected by a cron job and annotated

to the iRODS group object. The Yoda statistics module shows users their current and rolling 12-months use per tier

consolidated on a group and community level.

We use composable resources in a hierarchy. All user accessible resources are underneath resource irodsResc. The

data stored here is replicated asynchronously to a top level resource irodsRescRepl located in another datacenter to

protect it against loss. This is complemented by a revision strategy to maintain previous versions of a data object.

The irodsResc resource distributes data objects randomly among its children, the actual leaf storage resources. Each

leaf has a pass-thru parent resource to allow an administrator to switch the resource on and o↵ for reads and/or

writes. This facilitates easy maintenance on resources. Resources can be decommissioned by replicating their data

to another resource and then trimming the original resource.

Ease of use: graphical user interface

One of the requirements of Yoda is a graphical user interface with intuitive access. We meet this requirement through

a combination of a network disk access to transfer and process data and a web portal to authorize access and to

manage the data. The network disk interface Davrods [14] is written in C and supports WebDAV protocol class 2.

The portal is written in PHP, JavaScript and HTML. Using the iRODS PHP library [15], the graphical user interface

of Yoda is connected to the back o�ce. It is strictly presentation layer only, all business logic is present in the back

o�ce. The business logic is implemented using iRODS rules and microservices. This facilitates that Yoda functions

and policies are applied regardless of user interface.

Collaboration: revisions and folder locking

To satisfy the wish to be able to revert to a previous revision of a file and collaborate safely as a group in the research

workspace, we have implemented folder locking and revisions.

Folder locking

To prevent modification of a folder in the research workspace, a researcher can use the lock function. This will

catch attempts to write data to or to remove data from that folder until the folder is unlocked again. The same

mechanism is used to prevent data modification while it is being approved and copied to the vault. We have opted

not to use iRODS Access Control Lists (ACL) for this purpose. ACLs can be modified by the object creator which

is not desirable for system-initiated lock actions.

Folder locks are implemented through metadata on the folder, its children and its parents. The lock consists of an

iRODS Attribute-Value-Unit (AVU) triplet with org_lock as attribute name and the name of the collection that the

lock applies to as its value. Whenever a folder is locked an AVU is set on every child recursively. In addition it is set

on all parent folders up to and including /{rodsZone}/home/research-{groupName}.

3

7

Revisions

For each new file and upon a file modification Yoda creates a revision. This is a timestamped backup of the new or

modified file in the revision store. The revision store is a system collection.

Not all revisions are kept, only a predefined number of revisions is kept per time bucket. A time bucket is a time

o↵set from now into the past. Each revision strategy has a predefined set of time buckets and minimum number of

revisions stored in those buckets.

Metadata handling

Metadata is registered in an XML [16] file together with the data in a data package. This XML file complies with a

metadata schema chosen by the community. Researchers can register the metadata through the web portal or upload

a metadata XML file directly through WebDAV. The second scenario is suitable for experiment software that can

produce a metadata file automatically.

Metadata schemas

Each community in Yoda can configure its own metadata schema. Metadata can be entered and edited through a

web form. A Yoda metadata form is constructed from three files (see Figure 1): an Extensible Markup Language

(XML) file that contains the actual metadata, an XML Schema Definition (XSD) [17] file and a form elements XML

file.

The XSD file lists requirements and restrictions that apply to the metadata. It describes properties such as input

length and datatype of each metadata field and selectable options of List-Of-Values fields. While Yoda uses the XSD

to validate the XML structure, it does not use the XSD to specify mandatory metadata fields required before a data

folder can be submitted for inclusion into the vault.

The form elements XML file contains all presentation information relevant to the web portal metadata form and

specifies which metadata fields are required when submitting a data folder into the vault. This file has been designed

for the Yoda implementation and is not based on any standard apart from XML.

The Yoda metadata XML file holds the actual metadata as entered by the researcher in the research workspace.

In the research workspace, the XML metadata file is validated against the metadata schema XSD before it is loaded

into the metadata form. If the metadata XML does not comply with the metadata schema, it will not be loaded into

the metadata form. When a data folder is deposited to the vault, it is validated against the metadata schema XSD

and against the form elements XML to check if all required metadata fields have been completed.

XSD file

Form elements XML

Yoda metadata XML

Yoda metadata form

Validation

User Interface

Metadata

Figure 1. Construction of Yoda metadata form

Metadata indexing

4
8

The content of the XML metadata file is indexed in the iCAT database so that users can find data by its metadata.

The submitted metadata forms are transformed with an Extensible Stylesheet Language Transformations (XSLT)

[18] stylesheet into an XML containing AVUs. Subsequently this XML is loaded into the iCAT database using a

microservice. Metadata is added to the data folder to make it searchable in the web portal.

Metadata mapping

When Yoda publishes a data package, the metadata stored in XML is transformed into several other formats using

XSLT stylesheets. The first transformation creates a landing page for the publication. This page is published in a

public directory. A second transformation generates a DataCite Metadata Schema 4.0 [19] compliant XML used for

the DataCite Metadata Store. The last transformation creates an XML file used by the public OAI-PMH [20] service

of Yoda which maps the Yoda metadata to Dublin Core Schema [21] and DataCite Metadata Schema 4.0.

Workflows

The two main workflows in Yoda are depositing a data package (see Figure 2) and publishing a data package (see

Figure 3). We faced several challenges upon workflow implementation. First of all integrity: data packages in the vault

must be protected from undesired changes. In case of desired changes we need traceability: it should be traceable

who was responsible for each change. Furthermore we want interactive and scalable workflows. Users should not have

to wait for tasks to finish and long running tasks should not block other processes.

To provide security and traceability for data packages in the vault, tasks in the vault require exclusive privileges.

These privileges are granted to actors based on their role. To achieve interactive and scalable workflows, tasks with

long or uncertain execution time must be executed asynchronously (e.g. file copy actions).

Workflow progress is registered as a state with the data package. The state of a data package is stored as metadata

on the data package collection.

Actors

Yoda workflows involve three actors:

• Researcher Researchers initiate the workflows by submitting data folders for the vault and for publication.

• Data manager Data managers react on the actions initiated by the researchers, submitted data folders have

to be approved by a data manager.

• System The system will copy and publish the packages after they have been approved by a data manager.

Since tasks in the vault require exclusive privileges this is done by the system.

Data deposit workflow

Researchers can deposit their data folder from the research workspace into the vault. To start the data deposit

workflow a researcher submits a data folder for inclusion into the vault. The data manager will check if the submitted

data folder with metadata complies with institutional, faculty and other policies. If the data folder complies with

policies the data manager accepts the data folder for the vault. If the data folder does not comply with policies the

data manager rejects the data folder. The researcher can now change the data folder before resubmitting it to the

vault. After a data folder is accepted for the vault the system will deposit a copy of the data folder in the vault. A

data package is created and the data folder content is included in an original sub folder. The license chosen by the

researcher is automatically added to the data package in the vault.

FAIR data publication workflow

Once secured in the vault, a data package can be published. The researcher initiates a data publication via the

Yoda web portal by clicking the submit for publication button. The data manager accepts or rejects the request

5
9

Data folder

Submitted for vault Approved for vault
Secured in vault

Researcher

submits data folder

Data manager

approves data folder

System

deposits a copy in the vault

Figure 2. The workflow to deposit a data package into the vault

depending on whether the data package complies with publication policies. If the publication is rejected the researcher

can make the necessary changes before submitting the data package again. After the data manager has accepted the

publication request, the system will publish the data package. The system mints and registers a persistent Digital

Object Identifier [22], submits the data package metadata to DataCite, publishes a landing page for the data package

and makes the metadata available through OAI-PMH. These actions make the data package findable, accessible and

reusable in line with the FAIR principles. Third parties can harvest the metadata of the published package through

OAI-PMH. If the data package is classified as“open”, the contents of the data package will be made publicly accessible

as well.

Unpublished

Submitted for publication Accepted for publication
Published

Depublished

Researcher

requests to publish

Data manager

accepts publication

System

publishes data package

Data manager

(de)publishes publication

Figure 3. The workflow to publish a data package

FUTURE WORK

Going forward we intend to extend Yoda with functions to manage collections of data packages (e.g. manage

membership and import, export and distribute data). Also we aim to support other data types such as software

and experiment configurations.

CONCLUSION

The current functions of Yoda facilitate institutional researchers to manage and share sensitive data in line with

policies during and after research. Yoda allows researchers to comply with grant requirements on data management

and open data.

ACKNOWLEDGEMENTS

The development of Yoda would not have been possible without the input, support and executive sponsorship of

researchers and IT management. In particular we would like to thank Chantal Kemner (Dynamics of Youth research)

and her team. Chantal has provided the requirements for the initial Yoda functions that help to manage sensitive lab

data and she trusted us to deliver on our promises. Also we thank Vincent Buskens (Institutions for Open Societies

research) and his team. Vincent helped us to shape the data sharing and data publication functions. Finally we thank

Carolien Besselink (IT Services) for her sustained executive sponsorship. Carolien put research data management on

the IT Services agenda and facilitated the development of Yoda.

6

10

REFERENCES

[1] S. Higgins, “The DCC curation lifecycle model,” International Journal of Digital Curation, vol. 3, no. 1, 2008.

[2] A. Rajasekar, R. Moore, C.-y. Hou, C. A. Lee, R. Marciano, A. de Torcy, M. Wan, W. Schroeder, S.-Y. Chen,

L. Gilbert, et al., “irods primer: integrated rule-oriented data system,” Synthesis Lectures on Information

Concepts, Retrieval, and Services, vol. 2, no. 1, pp. 1–143, 2010.

[3] C. Kemner, “Consortium on individual development.” http://www.individualdevelopment.nl, 2014. Visted

on 2018-05-31.

[4] “iRODS documentation.” httpss://docs.irods.org. Visted on 2018-05-31.

[5] “Institutions for Open Societies.” https://www.uu.nl/en/research/institutions-for-open-societies. Visited on

2018-05-31.

[6] “Dropbox.” http://www.dropbox.com. Visted on 2018-05-31.

[7] E. Stiekema, “University policy framework for research data Utrecht University,” 2017.

[8] Association of Universities in the Netherlands (VSNU), “The Netherlands Code of Conduct for Academic

Practice.” http://www.vsnu.nl/files/documenten/Domeinen/Onderzoek/The_Netherlands_Code%20of_

Conduct_for_Academic_Practice_2004_(version2014).pdf, 2014. Visited on 2018-05-31.

[9] “Guidelines on FAIR Data Management in Horizon 2020.” http://ec.europa.eu/research/participants/

data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf, 2018. Visited on 2018-05-31.

[10] EUDAT, “B2safe.” https://eudat.eu/services/userdoc/b2safe. Visited on 2018-05-31.

[11] N. Beagrie, R. Beagrie, and I. Rowlands, “Research data preservation and access: The views of researchers,”

Ariadne, no. 60, 2009.

[12] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W.

Boiten, L. B. da Silva Santos, P. E. Bourne, et al., “The fair guiding principles for scientific data management

and stewardship,” Scientific data, vol. 3, 2016.

[13] “European Open Science Cloud.”

http://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud, 2018. Visited on

2018-05-31.

[14] C. Smeele and T. Smeele, “Davrods, an Apache WebDAV Interface to iRODS,” in iRODS User Group Meeting

2016 Proceedings, pp. 41–47, iRODS Consortium, Dec. 2016.

[15] DICE-UNC, “Prods php irods client library.” https://github.com/DICE-UNC/irods-php. Visited on 2018-05-31.

[16] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible markup language (xml).,”

World Wide Web Journal, vol. 2, no. 4, pp. 27–66, 1997.

[17] P. V. Biron, A. Malhotra, W. W. W. Consortium, et al., “Xml schema part 2: Datatypes,” 2004.

[18] World Wide Web Consortium (W3C), “XSL Transformations (XSLT) Version 2.0.”

https://www.w3.org/TR/xslt20/, 2007.

[19] DataCite Metadata Working Group, “DataCite Metadata Schema for the Publication and Citation of Research

Data. Version 4.0.” http://doi.org/10.5438/0013, 2016.

[20] Open Archives Initiative, “The Open Archives Initiative Protocol for Metadata Harvesting. Version 2.0.”

http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm, 2015.

[21] Dublin Core Metadata Initiative, “The Dublin Core Metadata Element Set.”

http://www.ietf.org/rfc/rfc5013.txt, 2007.

[22] I. ISO, “26324: Information and documentation-digital object identifer system,” 2009.

7
11

12

iRODS Capability: Automated Ingest
Hao Xu

Renaissance Computing
Institute (RENCI)
UNC Chapel Hill
xuh@cs.unc.edu

Alan King
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill

alanking@renci.org

Terrell Russell
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill

unc@terrellrussell.com

Jason Coposky
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
jasonc@renci.org

Antoine de Torcy
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill

adetorcy@renci.org

ABSTRACT

The iRODS Automated Ingest Framework is a new iRODS client that has been designed to scale up to match the

demands of data coming o↵ instruments, satellites, or parallel filesystems and provide a front door to the policy-based

data management platform of iRODS.

Initial testing shows promising flexibility and a roughly linear performance curve.

Keywords

iRODS, capability, ingest, Celery, Redis, data management

INTRODUCTION

The iRODS Automated Ingest Framework[1] has been designed to solve two major use cases: registering large amounts

of existing data into an iRODS namespace without moving the source data (filesystem scanning) and ingesting new

or updated data from a known location in a filesystem (a landing zone) into place within an iRODS Vault.

Based on the Python iRODS Client[3], Celery[4], and Redis[5], the goal of this framework is to scale up to match the

demands of data coming o↵ instruments, satellites, or parallel filesystems and provide a front door to the policy-based

data management platform of iRODS[2].

For testing, this framework has been deployed manually. For enterprise customers, this framework is prototyped as

Docker containers to be deployed and run on a Kubernetes cluster via Helm charts.

ARCHITECTURE

Overview

The motivation for this tool was to provide a parallel and distributed means of getting data into the iRODS catalog.

Celery and Redis provide the coordination mechanism for concurrent ’stat’ gathering from the source location as

well as concurrent iRODS connections for an initial scan. They also provide a very fast insulating layer for a ’delta

sync’ when a data source is scanned again and many of the source files have not changed. In this case, the Redis

cache reports that nothing has changed for a particular file, and the client determines that no connection to iRODS

is necessary. Delta scans are much faster than initial scans for this reason.

iRODS UGM 2018 June 5-7, 2018, Durham, North Carolina, USA

[Authors retain copyright.]

1

13

Client

Celery Queue

Redis

Celery Worker

Celery Worker

Celery Worker

iRODS

Filesystem

Figure 1. The number of Celery Workers can scale up to meet the required performance demand.

Client

The automated ingest client takes an initial path to scan, submits the job to the celery queue, and sets the following

necessary Redis metadata. If the job is to be run a single time, the job name is added to the singlepass list. If the

job is to be run continuously (scanning the same source again and again), then the job name is added to the periodic

list. These two lists keep track of jobs that are running. If the job is in singlepass, a restart task is called one

time synchronously to start the job. If the job is in periodic, a restart task is added to the restart queue which

will start the work again once the current pass is complete.

The client can also stop a job and all tasks under that job.

Celery Queue

The restart task resets the count and dequeue lists, and the tasks, retries, and failures counters. The restart

task calls a sync_path task that recursively and asynchronously walks the requested filesystem location (the source).

If the requested path is a directory, the sync_path task calls a sync_dir task that asynchronously creates and

populates the metadata for that directory in the Redis cache, creates the collection in iRODS, and then lists and

calls sync_path asynchronously on the immediate children of the directory. The sync_dir task compares the last

sync time with the mtime and ctime of the directory, and if the directory has changed, the collection in iRODS is

synchronized.

If the requested path is a file, the sync_path task calls a sync_file task that asynchronously creates and populates

the metadata for that file in the Redis cache, and then puts or registers the file into iRODS. If the Redis entry

already exists, the sync_file task compares the last sync time with the mtime and ctime of the file, and if the file

has changed, the file contents and system metadata in iRODS are synchronized.

Before a task is added to the queue, the count counter is incremented and the task id is added to the task list.

Each task has a retry handler, a failure handler, and an after return handler. The retry handler and failure handler

increments the retry and failure counter respectively. The after return handler decrements the count counter and

removes the task id from the tasks list. When the tasks counter is zero, it calls the cleanup function.

Redis

A Redis database can be used by Celery as a broker. Another Redis database is used to store metadata about jobs,

including the singlepass and periodic lists, the count and dequeue lists, and the tasks, retries, and failures

2

14

counters. The singlepass list contains all the names of single pass jobs, the periodic list contains all the names of

periodic jobs. These two lists are used to calculate running tasks for stopping a job. The count list contains all tasks

created by the job and the dequeue list contains all tasks that are finished (with either success or failure). These two

lists are used to calculate the list of running tasks. A running task can be stopped by name. The tasks counter is

used to keep track of the remaining tasks. When the tasks counter reaches zero, the cleanup function is triggered.

The retries and failures counters keep track of retried and failed tasks.

Event Handlers

The automated ingest Celery workers can be deployed with a variety of options to describe their behavior around

gathering, preparing, and sending information to iRODS. These options are described in event handler files and

handed to the workers. This allows for custom behavior to be written for particular deployments of the Ingest

Framework. The event handler methods made available to the workers include:

method effect default

pre_data_obj_create user-defined Python none

post_data_obj_create user-defined Python none

pre_data_obj_modify user-defined Python none

post_data_obj_modify user-defined Python none

pre_coll_create user-defined Python none

post_coll_create user-defined Python none

pre_coll_modify user-defined Python none

post_coll_modify user-defined Python none

as_user takes action as this iRODS user authenticated user

target_path set mount path on the iRODS server

which can be different from client

mount path

client mount path

to_resource defines target resource request of

operation

as provided by client environment

operation defines the mode of operation Operation.REGISTER_SYNC

max_retries defines max number of retries on

failure

0

timeout defines seconds until job times out 3600

delay defines seconds between retries 0

Table 1. Available event handler methods

Where user-defined Python can be written, the event handler is just providing hooks for data preparation or book-

keeping. The other methods are either Celery-specific or iRODS-specific configuration options for the operation to

be performed.

Operations

The event handler method operation defines the mode for any iRODS connection. The following six operations are

available and determine whether data is transferred and how the iRODS catalog is updated:

3

15

operation new files updated files

Operation.REGISTER_SYNC (default) registers in catalog updates size in catalog

Operation.REGISTER_AS_REPLICA_SYNC registers first or addi-

tional replica

updates size in catalog

Operation.PUT copies file to target

vault, and registers in

catalog

no action

Operation.PUT_SYNC copies file to target

vault, and registers in

catalog

copies entire file again,

and updates catalog

Operation.PUT_APPEND copies file to target

vault, and registers in

catalog

copies only appended

part of file, and updates

catalog

Operation.NO_OP no action no action

Table 2. Available event handler operation modes

SOURCE AS S3

The Automated Ingest Framework was originally designed for ingestion from mounted filesystems. However, during

the framework’s development, an additional use case of ingesting from an existing S3 bucket was presented. Once a

suitable python library was identified (minio), ingesting data via the S3 protocol worked as expected.

FLEXIBILITY

With these di↵erent configuration options, the functionality required for a particular use case can be realized.

The two main use cases that are solved by this framework are the filesystem scanner (source files stay in place after

scanning) and the landing zone (source files are moved aside in some manner after being scanned). The good way

to think about the di↵erence between these two ways of setting up the Automated Ingest Framework is to consider

where the source of truth will be once the scanning has been performed.

With the filesystem scanner use case, the truth remains in the original source location since that data could continue

to move as new science is performed and other systems are writing into that source location. This is most likely to

be useful when putting jobs into the periodic list.

With the landing zone use case, the truth now lies in the iRODS Catalog. iRODS has a copy of the data under

management and it is now owned and operated within a Vault that iRODS controls. This is most likely to be useful

when putting jobs into the singlepass list.

Within these two di↵erent use cases, there is the opportunity for registering new physical replicas of already registered

data, syncing updated data, or even only updating a delta if the source material has been appended.

These di↵erent settings, in addition to the pre- and post- methods for data object and collection creation and

modification, provide a full programmatic surface for writing data preparation policy and harvesting of metadata

from external sources on the way to having data ingested into iRODS.

EARLY PERFORMANCE

4

16

Initial Ingest

This data is preliminary, and we expect the rates to increase once we have more experience with enterprise configu-

rations and topologies.

However, we see that over 4M files can be ingested by 32 workers in an hour and a half with this initial codebase

(Table 3).

What is also notable is that the performance is relatively linear until the catalog provider itself is overwhelmed by the

number of incoming concurrent connections (and their subsequent concurrent connections to the underlying iCAT

database).

files workers minutes files/worker/minute

1585094 32 36 1375.95

4000000 32 90 1388.89

13564110 32 299 1417.65

Table 3. Three early samples of rate of ingest.

Delta Sync

When scanning the same data source again, the Redis cache handles most of the load and since it is an in-memory

data structure store, it never needs to touch the disk or the network. It can handle the lookups very quickly and

prevent the system from needing to go to the iRODS catalog except where a source file has changed.

For the most common of loads (a few files per thousand have changed), the delta sync (Table 4) runs nearly 10x as

fast as the initial ingest (Table 3).

files workers minutes files/worker/minute

247641 32 0.633 12219.13

2337705 32 6.166 11847.76

Table 4. Syncing data already in Redis is much faster.

SUMMARY

The iRODS Automated Ingest Framework is a new client that is being tested as it is being built. It has been designed

to solve a myriad of interesting data ingesting scenarios and scale out to keep up with incoming data rates from

batteries of sensors, microscopes, sequencers, and satellites.

Early indications show that the performance is roughly linear as the number of workers scales up.

We are actively looking for additional use cases and look forward to increased community feedback.

REFERENCES

[1] iRODS Capability Automated Ingest. https://github.com/irods/irods_capability_automated_ingest

[2] Xu, H., Russell, T., Coposky, J., et al: iRODS Primer 2: Integrated Rule-Oriented Data System. In: Synthesis

Lectures on Information Concepts, Retrieval, and Services. 131pp. Morgan Claypool. (2017)

[3] Python iRODS Client. https://github.com/irods/python-irodsclient

[4] Celery: Distributed Task Queue. http://www.celeryproject.org/

[5] Redis. https://redis.io/

5

17

